
Designing GUIs by Sketch Drawing
and Visual Programming

Eric Lecolinet

Ecole Nationale Supérieure des Télécommunications (ENST)
46 rue Barrault, 75013 Paris, France
elc@enst.fr http://www.enst.fr/~elc

ABSTRACT
This paper presents a new interactive UIDE that is based on
visual programming and constrained sketch drawing. At the
early stages of the iterative conception process, GUIs are
interactively designed by drawing a “rough sketch” that acts
as a first draft of the final description. This drawing is inter-
preted in real time by the system in order to produce the cor-
responding widget view (i.e. the actual visible GUI) and a
graph of abstract objects that represents the GUI structure.
This graph can then be easily modified by mixing visual and
textual programming in a fully iterative and incremental
way. This system is also based on the use ofgeneric objects
which are dynamically instantiated into actual widgets
according to their structural and functional context. This
scheme makes it possible to define very generic GUIs that
can then be deeply refined in an efficient way at any stage of
the conception process.

KEYWORDS: user interface design, interface builders,
visual programming, sketching, visual / textual equivalence

INTRODUCTION
A classical reproach made against interactive GUI builders
is that they require designers to make detailed presentation
choices too early in the UI conception process. These tools
generally force interface designers to deal with specific
graphical objects (we will call themwidgets) and to specify
more of the design details than are needed at this early
stage[7]. Moreover, GUI builders are quite efficient for de-
signing standardized interfaces that are limited to menus and
dialog boxes but generally provide little support for creating
application specific objects (for instance an interactive graph
editor) or to process data that changes at run time (for in-
stance a dynamic file manager). Writing source code is thus
required for specifying such behaviors. Unfortunately, this
leads to another major problem: most of these tools do not
allow the programmer to freely edit the generated source
code, or else the tool can no longer be user for later modifi-
cations. This limitation breaks the iterative conception pro-
cess when designing complex interactive systems.

Several strategies have been proposed to solve these prob-
lems. Model based UIMS [6, 7] generate most of the presen-
tation automatically from a high-level specification of the
interface. While this idea is appealing, these are essentially
text-based approaches that require the knowledge of a spe-
cial-purpose language. Moreover, the lack of designer con-

trol may lead to generated GUIs that are not perfectly suited
to the application. Certain systems also include powerful in-
teractive tools [8], but most of them only allow for “cosmet-
ic” f inal modifications at a later stage. Another approach
consists in providing a separate interactive way of designing
interfaces at the early stages of their conception. For in-
stance, the SILK system [3] provides an interactive tool that
allows designers to quickly “sketch” an interface by using
an electronic pad and stylus. The idea is to let designers
draw early interface ideas in the same way as they would do
on a piece of paper. But this electronic sketch will also pro-
duce a fully operational interface.

PROPOSED APPROACH
We propose here an hybrid approach which tries to mix sev-
eral aspects of interactive GUI builders, model-based sys-
tems and interactive sketching. This new system lets
designers produce generic interface specifications in an in-
teractive way, either by textual or visual programming or by
constrained sketching. The conception process is fully itera-
tive and is consistent from the very early stages of design to
the realization of the final application. The full system pro-
vides four different views of the GUI that correspond to var-
ious stages of the conception process (or to the various level
of expertise of the designers involved in this task):
1. TheSketch View (Fig. 1) lets designers conceive a “first

draft” of the GUI by drawing a “rough sketch” that will
become the base of the final program. The system will
“interpret” this drawing and will try to infer which actual
objects are needed in order to let the designer focus
attention on the global layout of the GUI without having
to take care of implementation details.

2. The Graph View (Fig. 2) provides the designer with a
visual iconic representation of thestructure of the GUI.
This representation is fully editable and can be modified
interactively by direct manipulation. This graph is not a
mere widget tree but a true abstract representation of the
GUI that can include (and represent visually) non-widget
components such as properties, call-back functions, con-
trol statements, interactive behaviors, etc.

3. TheWidget View shows the actual “concrete” GUI that is
normally visible on the screen. This view only shows the
“surface” of the GUI (its visible part) by opposition with
the graph view.

4. The corresponding source code is displayed in theText
View. The source code is generated in an incremental
way in order to reflect all modifications performed on the
other views. Conversely, this view can also be changed
interactively by parts: the designer can edit the source
code of any subpart of the GUI and change it “on the
spot.” Syntactic and semantic errors are checked dynam-
ically and the other views are then updated in real-time.

The sketch view is only used at the early conception stages.
The resulting widget view is produced in real time so that
designers can immediately see the result of their drawing
and correct it iteratively (the system providing full undo ca-
pabilities). The graph view and the text view are made avail-
able to the designer once the sketching stage is over. Visual
and/or textual edition can then be performed to refine the
GUI, add call-back functions or any other means of interac-
tion. The graph, widget and text views are linked together
and are incrementally updated. The graph and the text views
provide dual representations of the program that would pro-
duce the corresponding widget view (in that sense, this wid-
get view can be seen as the “result” of the specifications
contained in these two other views). Furthermore, there is a
one to one correspondence between the various representa-
tions of a same object. For instance, control-clicking on an
object representation in any view will highlight its other
available representations in the other views.

Most interactions for building the GUI take place on the
graph view, which acts as an “abstract” intermediate repre-
sentation of the actual widgets. There are several advantages
in dealing with an abstract representation rather than with
the actual widgets themselves. First, as said before, it is pos-
sible to represent non-widget components visually and han-
dle them in a direct manipulation style. Second, this visual

representation actually corresponds to a program (which is
displayed in the text view). Third, this intermediate level of
representation brings abstraction capabilities that are miss-
ing in systems based on a pure WYSIWYG paradigm (i.e.
systems that let the user manipulate “concrete” widgets di-
rectly). An abstract representation makes it possible to spec-
ify “immaterial” behaviors and constraints (for instance for
controlling the lay out of the GUI dynamically) and to deal
with GUI components in a quite generic and uniform way.
This last point leads to the concept of generic objects which
is presented in the next section.

At last, the system provides complete textual and visual
equivalence. This means that textual edition can not only
take place while using the interactive builder but also at any
stage of the conception process. The generated source code
(which is in the C language) remains visually editable by us-
ing the interactive builder, even if this code is textually mod-
ified by the programmer after the GUI generation stage. For
instance, a generated GUI could be textually included into C
or C++ constructs in order to produce a dynamic behavior,
and would then remain visually editable by calling the
builder again. We believe that this feature can considerably
ease the design of applications that deal with application
specific objects or data that changes at run-time as it let de-
signers make use of the whole power of a standard program-
ming language while using an interactive GUI builder.

Fig. 2: The XXL Builder and the Graph View

Fig 1: The Sketch View (VBox, "menu",
 (Button, "button1", o),
 (Button, "button2", o),
 (Button, "button3", o),
 o)

 (Menu, "menu",
 (Button, "button1", o),
 (Button, "button2", o),
 (Button, "button3", o),
 o)

Fig. 3: Generic Objects and Widget
Generation. These graphical com-
ponents have quasi equivalent
specifications that can be changed
one into another by modifying the
container type (Fig 3a: the widget
view, Fig 3b: an extract from the
corresponding C source code)

Fig 3a Fig 3b

GENERIC OBJECTS AND WIDGET INSTANTIATION
The system presented here is calledXXL and relies on a
former version that was presented in [4]. The present ver-
sion includes a set ofgeneric objects which are dynamically
instantiated into different actual widgets according to their
structural and functional context. Moreover, object classes
can be changed interactively in a direct manipulation style
and these changes are recursively propagated to the children
they contain. This conception scheme makes it possible to
hide many low-level details to the designer and remodel
GUIs after their initial creation in quite an efficient way. For
instance, a box containing a set of buttons can immediately
be changed into a radio box, a dialog box, a menu bar or a
menu by only changing the type of the container object, its
children being then automatically modified by the system
(Fig. 3). Then, linking interactively a generic menu to a
menu bar button, to a pull-down menu button or to another
object would make it respectively behave as a pull-down, a
cascaded or a contextual pop-up menu. Moreover, error
checking is performed in real-time in order to detect possi-
ble incoherences and to warn the user in an appropriate way.

At last, it can be noted that the underlying textual specifica-
tion is somewhat similar to the one used by certain model-
based UIMS except that the objects can be manipulated in-
teractively in a visual programming style (Fig. 3b). The
XXL system is basically based on a hierarchical box / item
model that resembles some of the interface specifications
that can for instance be found in the ITS system [8].

SKETCH DRAWING
The strategy adopted for drawing is quite different from
SILK and other systems [3]: free hand drawing is not al-
lowed and the drawing is electronically constrained to a
very small number of possible figures. All objects are speci-
fied by drawing rectangles at a certain location in the
sketch. Other possible figures include three different kinds
of arrows that act as behavioral or topological links. The ob-
ject types are automatically deduced by considering struc-
tural the constraints between objects and their locations in
the drawing. This strategy has several advantages:
• It avoids the complex pattern recognition stage that

would be needed for recognizing free hand drawing. In
addition, recognitions errors or rejections are also
avoided.

• The designer can only draw legible figures (rectangles
or arrows). The system do not let users think they can
draw complex fancy shapes (that would actually be
rejected or misrecognized by a pattern recognition sys-
tem).

• By opposition to free hand drawing, constrained draw-
ing does not require specific hardware (such as an elec-
tronic pen and pad). Moreover, people are quite used to
this kind of mouse interaction.

Thus, by using a “faked metaphor” (users draw sketches as
they would do in reality, by not in the same “material” way)
we can ease interaction, avoid errors and ambiguities and
avoid having to use specific hardware.

Sketch Interpretation
The first rectangle drawn in the sketching area is implicitly
considered as a “main box” (that will not necessarily be the
actual main window of the final application but can be in-
cluded into another object at a later stage). Then, an includ-
ed horizontal rectangle, located at the top of this main box
will automatically be seen as a menu bar by the system
(Fig.1) . Drawing enclosed rectangles inside this menu bar

will generate menu bar buttons. Such buttons are supposed
to open pull-down menus which are created by drawing ver-
tical boxes outside the main box. These menus can contain
buttons and refer to cascaded menus that are designed in the
same way. Menus (and dialog boxes) are attached to their
opening button by drawing a “behavioral link” between
these two components. The same principle applies for the
other kinds of objects. It is for instance possible to create di-
alog boxes, to nest container objects within a same window
and to lay out primitive objects in an appropriate way. The
system proposes default rules for lay out management that
can be changed interactively. Objects can be automatically
aligned or can be layed out by specifying graphical con-
straints which are materialized by “topological arrows” that
can be set and changed in a direct manipulation style.

This way of designing GUIs favors the use of spatial topo-
logical constraints instead of fixing absolute x, y coordi-
nates by moving and resizing widgets directly with the
mouse. This leads to a more flexible representation that can
evolve dynamically at run-time when the final user resizes
the windows or customizes the application (for instance by
specifying larger fonts). The use of such constraints is rath-
er easy and natural here because they are either deduced
from the drawing, or explicitly drawn in a simple way.
Thus, it is interesting to notice that the drawing performed
by the user is not a WYSIWYG but alogical representation
of the GUI. The actual GUI will not exactly look exactly the
same as the drawing but will follow the logical constraints
specified by the designer. It is up to the graphical system to
adjust and lay out the corresponding widgets in an appropri-
ate way.

CURRENT STATUS
The system has been fully implemented and relies on the X
Window system and the Motif toolkit. The visual/textual
builder has been used for realizing various tools and stu-
dents’ projects at our institute. The XXL environment has
also been used for creating and refining the interactive
builder itself. This environment also includes some other
features (which are detailed in [4]) such as an interpretable
scripting language, the ability to edit GUI at run-time while
they are being executed, and a mechanism for dealing with
migratory interfaces over a network. It is (partly) available
at URL: http://www.enst.fr/~elc.

ACKNOWLEDGMENTS
The author would like to thank F. Tête, P. Agin, L. Ulmer,
O. Delahaye and G. Lecourt for their contributions to the
implementation of the system.

REFERENCES
1. Avrahami G. et al., A Two-View Approach to Constructing User Inter-

faces. Computer Graphics, Vol. 23, No. 3, July 1989.
2. Bodart F. et al., Towards a Systematic Building of Software Architec-

ture:The Trident Methodological Guide, Workshop on Design, Spec-
ification, Verification of Interactive Systems, pp. 237-253, 1995.

3. Landay J., Myers B., Interactive Sketching for the Early Stages of User
Interface Design,Proc. of the CHI Conference, 1995.

4. Lecolinet E., XXL: A Dual Approach for Building User Interfaces,Proc.
ACM Symposium on User Interface Software andTechnology
(UIST), pages 99-108, Seattle, USA, Nov. 1996.

5. Myers B.A., User Interface Software Tools. ACM Trans. on Computer-
Human Interaction, Vol. 2, No. 1, pp. 64-103, 1995.

6. Singh G., Green M., Automating the Lexical and Syntactic Design of
Graphical User Interfaces: The UofA* UIMS. ACM Trans. on
Graphics, Vol 10, No 3, July 1991.

7. Szekely P., Luo P., Neches R., Beyond Interface Builders: Model-Based
Interface Tools, proc. INTERCHI'93, April 1993, pp. 383-390.

8. Wiecha C. et al., ITS: A Tool for Rapidly Developing Interactive Appli-
cations. ACM Trans. on Information Systems, Vol 8, No. 3, 1990.

