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Design criteria Main problem Lower bound Examples Upper bound Aladdin’s code Experimental Results

What is Golden and contains a Genie?

Aladdin’s Lamp (first published 1710, as an addition by Galland to his
French translation of the 1001 Nights)

Aladdin’s Code (J.J.B.+ H.R., December 2008)

(a new answer to a 300 year old question, although for both you have to
rub them a little to see they are golden).

Two design criteria for Space –Time Block Codes

Minimize error probability under ML decoding thanks to a
non-vanishing determinant condition −→ (in dim 2) the Golden code,
constructed by carefully choosing a lattice in the generalized

quaternion algebra
(

i,5
Q(i)

)

.

Minimize error probability under iterative decoding thanks to the Genie
conditions of Boutros-Gresset-Brunel (2003).
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Channel model
Y = HX + N

where H is nr × nt, X is nt × T , and Y and N are nr × T .
We will suppose nr = nt = n.

Linear space-time block code

Xc = c1M1 + · · · + ckMk

where M1, . . . ,Mk are the generating codewords, the code has dimension
k ≤ nT , and c = (c1, . . . , ck) is the information vector with entries cj in
some (finite or infinite) constellation A in C, e.g. A = Z[i].

Shaping condition
To optimize energetic efficiency the generating codewords have to make an
orthonormal family (up to some scalar) in the space of n × T matrices (for
the L2 norm).
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Under ML decoding, for SNR γ, the pairwise error probability is upper
bounded as

P (X → X
′) ≤

(

1
∏t

i=1(1 + λiγ/4n)

)n

≤
(gγ

4n

)−tn

where: t = rk(X−X
′) ≤ min(n, T ), the λi are the non-zero eigenvalues of

(X− X
′)(X − X

′)∗, and g = (λ1λ2 · · · λt)
1/t its normalized determinant.

The famous design criteria for ML decoding can be recalled as follows:

Rank: Full diversity is achieved if t = n (≤ T ).

Product distance: Coding gain is maximized by maximizing the
determinant.

Full diversity can be attained with T = n if a suitable unitary coding
scheme is applied.
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Under iterative decoding, assuming perfect a priori produced by a decoder,
the performance depends on the squared Euclidean metric
D2 = ‖HXc − HXc′‖2 = ‖HXc−c′‖2, where c − c

′ = (0 . . . 0 ∆ 0 . . . 0)
(say ∆ in j-th position), so that

D2 = |∆|2‖HMj‖2.

How to optimize distribution for D2 ?

When H has complex gaussian entries, properties of χ2 distributions show
error probability is minimal when the Mj are chosen to be unitary matrices
(up to some scalar).
This reformulates, and unifies, the two Genie conditions of
Boutros-Gresset-Brunel (2003).
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Up to normalization by some scalar constant, this leads us to our:

Main mathematical problem

Find n × n complex matrices M1, . . . ,Mn2 such that:

they lie in U(n), the unitary group – Genie condition (G)

they form an orthogonal basis of Mn(C) – shaping condition (S)

the code they generate has minimal determinant as big as possible.

Remark: problem remains unchanged if replace each Mj with UMjV for
some U, V ∈ U(n). This defines an equivalence relation.
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In the 2× 2 MIMO case, diagonalization theorem for unitary matrices gives:

Theorem 1

Any M1, . . . ,M4 in M2(C) satisfying (G) and (S) are equivalent to some

M1 =

(

1 0
0 1

)

M2 =

(

α 0
0 −α

)

M3 =

(

0 β
β 0

)

M4 =

(

0 γ
−γ 0

)

for α, β, γ ∈ C with |α| = |β| = |γ| = 1.

For M1, . . . ,M4 as in the above Theorem and for c ∈ A4, one has

Xc =
1√
2

(

c1 + αc2 βc3 + γc4

βc3 − γc4 c1 − αc2

)

(here we took care of the normalization constant), so that

detXc =
1

2
(c2

1 − α2c2
2 − β2c2

3 + γ2c2
4) =

1

2
qu,v,w(c)

where u = α2, v = β2, w = γ2, and the quadratic form qu,v,w is defined in
the next slide.
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For u, v,w ∈ C with |u| = |v| = |w| = 1, for z = (z1, z2, z3, z4) ∈ C4, define

qu,v,w(z) = z2
1 − uz2

2 − vz2
3 + wz2

4

For any subset A of C, define

maxqmin(A) = sup
|u|=|v|=|w|=1

(

inf
c∈A4\{0}

|qu,v,w(c)|
)

Then, if A is an additive subgroup of C, we get:

Corollary 1

The supremum value of the minimum determinant of 2 × 2 linear
space-time codes on A satisfying the shaping and Genie conditions is

1

2
maxqmin(A).
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From this Corollary: A perfect 2 × 2 space-time code satisfying the Genie
conditions exists if and only if maxqmin(A) > 0. If the latter is attained
for a particular value of u, v,w, then there exists a corresponding code with
optimal coding gain.

So we are reduced to computing

maxqmin(A) = sup
|u|=|v|=|w|=1

(

inf
c∈A4\{0}

|qu,v,w(c)|
)

where
qu,v,w(z) = z2

1 − uz2
2 − vz2

3 + wz2
4 .

Now let A = Z[i] or Z[j], and K = AQ = Q(i) or Q(j).
First we’ll get a lower bound, and then an upper bound, on this quantity.

The two bounds will match!
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Lower bound on the minimal determinant...

We start with the following remarks:

Take u, v ∈ K and w = uv, then qu,v,w is the reduced norm form of
the generalized quaternion algebra

(u,v
K

)

, which is the central simple
K-algebra of dimension 4 with basis 1, e, f, g satisfying e2 = u,
f2 = v, and g = ef = −fe (so g2 = −w).

If this quaternion algebra is a division algebra, then qu,v,w does not
represent 0 over K.

If d ∈ A is a common denominator for u, v,w, then qu,v,w(c) ∈ 1
dA for

c ∈ A4.

Thus, for any non-zero c ∈ A4 we have a lower bound

|qu,v,w(c)| ≥ 1

|d| .
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... or: Where algebraic number theory enters the scene

Strategy

Take u, v ∈ K with smallest possible denominators (e.g. in A?) satisfying
the constraints:

|u| = |v| = 1

the quaternion algebra
(u,v

K

)

is a division algebra.

Remarks:

the set of elements in K with |.| = 1 forms a subgroup K×
1 of K×,

with structure easy to determine

last condition is equivalent to u not a square in K and v not a norm
from K(

√
u) to K.
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Lemma 1

The group K×
1 is generated by the units in A and the elements xp/xp

where p = xpxp are the primes that split in K (p ≡ 1 mod 4 for A = Z[i],
or p ≡ 1 mod 3 for A = Z[j]).

Lemma 2

The units in A that are not squares in K are {±i} for A = Z[i] and
{−1,−j,−j2} for A = Z[j].
If we take u such a unit, then all other units are norms from K(

√
u) to K.

To minimize denominators, first take u such a unit. Then v cannot be
taken a unit anymore, so we’ll take v = xp/xp with p as small as possible,
but still giving a division algebra:

Lemma 3

A necessary and sufficient condition for v not to be a norm from K(
√

u) to
K, is that p ≡ 5 mod 8 for A = Z[i], or p ≡ 7 mod 12 for A = Z[j].
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Alphabet A = Z[i].
Let r be a product of split primes. Then one can write r = a2 + b2 and
put xr = a + ib. Let also x2

r = c + id, so c = a2 − b2 and d = 2ab.
Then r2 = c2 + d2, and (c, d, r) is known as a Pythagorean triple.
For u = i, v = xr/xr = x2

r/r, and w = uv, the quadratic form is

qu,v,w(z) = (z2
1 − iz2

2) − c+id
r (z2

3 − iz2
4)

and the code can be constructed by putting in Theorem 1:
α =

√
u = eiπ/4, β =

√
v = xr/

√
r, and γ =

√
w = αβ.

If moreover r = p is a prime ≡ 5 mod 8, then qu,v,w does not represent
zero and has absolute value always at least

1

|xp|
=

1√
p
.

The corresponding Pythagorean code has minimum determinant at
least

1

2
√

p
.
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Upper bound on the minimal determinant

So far we get:

A = Z[i], u = i, p = 5 −→ maxqmin(Z[i]) ≥ 1√
5

A = Z[j], u = −1, p = 7 −→ maxqmin(Z[j]) ≥ 1√
7
.

What is the optimal value?

On the opposite direction,

maxqmin(A) ≤ maxqmin(B)

for any B ⊂ A. If we choose B finite, then

maxqmin(B) = sup
|u|=|v|=|w|=1

(

inf
c∈B4\{0}

|qu,v,w(c)|
)

can be computed analytically exactly (piecewise smooth function over a
smooth compact set!).
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By choosing a convenient B (e.g. B = 16-QAM in case A = Z[i]), one
shows equality:

maxqmin(Z[i]) = 1√
5

maxqmin(Z[j]) = 1√
7
.

Moreover, up to the natural symmetries of the problem, the only values of
u, v,w attaining this optimum are those given above.

Thus, the corresponding codes have minimum determinant 1
2
√

5
and 1

2
√

7
respectively, which is best possible, and are unique up to equivalence.
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Aladdin’s code

We construct Aladdin’s code by taking A = Z[i], p = 5 with x5 = 2 + i,
and associated Pythagorean triple (3, 4, 5). The quadratic form is

qu,v,w(z) = (z2
1 − iz2

2) − 3+4i
5 (z2

3 − iz2
4)

and quaternion algebra
(

i,x2

5
/5

Q(i)

)

=
(

i,5
Q(i)

)

, the same as the Golden code.

However, we get a different lattice in that algebra (thus pay a small loss in
minimum determinant in price for the Genie). In Theorem 1 we can put:

α =
1 + i√

2
= eiπ/4 β =

2 + i√
5

= ei atan(1/2) γ =
1 + 3i√

10
= ei atan(3)

and get as precoder matrix (in linearized form):

SAladdin =
1√
2









1 0 0 1
α 0 0 −α
0 β β 0
0 γ −γ 0








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Aladdin’s code

All in all:

Theorem 2

Aladdin’s code is a perfect 2 × 2 space-time code over Z[i] satisfying the
Genie conditions, with minimum determinant 1

2
√

5
.

Moreover, it has optimal coding gain: any code satisfying these properties
has minimum determinant strictly less than 1

2
√

5
, unless it is equivalent to

Aladdin’s.
In fact, this optimality property already holds when restricted to a 16-QAM.

In the same way, we get a perfect 2× 2 space-time code over Z[j] satisfying
the Genie conditions, with minimum determinant 1

2
√

7
. This is optimal, and

this code is unique up to equivalence.
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Performance comparison with different precoders (1)
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Performance comparison with different precoders (2)
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Summary

We reformulated and showed how to combine the Genie conditions and
the rank criterion in an amenable way.

The 2-dimensional case is completely solved: Over Z[i], perfect 2 × 2
STBC satisfying the Genie conditions can be easily constructed from
Pythagorean triples satisfying some congruence conditions, and the
triple (3, 4, 5) gives rise to Aladdin’s code, which is the unique
optimum, with minimum determinant 1

2
√

5
. The same is done over

Z[j], with minimum determinant 1
2
√

7
.

What next?

Comparison with so-called cyclotomic codes.

More simulations, e.g. in combination with LDPC codes.

Algorithmic aspects (e.g. for the ML decoding stage).

Higher-dimensional constructions.
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