Asymptotically good codes with asymptotically good squares

Hugues Randriambololona

Telecom ParisTech

DIAMANT Symposium 2012.11.30

Let * denote coordinatewise multiplication in $(\mathbb{F}_q)^n$:

$$(x_1,\ldots,x_n)*(y_1,\ldots,y_n)=(x_1y_1,\ldots,x_ny_n).$$

Introduction

Let * denote coordinatewise multiplication in $(\mathbb{F}_q)^n$:

$$(x_1,\ldots,x_n)*(y_1,\ldots,y_n)=(x_1y_1,\ldots,x_ny_n).$$

If $C\subset (\mathbb{F}_q)^n$ is a k-dimensional linear subspace, i.e. an $[n,k]_q$ -code, let

$$C * C = \{c * c' \mid c, c' \in C\} \subset (\mathbb{F}_q)^n$$

Introduction

Let * denote coordinatewise multiplication in $(\mathbb{F}_q)^n$:

$$(x_1,\ldots,x_n)*(y_1,\ldots,y_n)=(x_1y_1,\ldots,x_ny_n).$$

If $C \subset (\mathbb{F}_q)^n$ is a k-dimensional linear subspace, i.e. an $[n,k]_q$ -code, let

$$C * C = \{c * c' \mid c, c' \in C\} \subset (\mathbb{F}_q)^n$$

and then ("square" of C):

$$C^{\langle 2 \rangle} = \langle C * C \rangle = \{ \sum_{c,c' \in C} \alpha_{c,c'} c * c' \mid \alpha_{c,c'} \in \mathbb{F}_q \}$$

is the linear span of C * C.

Let * denote coordinatewise multiplication in $(\mathbb{F}_q)^n$:

$$(x_1,\ldots,x_n)*(y_1,\ldots,y_n)=(x_1y_1,\ldots,x_ny_n).$$

If $C \subset (\mathbb{F}_q)^n$ is a k-dimensional linear subspace, i.e. an $[n,k]_q$ -code, let

$$C * C = \{c * c' \mid c, c' \in C\} \subset (\mathbb{F}_q)^n$$

and then ("square" of C):

$$C^{\langle 2 \rangle} = \langle C * C \rangle = \{ \sum_{c,c' \in C} \alpha_{c,c'} c * c' \mid \alpha_{c,c'} \in \mathbb{F}_q \}$$

is the linear span of C * C. More generally (higher powers):

$$C^{\langle t+1\rangle} = \langle C^{\langle t\rangle} * C\rangle.$$

Geometric interpretation: Veronese embedding.

Start from a symmetric bilinear form ${\cal B}$

$$V \times V \longrightarrow W$$

Introduction

Start from a symmetric bilinear form B and a diagram

$$\begin{array}{ccc} V \times V & \stackrel{B}{\longrightarrow} & W \\ \phi \times \phi \downarrow & & \uparrow \theta \\ (\mathbb{F}_q)^n \times (\mathbb{F}_q)^n & \stackrel{*}{\longrightarrow} & (\mathbb{F}_q)^n \end{array}$$

so
$$B(u,v) = \theta(\phi(u) * \phi(v))$$
 for $u,v \in V$.

Introduction

Start from a symmetric bilinear form ${\cal B}$ and a diagram

$$\begin{array}{ccc} V \times V & \stackrel{B}{\longrightarrow} & W \\ \phi \times \phi \downarrow & & \uparrow \theta \\ (\mathbb{F}_q)^n \times (\mathbb{F}_q)^n & \stackrel{*}{\longrightarrow} & (\mathbb{F}_q)^n \end{array}$$

so $B(u,v) = \theta(\phi(u) * \phi(v))$ for $u,v \in V$. More generally

$$\sum_{i} B(u^{(i)}, v^{(i)}) = \theta(\sum_{i} \phi(u^{(i)}) * \phi(v^{(i)})) \in \theta(C^{\langle 2 \rangle})$$

where $C = \operatorname{im}(\phi)$.

Start from a symmetric bilinear form B and a diagram

$$\begin{array}{ccc} V \times V & \stackrel{B}{\longrightarrow} & W \\ \phi \times \phi \Big\downarrow & & \uparrow \theta \\ (\mathbb{F}_q)^n \times (\mathbb{F}_q)^n & \stackrel{*}{\longrightarrow} & (\mathbb{F}_q)^n \end{array}$$

so $B(u,v) = \theta(\phi(u) * \phi(v))$ for $u,v \in V$. More generally

$$\sum_{i} B(u^{(i)}, v^{(i)}) = \theta(\sum_{i} \phi(u^{(i)}) * \phi(v^{(i)})) \in \theta(C^{\langle 2 \rangle})$$

where $C = \operatorname{im}(\phi)$.

Occurs in various contexts:

- algebraic complexity theory
- multi-party computation.

Most often $V=W=\mathbb{F}_{q^r}$ and B is field multiplication. We say (ϕ,θ) define a (symmetric) multiplication algorithm of length n for \mathbb{F}_{q^r} .

Most often $V=W=\mathbb{F}_{q^r}$ and B is field multiplication. We say (ϕ,θ) define a (symmetric) multiplication algorithm of length n for \mathbb{F}_{q^r} . Example: multiplication in $\mathbb{F}_{q^2}=\mathbb{F}_q[\alpha]$

$$(x + y\alpha)(x' + y'\alpha) =$$

Most often $V=W=\mathbb{F}_{q^r}$ and B is field multiplication. We say (ϕ,θ) define a (symmetric) multiplication algorithm of length n for \mathbb{F}_{q^r} . Example: multiplication in $\mathbb{F}_{q^2}=\mathbb{F}_q[\alpha]$ with $4\cdot$ in \mathbb{F}_q

$$(x+y\alpha)(x'+y'\alpha) = x \cdot x' + (x \cdot y' + x' \cdot y) \cdot \alpha + y \cdot y' \cdot \alpha^2$$
 (note: non-symmetric)

Most often $V=W=\mathbb{F}_{q^r}$ and B is field multiplication. We say (ϕ,θ) define a (symmetric) multiplication algorithm of length n for \mathbb{F}_{q^r} . Example: multiplication in $\mathbb{F}_{q^2}=\mathbb{F}_q[\alpha]$ with $3\cdot$ in \mathbb{F}_q

$$(x+y\alpha)(x'+y'\alpha) = x \cdot x' \cdot (1-\alpha) + (x+y) \cdot (x'+y') \cdot \alpha + y \cdot y' \cdot (\alpha^2 - \alpha)$$

(Karatsuba; geometric interpretation: evaluate at $0, 1, \infty$).

Most often $V=W=\mathbb{F}_{q^r}$ and B is field multiplication. We say (ϕ,θ) define a (symmetric) multiplication algorithm of length n for \mathbb{F}_{q^r} . Example: multiplication in $\mathbb{F}_{q^2}=\mathbb{F}_q[\alpha]$ with $3\cdot$ in \mathbb{F}_q

$$(x+y\alpha)(x'+y'\alpha) = x \cdot x' \cdot (1-\alpha) + (x+y) \cdot (x'+y') \cdot \alpha + y \cdot y' \cdot (\alpha^2 - \alpha)$$

(Karatsuba; geometric interpretation: evaluate at $0, 1, \infty$).

Could work more generally with symmetric *t*-linear maps.

Might then ask for:

Introduction

- resistance to noise (random errors)
- resistance to malicious users (passive or active)
- threshold properties.

All these are governed essentially by the minimum distance of $C^{(t)}$.

Parameters:

- dimension $\dim^{\langle t \rangle}(C) = \dim(C^{\langle t \rangle})$
- rate $R^{\langle t \rangle}(C) = R(C^{\langle t \rangle})$
- ullet minimum distance $\mathrm{d}_{\min}^{\langle \mathrm{t}
 angle}(C) = \mathrm{d}_{\min}(C^{\langle \mathrm{t}
 angle})$
- relative distance $\delta^{\langle t \rangle}(C) = \delta(C^{\langle t \rangle}).$

Parameters:

- dimension $\dim^{\langle t \rangle}(C) = \dim(C^{\langle t \rangle})$
- ullet rate $\mathbf{R}^{\langle \mathbf{t} \rangle}(C) = \mathbf{R}(C^{\langle t \rangle})$
- ullet minimum distance $\mathrm{d}_{\min}^{\langle \mathrm{t}
 angle}(C) = \mathrm{d}_{\min}(C^{\langle t
 angle})$
- relative distance $\delta^{\langle {\rm t} \rangle}(C) = \delta(C^{\langle t \rangle}).$

For some given q, we would like to construct C such that all these parameters up to a certain order t are large. We are interested in the asymptotic case $n \to \infty$. For q=2, already t=2 is non-trivial.

Parameters:

- dimension $\dim^{\langle t \rangle}(C) = \dim(C^{\langle t \rangle})$
- rate $R^{\langle t \rangle}(C) = R(C^{\langle t \rangle})$
- minimum distance $d_{\min}^{\langle t \rangle}(C) = d_{\min}(C^{\langle t \rangle})$
- relative distance $\delta^{\langle t \rangle}(C) = \delta(C^{\langle t \rangle}).$

For some given q, we would like to construct C such that all these parameters up to a certain order t are large. We are interested in the asymptotic case $n \to \infty$. For q=2, already t=2 is non-trivial. Easy to show:

Proposition

$$\dim^{\langle t+1 \rangle}(C) \ge \dim^{\langle t \rangle}(C)$$
$$d_{\min}^{\langle t+1 \rangle}(C) \le d_{\min}^{\langle t \rangle}(C)$$

Hence: suffices to give lower bounds on $\dim(C)$ and $\operatorname{d}^{\langle t \rangle}_{\min}(C)$ (or on R(C) and $\delta^{\langle t \rangle}(C)$).

Generalize the fundamental functions of block coding theory:

$$a_q^{\langle t \rangle}(n,d) = \max\{k \ge 0 \mid \exists C \subset (\mathbb{F}_q)^n, \dim(C) = k, d_{\min}^{\langle t \rangle}(C) \ge d\}$$

Generalize the fundamental functions of block coding theory:

$$a_q^{\langle t \rangle}(n,d) = \max\{k \geq 0 \, | \, \exists C \subset (\mathbb{F}_q)^n, \, \dim(C) = k, \, \mathrm{d}_{\min}^{\langle \mathsf{t} \rangle}(C) \geq d\}$$

$$\alpha_q^{\langle t \rangle}(\delta) = \limsup_{n \to \infty} \frac{a_q^{\langle t \rangle}(n, \lfloor \delta n \rfloor)}{n}$$

Generalize the fundamental functions of block coding theory:

$$a_q^{\langle t \rangle}(n,d) = \max\{k \geq 0 \,|\, \exists C \subset (\mathbb{F}_q)^n, \, \dim(C) = k, \, \mathrm{d}_{\min}^{\langle t \rangle}(C) \geq d\}$$

$$\alpha_q^{\langle t \rangle}(\delta) = \limsup_{n \to \infty} \frac{a_q^{\langle t \rangle}(n, \lfloor \delta n \rfloor)}{n}$$

and then:

$$\tau(q) = \sup\{t \in \mathbb{N} \mid \alpha_q^{\langle t \rangle} \not\equiv 0\}$$

the supremum value (possibly $+\infty$?) of t such that there are asymptotically good codes C_i over \mathbb{F}_q whose t-th powers $C_i^{\langle t \rangle}$ are also asymptotically good:

$$\liminf_{i \to \infty} R(C_i) > 0$$
 and $\liminf_{i \to \infty} \delta^{\langle t \rangle}(C_i) > 0$.

Introduction

Theorem 0

$$\alpha_q^{\langle t \rangle}(\delta) \ge \frac{1-\delta}{t} - \frac{1}{A(q)}$$

hence

$$\tau(q) \ge \lceil A(q) \rceil - 1$$

where A(q) is the Ihara function that governs the asymptotic number of points on curves over \mathbb{F}_q .

Results

Theorem 0

$$\alpha_q^{\langle t \rangle}(\delta) \ge \frac{1-\delta}{t} - \frac{1}{A(q)}$$

hence

$$\tau(q) \ge \lceil A(q) \rceil - 1$$

where A(q) is the Ihara function that governs the asymptotic number of points on curves over \mathbb{F}_q .

Theorem 1

$$\alpha_2^{\langle 2 \rangle}(\delta) \ge \frac{74}{39525} - \frac{9}{17} \delta \approx 0.001872 - 0.5294 \delta$$

hence

$$\tau(2) > 2$$

(and more generally $\tau(q) \geq 2$ for all q).

Proof of Theorem 0 (quite standard)

Introduction

X curve of genus g over \mathbb{F}_q with n points P_1,\ldots,P_n , $G=P_1+\cdots+P_n$, D disjoint from G, L(D) space of functions on X with poles at most D, $l(D)=\dim L(D)$,

$$C(D,G) = \{(f(P_1), \dots, f(P_n)) \mid f \in L(D)\}.$$

$\overline{Proof\ of\ Theorem\ 0\ (quite\ standard)}$

X curve of genus g over \mathbb{F}_q with n points P_1,\ldots,P_n , $G=P_1+\cdots+P_n$, D disjoint from G, L(D) space of functions on X with poles at most D, $l(D)=\dim L(D)$,

$$C(D,G) = \{(f(P_1), \dots, f(P_n)) \mid f \in L(D)\}.$$

Lemma

$$C(D,G)^{\langle t \rangle} \subset C(tD,G).$$

Proof of Theorem 0 (quite standard)

X curve of genus g over \mathbb{F}_q with n points P_1,\ldots,P_n , $G=P_1+\cdots+P_n$, D disjoint from G, L(D) space of functions on X with poles at most D, $l(D)=\dim L(D)$,

$$C(D,G) = \{(f(P_1), \dots, f(P_n)) \mid f \in L(D)\}.$$

Lemma

Introduction

$$C(D,G)^{\langle t \rangle} \subset C(tD,G).$$

Lemma (Goppa)

Suppose $g \leq \deg(D) < n$. Then

$$\dim C(D,G) = l(D) \ge \deg(D) + 1 - g$$
$$d_{\min}(C(D,G)) \ge n - \deg(D).$$

Concatenation

C an [n,k]-code over \mathbb{F}_{q^r} , $\phi:\mathbb{F}_{q^r}\longrightarrow (\mathbb{F}_q)^m$ an injective \mathbb{F}_q -linear map, define $\phi(C) = \{\phi(c) = (\phi(c_1), \dots, \phi(c_n)) \mid c = (c_1, \dots, c_n) \in C\}.$ Then $\phi(C)$ is an [mn, kr]-code over \mathbb{F}_q (identify $((\mathbb{F}_q)^m)^n = (\mathbb{F}_q)^{mn}$).

Other terminology: the outer code is $C_{out} = C$, the inner code is $C_{in} = \operatorname{im}(\phi) \subset (\mathbb{F}_q)^m$, the concatenated code is $C_{out} \circ_{\phi} C_{in} = \phi(C)$.

Strategy: use Theorem 0 over an extension field \mathbb{F}_{q^r} , then concatenate to get Theorem 1 over \mathbb{F}_q .

Concatenation

C an [n,k]-code over \mathbb{F}_{q^r} , $\phi:\mathbb{F}_{q^r}\longrightarrow (\mathbb{F}_q)^m$ an injective \mathbb{F}_q -linear map, define $\phi(C) = \{\phi(c) = (\phi(c_1), \dots, \phi(c_n)) \mid c = (c_1, \dots, c_n) \in C\}.$ Then $\phi(C)$ is an [mn, kr]-code over \mathbb{F}_q (identify $((\mathbb{F}_q)^m)^n = (\mathbb{F}_q)^{mn}$).

Other terminology: the outer code is $C_{out} = C$, the inner code is $C_{in} = \operatorname{im}(\phi) \subset (\mathbb{F}_q)^m$, the concatenated code is $C_{out} \circ_{\phi} C_{in} = \phi(C)$.

Strategy: use Theorem 0 over an extension field \mathbb{F}_{q^r} , then concatenate to get Theorem 1 over \mathbb{F}_a .

Example: a related problem? C is ε - \cap if

$$c_1, c_2 \in C \setminus \{0\} \Longrightarrow \operatorname{wt}(c_1 * c_2) \ge \varepsilon n.$$

Easy:

$$C_{out} \varepsilon - \cap \& C_{in} \varepsilon' - \cap \Longrightarrow C_{out} \circ C_{in} \text{ is } \varepsilon \varepsilon' - \cap.$$

Same flavour but no logical connection between $C \in C$ and $\delta^{(2)}(C) \geq \varepsilon$.

Start with C over \mathbb{F}_{q^r} with control on $\mathrm{d}^{\langle 2 \rangle}_{\min}(C)$, concatenate with $\phi: \mathbb{F}_{q^r} \longrightarrow (\mathbb{F}_q)^m$, how can we control $\mathrm{d}^{\langle 2 \rangle}_{\min}(\phi(C))$?

$$C \times C \longrightarrow C^{\langle 2 \rangle}$$

$$\phi \times \phi \downarrow$$

$$\phi(C) \times \phi(C) \longrightarrow \phi(C)^{\langle 2 \rangle}$$

Start with C over \mathbb{F}_{q^r} with control on $\mathrm{d}^{\langle 2 \rangle}_{\min}(C)$, concatenate with $\phi: \mathbb{F}_{a^r} \longrightarrow (\mathbb{F}_a)^m$, how can we control $d_{\min}^{\langle 2 \rangle}(\phi(C))$?

$$\begin{array}{ccc} C \times C & \longrightarrow & C^{\langle 2 \rangle} \\ \phi \times \phi \Big\downarrow & & & \Big\uparrow \theta \\ \phi(C) \times \phi(C) & \longrightarrow & \phi(C)^{\langle 2 \rangle} \end{array}$$

A smart move is to take ϕ from a multiplication algorithm:

$$\mathbb{F}_{q^r} \times \mathbb{F}_{q^r} \longrightarrow \mathbb{F}_{q^r}
\phi \times \phi \downarrow \qquad \qquad \uparrow \theta
(\mathbb{F}_q)^m \times (\mathbb{F}_q)^m \longrightarrow (\mathbb{F}_q)^m$$

and deduce $d_{\min}^{\langle 2 \rangle}(\phi(C)) > d_{\min}^{\langle 2 \rangle}(C)$.

Unfortunately, this fails...

... the obstruction is $ker(\theta)$.

Suppose there exists a $\phi:\mathbb{F}_{q^r}\longrightarrow (\mathbb{F}_q)^m$ such that for all C over \mathbb{F}_{q^r} ,

$$\delta^{\langle 2 \rangle}(\phi(C)) \geq \kappa \, \delta^{\langle 2 \rangle}(C).$$

Write $\phi=(\phi_1,\ldots,\phi_m)$ so the ϕ_i are the columns of the generating matrix of the inner code. Take $m'\geq m$ and put some more columns in to get $\phi':\mathbb{F}_{q^r}\longrightarrow (\mathbb{F}_q)^{m'}$. Then we still have

$$\delta^{\langle 2 \rangle}(\phi'(C)) \ge \kappa' \, \delta^{\langle 2 \rangle}(C)$$

with $\kappa' = \frac{m}{m'}\kappa$, since $\phi'(C)$ is an extension of $\phi(C)$.

The longer ϕ , the more chances we have (if any) to prove such a bound.

Extreme example: $m = \frac{q^r - 1}{q - 1}$, $\phi = \text{all linear forms}$, $C_{in} = \text{simplex code}$.

$$\mathbb{F}_{q^r} \times \mathbb{F}_{q^r} \longrightarrow \mathbb{F}_{q^r}
\phi \times \phi \downarrow \qquad \qquad \uparrow \theta
(\mathbb{F}_q)^m \times (\mathbb{F}_q)^m \longrightarrow (\mathbb{F}_q)^m$$

Recall, if λ is a linear form, $\lambda^{\otimes 2}$ is the symmetric bilinear form

$$(v,w)\mapsto \lambda(v)\lambda(w)$$

(or in terms of matrices it is $\lambda \lambda^T$).

Results and basic strategy

On the other hand, perhaps we should not take ϕ too long. In particular we could avoid linear dependencies between the $\phi_i^{\otimes 2}$. Indeed:

- If we extend ϕ by adding some ϕ_{m+1} to it such that $\phi_{m+1}^{\otimes 2}$ is linearly dependent on the other $\phi_i^{\otimes 2}$, then we extend $\phi(C)$ by adding a new coordinate in each block, so that in the squared code, these new coordinates are linearly dependent on the others. So if a codeword in $\phi(C)^{\langle 2 \rangle}$ is zero on some block, it is still zero on this block after extending.
- Linear relations between the $\phi_i^{\otimes 2}$ make the choice of θ non-unique, hence non-canonical. We want to understand the structure of $\ker(\theta)$. Most often, canonical objects have a more interesting structure than non-canonical ones.

The symmetric square of a space

Let V be a vector space over \mathbb{F}_q . Recall:

$$\begin{split} S^2_{\mathbb{F}_q} V &= \langle u \cdot v \rangle_{u,v \in V} / (\text{sym. bilin. rel.}) \\ &= V \otimes V / \langle u \otimes v - v \otimes u \rangle_{u,v \in V} \\ &= \operatorname{Sym}(V; \mathbb{F}_q)^{\vee}. \end{split}$$

In the last identification, $u \cdot v$ is $\operatorname{Sym}(V; \mathbb{F}_q) \longrightarrow \mathbb{F}_q$, $\psi \mapsto \psi(u, v)$.

Every symmetric bilinear map $B: V \times V \longrightarrow W$ factorizes uniquely as

(proof: compose with linear forms on W to reduce to the case $W = \mathbb{F}_q$).

Lemma

Let $\lambda_1, \ldots, \lambda_r$ be a basis of V^{\vee} . Then the $\frac{r(r+1)}{2}$ elements $\lambda_i^{\otimes 2}$ for $1 \le i \le r$ and $(\lambda_i + \lambda_j)^{\otimes 2}$ for $1 \le i < j \le r$ form a basis of $\operatorname{Sym}(V; \mathbb{F}_q)$.

So we take
$$\left\{\phi_1,\ldots,\phi_{\frac{r(r+1)}{2}}\right\}=\{\lambda_i\}_{1\leq i\leq r}\cup\{\lambda_i+\lambda_j\}_{1\leq i< j\leq r}.$$

Here $V = \mathbb{F}_{q^r}$. We get a unique θ with

$$\begin{array}{cccc} \mathbb{F}_{q^r} \times \mathbb{F}_{q^r} & \longrightarrow & \mathbb{F}_{q^r} \\ \phi \times \phi & & & \uparrow \theta \\ (\mathbb{F}_q)^{\frac{r(r+1)}{2}} \times (\mathbb{F}_q)^{\frac{r(r+1)}{2}} & \longrightarrow & (\mathbb{F}_q)^{\frac{r(r+1)}{2}} \cong S^2_{\mathbb{F}_q} \mathbb{F}_{q^r} \end{array}$$

and if we use ϕ to concatenate, the inner code has generating matrix

Recall

$$\begin{array}{ccc}
\mathbb{F}_{q^r} \otimes \mathbb{F}_{q^r} & \xrightarrow{\sim} & (\mathbb{F}_{q^r})^r \\
x \otimes y & \mapsto & (xy, xy^q, \dots, xy^{q^{r-1}})
\end{array}$$

so the composite map

$$(\mathbb{F}_{q^r})^r \simeq \mathbb{F}_{q^r} \otimes \mathbb{F}_{q^r} \longrightarrow S^2_{\mathbb{F}_q} \mathbb{F}_{q^r} \xrightarrow{\theta} \mathbb{F}_{q^r}$$

is projection on the first coordinate. But then???

Does this help in understanding $ker(\theta)$? Only a little bit...

Recall

$$\begin{array}{ccc}
\mathbb{F}_{q^r} \otimes \mathbb{F}_{q^r} & \xrightarrow{\sim} & (\mathbb{F}_{q^r})^r \\
x \otimes y & \mapsto & (xy, xy^q, \dots, xy^{q^{r-1}})
\end{array}$$

so the composite map

$$(\mathbb{F}_{q^r})^r \simeq \mathbb{F}_{q^r} \otimes \mathbb{F}_{q^r} \longrightarrow S^2_{\mathbb{F}_q} \mathbb{F}_{q^r} \xrightarrow{\theta} \mathbb{F}_{q^r}$$

is projection on the first coordinate. But then???

Does this help in understanding $ker(\theta)$? Only a little bit...

Recall

$$\begin{array}{ccc}
\mathbb{F}_{q^r} \otimes \mathbb{F}_{q^r} & \xrightarrow{\sim} & (\mathbb{F}_{q^r})^r \\
x \otimes y & \mapsto & (xy, xy^q, \dots, xy^{q^{r-1}})
\end{array}$$

so the composite map

$$(\mathbb{F}_{q^r})^r \simeq \mathbb{F}_{q^r} \otimes \mathbb{F}_{q^r} \longrightarrow S^2_{\mathbb{F}_q} \mathbb{F}_{q^r} \xrightarrow{\theta} \mathbb{F}_{q^r}$$

is projection on the first coordinate. But then???

(well, not completely...)

Recall $\operatorname{Sym}(\mathbb{F}_{q^r}; \mathbb{F}_q)$ is generated by the $\lambda^{\otimes 2}$ for $\lambda \in \mathbb{F}_{q^r}^{\vee}$. And each such λ is of the form Tr(a.).

Now contemplate this formula:

$$\operatorname{Tr}(ax)\operatorname{Tr}(ay) = (ax + a^{q}x^{q} + \dots + a^{q^{r-1}}x^{q^{r-1}})(ay + a^{q}y^{q} + \dots + a^{q^{r-1}}y^{q^{r-1}})$$
$$= \operatorname{Tr}(a^{2}xy) + \sum_{1 \le j \le \lfloor r/2 \rfloor} \operatorname{Tr}(a^{1+q^{j}}(xy^{q^{j}} + x^{q^{j}}y))$$

(actually if r is even, the very last Tr should not be the trace from \mathbb{F}_{q^r} to \mathbb{F}_q but from $\mathbb{F}_{q^{r/2}}$ to \mathbb{F}_q).

Recall $\operatorname{Sym}(\mathbb{F}_{q^r}; \mathbb{F}_q)$ is generated by the $\lambda^{\otimes 2}$ for $\lambda \in \mathbb{F}_{q^r}^{\vee}$. And each such λ is of the form $\operatorname{Tr}(a.)$.

Now contemplate this formula:

$$\operatorname{Tr}(ax)\operatorname{Tr}(ay) = (ax + a^{q}x^{q} + \dots + a^{q^{r-1}}x^{q^{r-1}})(ay + a^{q}y^{q} + \dots + a^{q^{r-1}}y^{q^{r-1}})$$
$$= \operatorname{Tr}(a^{2}xy) + \sum_{1 \le j \le \lfloor r/2 \rfloor} \operatorname{Tr}(a^{1+q^{j}}(xy^{q^{j}} + x^{q^{j}}y))$$

(actually if r is even, the very last Tr should not be the trace from \mathbb{F}_{q^r} to \mathbb{F}_q but from $\mathbb{F}_{q^{r/2}}$ to \mathbb{F}_q).

Let

$$m_0(x,y) = xy$$

and introduce higher twisted multiplication laws

$$m_i(x,y) = xy^{q^j} + x^{q^j}y$$

on \mathbb{F}_{q^r} (actually if r is even, $m_{r/2}$ takes values in $\mathbb{F}_{q^{r/2}}$).

The formula says that any symmetric bilinear form on \mathbb{F}_{q^r} can be expressed in terms of traces and of the m_j . So in this way we can construct another basis of $\mathrm{Sym}(\mathbb{F}_{q^r};\mathbb{F}_q)$. Let's sum all this up.

The formula says that any symmetric bilinear form on \mathbb{F}_{q^r} can be expressed in terms of traces and of the m_j . So in this way we can construct another basis of $\mathrm{Sym}(\mathbb{F}_{q^r};\mathbb{F}_q)$. Let's sum all this up.

Let

Introduction

$$\Psi = (m_0, \dots, m_{\lfloor r/2 \rfloor}) : \mathbb{F}_{q^r} \times \mathbb{F}_{q^r} \longrightarrow (\mathbb{F}_{q^r})^{\frac{r+1}{2}}$$

(where by abuse of notation $(\mathbb{F}_{q^r})^{\frac{r+1}{2}}=(\mathbb{F}_{q^r})^{r/2}\times \mathbb{F}_{q^{r/2}}$ if r is even). Also recall

$$\Phi = (\phi_1^{\otimes 2}, \dots, \phi_r^{\otimes 2}) : \mathbb{F}_{q^r} \times \mathbb{F}_{q^r} \longrightarrow (\mathbb{F}_q)^{\frac{r(r+1)}{2}}.$$

Then Φ and Ψ are two symmetric \mathbb{F}_q -bilinear maps that give two representations of $S^2_{\mathbb{F}_q}\mathbb{F}_{q^r}$ with its universal map $(x,y)\mapsto x\cdot y$ (and moreover Ψ is a polynomial map over \mathbb{F}_{q^r} of algebraic degree $1+q^{\lfloor r/2\rfloor}$). By the universal property they are linked by some invertible \mathbb{F}_q -linear

$$\theta: (\mathbb{F}_q)^{\frac{r(r+1)}{2}} \stackrel{\sim}{\longrightarrow} (\mathbb{F}_{q^r})^{\frac{r+1}{2}}.$$

Now we concatenate:

$$\begin{array}{ccc} C \times C & \stackrel{\Psi}{\longrightarrow} & \langle \Psi(C, C) \rangle \\ \downarrow & & & \simeq \uparrow \theta \\ \phi(C) \times \phi(C) & \longrightarrow & \phi(C)^{\langle 2 \rangle} \end{array}$$

with

$$\langle \Psi(C,C) \rangle \subset \langle m_0(C,C) \rangle \times \cdots \times \langle m_{\lfloor r/2 \rfloor}(C,C) \rangle$$

and

$$\langle m_j(C,C)\rangle \subset C^{\langle 1+q^j\rangle}.$$

Now we concatenate:

$$\begin{array}{ccc} C \times C & \stackrel{\Psi}{\longrightarrow} & \langle \Psi(C,C) \rangle \\ \downarrow \phi \times \phi & & \simeq \uparrow \theta \\ \phi(C) \times \phi(C) & \longrightarrow & \phi(C)^{\langle 2 \rangle} \end{array}$$

with

$$\langle \Psi(C,C) \rangle \subset \langle m_0(C,C) \rangle \times \cdots \times \langle m_{\lfloor r/2 \rfloor}(C,C) \rangle$$

and

$$\langle m_j(C,C)\rangle \subset C^{\langle 1+q^j\rangle}.$$

Hence:

Proposition

$$d_{\min}^{\langle 2 \rangle}(\phi(C)) \ge d_{\min}^{\langle 1+q^{\lfloor r/2 \rfloor} \rangle}(C)$$

Let's say q=p is prime, for instance q=2.

To conclude:

- $d_{\min}^{\langle 2 \rangle}(\phi(C)) \ge d_{\min}^{\langle 1+q^{\lfloor r/2 \rfloor} \rangle}(C)$
- take C over \mathbb{F}_{q^r} whose powers up to order $1+q^{\lfloor r/2 \rfloor}$ are asymptotically good.

Theorem 0: possible up to order $\tau(q^r) \ge \lceil A(q^r) \rceil - 1$.

Drinfeld-Vladut bound: $A(q^r) \leq q^{r/2} - 1$ with equality for r even.

Of course we take r even since we want $\tau(q^r)$ as big as possible.

Let's say q=p is prime, for instance q=2.

To conclude:

- $d_{\min}^{\langle 2 \rangle}(\phi(C)) \ge d_{\min}^{\langle 1+q^{\lfloor r/2 \rfloor} \rangle}(C)$
- \bullet take C over \mathbb{F}_{q^r} whose powers up to order $1+q^{\lfloor r/2\rfloor}$ are asymptotically good.

Theorem 0: possible up to order $\tau(q^r) \ge \lceil A(q^r) \rceil - 1$.

Drinfeld-Vladut bound: $A(q^r) \leq q^{r/2} - 1$ with equality for r even.

Of course we take r even since we want $\tau(q^r)$ as big as possible.

So we need powers up to order $1 + q^{r/2}$ and we have the estimate $q^{r/2} - 2$ for $\tau(q^r)$.

Let's say q=p is prime, for instance q=2.

To conclude:

- $d_{\min}^{\langle 2 \rangle}(\phi(C)) \ge d_{\min}^{\langle 1+q^{\lfloor r/2 \rfloor} \rangle}(C)$
- take C over \mathbb{F}_{q^r} whose powers up to order $1+q^{\lfloor r/2 \rfloor}$ are asymptotically good.

Theorem 0: possible up to order $\tau(q^r) \ge \lceil A(q^r) \rceil - 1$.

Drinfeld-Vladut bound: $A(q^r) \leq q^{r/2} - 1$ with equality for r even.

Of course we take r even since we want $\tau(q^r)$ as big as possible.

So we need powers up to order $1+q^{r/2}$ and we have the estimate $q^{r/2}-2$ for $\tau(q^r)$ Not enough!

Why not try something stupid? Take r odd.

Then $1+q^{\lfloor r/2\rfloor}<\lceil q^{r/2}-1\rceil-1$ so there is some (little) room below Drinfeld-Vladut. But does $A(q^r)$ fit in between?

Yes: for q prime, a recent construction of Garcia-Stichtenoth-Bassa-Beleen gives

$$A(q^r) \ge \left(\frac{2q}{q+1} + o(1)\right)q^{\lfloor r/2 \rfloor}$$

when $r \to \infty$ odd.

Why not try something stupid? Take r odd.

Then $1 + q^{\lfloor r/2 \rfloor} < \lceil q^{r/2} - 1 \rceil - 1$ so there is some (little) room below Drinfeld-Vladut. But does $A(q^r)$ fit in between?

Yes: for q prime, a recent construction of Garcia-Stichtenoth-Bassa-Beleen gives

$$A(q^r) \ge \left(\frac{2q}{q+1} + o(1)\right)q^{\lfloor r/2\rfloor}$$

when $r \to \infty$ odd.

Actually for q=2 we take r=9. GSBB gives $A(512) \geq 465/23 \approx 20.217$.

Theorem 0: $\alpha_{512}^{\langle 17 \rangle}(\delta) \geq \frac{1-\delta}{17} - \frac{1}{A(512)}$.

The concatenation map ϕ has parameters [45, 9] hence

$$\alpha_2^{\langle 2 \rangle}(\delta) \geq \frac{1}{5} \alpha_{512}^{\langle 17 \rangle}(45\delta)$$

which is Theorem 1.