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Introduction Results and basic strategy A failed attempt How to fix it A last-minute obstacle and a narrow escape

Definitions

Let ∗ denote coordinatewise multiplication in (Fq)n:

(x1, . . . , xn) ∗ (y1, . . . , yn) = (x1y1, . . . , xnyn).

If C ⊂ (Fq)n is a k-dimensional linear subspace, i.e. an [n, k]q-code, let

C ∗ C = {c ∗ c′ | c, c′ ∈ C} ⊂ (Fq)n

and then (“square” of C):

C〈2〉 = 〈C ∗ C〉 = {
∑
c,c′∈C

αc,c′c ∗ c′ | αc,c′ ∈ Fq}

is the linear span of C ∗ C. More generally (higher powers):

C〈t+1〉 = 〈C〈t〉 ∗ C〉.

Geometric interpretation: Veronese embedding.
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A possible motivation

Start from a symmetric bilinear form B

and a diagram

V × V B−−−−→ W

φ×φ
y xθ

(Fq)n × (Fq)n
∗−−−−→ (Fq)n

so B(u, v) = θ(φ(u) ∗ φ(v)) for u, v ∈ V . More generally∑
i

B(u(i), v(i)) = θ(
∑
i

φ(u(i)) ∗ φ(v(i))) ∈ θ(C〈2〉)

where C = im(φ).
Occurs in various contexts:

algebraic complexity theory

multi-party computation.
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Most often V = W = Fqr and B is field multiplication. We say (φ, θ)
define a (symmetric) multiplication algorithm of length n for Fqr .

Example: multiplication in Fq2 = Fq[α]

with 4 · in Fq

(x+ yα)(x′+ y′α) = x·x′ + (x·y′ + x′· y) · α+ y·y′ · α2
(note: non-symmetric)

(Karatsuba; geometric interpretation: evaluate at 0, 1,∞).

Could work more generally with symmetric t-linear maps.

Might then ask for:

resistance to noise (random errors)

resistance to malicious users (passive or active)

threshold properties.

All these are governed essentially by the minimum distance of C〈t〉.
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Parameters:

dimension dim〈t〉(C) = dim(C〈t〉)

rate R〈t〉(C) = R(C〈t〉)

minimum distance d
〈t〉
min(C) = dmin(C〈t〉)

relative distance δ〈t〉(C) = δ(C〈t〉).

For some given q, we would like to construct C such that all these
parameters up to a certain order t are large. We are interested in the
asymptotic case n→∞. For q = 2, already t = 2 is non-trivial.
Easy to show:

Proposition

dim〈t+1〉(C) ≥ dim〈t〉(C)

d
〈t+1〉
min (C) ≤ d

〈t〉
min(C)

Hence: suffices to give lower bounds on dim(C) and d
〈t〉
min(C)

(or on R(C) and δ〈t〉(C)).
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Generalize the fundamental functions of block coding theory:

a〈t〉q (n, d) = max{k ≥ 0 | ∃C ⊂ (Fq)n, dim(C) = k, d
〈t〉
min(C) ≥ d}

α〈t〉q (δ) = lim sup
n→∞

a
〈t〉
q (n, bδnc)

n

and then:
τ(q) = sup{t ∈ N |α〈t〉q 6≡ 0}

the supremum value (possibly +∞?) of t such that there are asymptotically

good codes Ci over Fq whose t-th powers C
〈t〉
i are also asymptotically good:

lim inf
i

R(Ci) > 0 and lim inf
i

δ〈t〉(Ci) > 0.
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Results

Theorem 0

α〈t〉q (δ) ≥ 1− δ
t
− 1

A(q)

hence
τ(q) ≥ dA(q)e − 1

where A(q) is the Ihara function that governs the asymptotic number of
points on curves over Fq.

Theorem 1

α
〈2〉
2 (δ) ≥ 74

39525
− 9

17
δ ≈ 0.001872− 0.5294 δ

hence
τ(2) ≥ 2

(and more generally τ(q) ≥ 2 for all q).
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Proof of Theorem 0 (quite standard)

X curve of genus g over Fq with n points P1, . . . , Pn, G = P1 + · · ·+ Pn,
D disjoint from G, L(D) space of functions on X with poles at most D,
l(D) = dimL(D),

C(D,G) = {(f(P1), . . . , f(Pn)) | f ∈ L(D)}.

Lemma

C(D,G)〈t〉 ⊂ C(tD,G).

Lemma (Goppa)

Suppose g ≤ deg(D) < n. Then

dimC(D,G) = l(D) ≥ deg(D) + 1− g

dmin(C(D,G)) ≥ n− deg(D).
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Concatenation

C an [n, k]-code over Fqr , φ : Fqr −→ (Fq)m an injective Fq-linear map,
define φ(C) = {φ(c) = (φ(c1), . . . , φ(cn)) | c = (c1, . . . , cn) ∈ C}.
Then φ(C) is an [mn, kr]-code over Fq (identify ((Fq)m)n = (Fq)mn).

Other terminology: the outer code is Cout = C, the inner code is
Cin = im(φ) ⊂ (Fq)m, the concatenated code is Cout ◦φ Cin = φ(C).

Strategy: use Theorem 0 over an extension field Fqr , then concatenate to
get Theorem 1 over Fq.

Example: a related problem? C is ε-∩ if

c1, c2 ∈ C \ {0} =⇒ wt(c1 ∗ c2) ≥ εn.

Easy:

Cout ε-∩ & Cin ε
′-∩ =⇒ Cout ◦ Cin is εε′-∩.

Same flavour but no logical connection between C ε-∩ and δ〈2〉(C) ≥ ε.
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Start with C over Fqr with control on d
〈2〉
min(C), concatenate with

φ : Fqr −→ (Fq)m, how can we control d
〈2〉
min(φ(C))?

C × C −−−−→ C〈2〉

φ×φ
y

xθ

φ(C)× φ(C) −−−−→ φ(C)〈2〉

A smart move is to take φ from a multiplication algorithm:

Fqr × Fqr −−−−→ Fqr

φ×φ
y xθ

(Fq)m × (Fq)m −−−−→ (Fq)m

and deduce d
〈2〉
min(φ(C)) ≥ d

〈2〉
min(C).
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Unfortunately, this fails...

... the obstruction is ker(θ).
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Some preliminary remarks

Suppose there exists a φ : Fqr −→ (Fq)m such that for all C over Fqr ,

δ〈2〉(φ(C)) ≥ κ δ〈2〉(C).

Write φ = (φ1, . . . , φm) so the φi are the columns of the generating matrix
of the inner code. Take m′ ≥ m and put some more columns in to get
φ′ : Fqr −→ (Fq)m

′
. Then we still have

δ〈2〉(φ′(C)) ≥ κ′ δ〈2〉(C)

with κ′ = m
m′κ, since φ′(C) is an extension of φ(C).

The longer φ, the more chances we have (if any) to prove such a bound.

Extreme example: m = qr−1
q−1 , φ =all linear forms, Cin =simplex code.
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Also, the longer φ, the easier to find a θ: indeed θ exists iff multiplication in
Fqr factors through Φ = (φ⊗2

1 , . . . , φ⊗2
r ).

Fqr × Fqr −−−−→ Fqr

φ×φ
y xθ

(Fq)m × (Fq)m −−−−→ (Fq)m

Recall, if λ is a linear form, λ⊗2 is the symmetric bilinear form

(v, w) 7→ λ(v)λ(w)

(or in terms of matrices it is λλT ).
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On the other hand, perhaps we should not take φ too long. In particular we
could avoid linear dependencies between the φ⊗2

i . Indeed:

If we extend φ by adding some φm+1 to it such that φ⊗2
m+1 is linearly

dependent on the other φ⊗2
i , then we extend φ(C) by adding a new

coordinate in each block, so that in the squared code, these new
coordinates are linearly dependent on the others. So if a codeword in
φ(C)〈2〉 is zero on some block, it is still zero on this block after
extending.

Linear relations between the φ⊗2
i make the choice of θ non-unique,

hence non-canonical. We want to understand the structure of ker(θ).
Most often, canonical objects have a more interesting structure than
non-canonical ones.
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The symmetric square of a space

Let V be a vector space over Fq. Recall:

S2
Fq
V = 〈u · v〉u,v∈V /(sym. bilin. rel.)

= V ⊗ V/〈u⊗ v − v ⊗ u〉u,v∈V
= Sym(V ;Fq)∨.

In the last identification, u · v is Sym(V ;Fq) −→ Fq, ψ 7→ ψ(u, v).

Every symmetric bilinear map B : V × V −→W factorizes uniquely as

V × V −→ S2
Fq
V

B̃−→ W

(u, v) 7→ u · v 7→ B(u, v) = B̃(u · v)

(proof: compose with linear forms on W to reduce to the case W = Fq).
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Lemma

Let λ1, . . . , λr be a basis of V ∨. Then the r(r+1)
2 elements λ⊗2

i for
1 ≤ i ≤ r and (λi + λj)

⊗2 for 1 ≤ i < j ≤ r form a basis of Sym(V ;Fq).

So we take
{
φ1, . . . , φ r(r+1)

2

}
= {λi}1≤i≤r ∪ {λi + λj}1≤i<j≤r.

Here V = Fqr . We get a unique θ with

Fqr × Fqr −−−−→ Fqr

φ×φ
y xθ

(Fq)
r(r+1)

2 × (Fq)
r(r+1)

2 −−−−→ (Fq)
r(r+1)

2 ' S2
Fq
Fqr

and if we use φ to concatenate, the inner code has generating matrix

Gφ =


1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

 .
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Does this help in understanding ker(θ)? Only a little bit...

Recall
Fqr ⊗ Fqr

∼−→ (Fqr)r

x⊗ y 7→ (xy, xyq, . . . , xyq
r−1

)

so the composite map

(Fqr)r ' Fqr ⊗ Fqr −→ S2
Fq
Fqr

θ−→ Fqr

is projection on the first coordinate. But then???

(not completely...)

(well, not completely...)
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Recall Sym(Fqr ;Fq) is generated by the λ⊗2 for λ ∈ Fqr∨. And each such
λ is of the form Tr(a . ).

Now contemplate this formula:

Tr(ax) Tr(ay) = (ax+aqxq+· · ·+aqr−1
xq

r−1
)(ay+aqyq+· · ·+aqr−1

yq
r−1

)

= Tr(a2xy) +
∑

1≤j≤br/2c

Tr(a1+qj (xyq
j

+ xq
j
y))

(actually if r is even, the very last Tr should not be the trace from Fqr to
Fq but from Fqr/2 to Fq).

Let
m0(x, y) = xy

and introduce higher twisted multiplication laws

mj(x, y) = xyq
j

+ xq
j
y

on Fqr (actually if r is even, mr/2 takes values in Fqr/2).
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The formula says that any symmetric bilinear form on Fqr can be expressed
in terms of traces and of the mj . So in this way we can construct another
basis of Sym(Fqr ;Fq). Let’s sum all this up.

Let
Ψ = (m0, . . . ,mbr/2c) : Fqr × Fqr −→ (Fqr)

r+1
2

(where by abuse of notation (Fqr)
r+1
2 = (Fqr)r/2 × Fqr/2 if r is even).

Also recall

Φ = (φ⊗2
1 , . . . , φ⊗2

r ) : Fqr × Fqr −→ (Fq)
r(r+1)

2 .

Then Φ and Ψ are two symmetric Fq-bilinear maps that give two
representations of S2

Fq
Fqr with its universal map (x, y) 7→ x · y (and

moreover Ψ is a polynomial map over Fqr of algebraic degree 1 + qbr/2c).
By the universal property they are linked by some invertible Fq-linear

θ : (Fq)
r(r+1)

2
∼−→ (Fqr)

r+1
2 .
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Now we concatenate:

C × C Ψ−−−−→ 〈Ψ(C,C)〉

φ×φ
y '

xθ
φ(C)× φ(C) −−−−→ φ(C)〈2〉

with
〈Ψ(C,C)〉 ⊂ 〈m0(C,C)〉 × · · · × 〈mbr/2c(C,C)〉

and
〈mj(C,C)〉 ⊂ C〈1+qj〉.

Hence:

Proposition

d
〈2〉
min(φ(C)) ≥ d

〈1+qbr/2c〉
min (C)
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Let’s say q = p is prime, for instance q = 2.
To conclude:

d
〈2〉
min(φ(C)) ≥ d

〈1+qbr/2c〉
min (C)

take C over Fqr whose powers up to order 1 + qbr/2c are
asymptotically good.

Theorem 0: possible up to order τ(qr) ≥ dA(qr)e − 1.
Drinfeld-Vladut bound: A(qr) ≤ qr/2 − 1 with equality for r even.
Of course we take r even since we want τ(qr) as big as possible.

So we need powers up to order 1 + qr/2 and we have the estimate qr/2 − 2
for τ(qr).... Not enough!
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Why not try something stupid? Take r odd.
Then 1 + qbr/2c < dqr/2 − 1e − 1 so there is some (little) room below
Drinfeld-Vladut. But does A(qr) fit in between?
Yes: for q prime, a recent construction of Garcia-Stichtenoth-Bassa-Beleen
gives

A(qr) ≥ (
2q

q + 1
+ o(1))qbr/2c

when r →∞ odd.

Actually for q = 2 we take r = 9. GSBB gives A(512) ≥ 465/23 ≈ 20.217.

Theorem 0: α
〈17〉
512 (δ) ≥ 1−δ

17 −
1

A(512) .

The concatenation map φ has parameters [45, 9] hence

α
〈2〉
2 (δ) ≥ 1

5
α
〈17〉
512 (45δ)

which is Theorem 1.
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