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Introduction

Definitions

Let % denote coordinatewise multiplication in (F,)™:

(:Cla o vxn) * (ylv' .. 7yn) = ('rlyla cee axnyn)

Hugues Randriam — Asymptotically good codes & their squares DIAMANT Symposium — 2012.11.30 1/21



Introduction

Definitions

Let % denote coordinatewise multiplication in (F,)™:
(@1, xn) % (Y1, Un) = (@191, Tnln).-
If C C (Fy)" is a k-dimensional linear subspace, i.e. an [n, k]4-code, let

CxC={cxd|c,d eC} C (F)"
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Introduction

Definitions

Let % denote coordinatewise multiplication in (F,)™:
(X1, oy zn) * (Y1, -« -5 Yn) = (T1Y1, - -+, TnYn)-
If C C (Fy)" is a k-dimensional linear subspace, i.e. an [n, k]4-code, let
CxC={cxd|c,d eC} C (F)"
and then (“square” of C):

c® = (CxC) = Z Qeecxd | aee € Fy}

c,cleC

is the linear span of C' % C.
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Introduction

Definitions

Let % denote coordinatewise multiplication in (F,)™:
(X1, oy zn) * (Y1, -« -5 Yn) = (T1Y1, - -+, TnYn)-
If C C (Fy)" is a k-dimensional linear subspace, i.e. an [n, k]4-code, let
CxC={cxd|c,d eC} C (F)"
and then (“square” of C):

c? = (CxC) = Z Qeecxd | aee € Fy}

c,c'eC

is the linear span of C' x C. More generally (higher powers):
CH) = (0 « C).

Geometric interpretation: Veronese embedding.
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Introduction

A possible motivation

Start from a symmetric bilinear form B

VvxvV B ow
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Introduction

A possible motivation

Start from a symmetric bilinear form B and a diagram

VvxvV B ow

‘M’l Ta

*

(F)" x (Fg)® —— (Fg)"

so B(u,v) = 0(¢p(u) x ¢(v)) for u,v € V.
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Introduction
A possible motivation

Start from a symmetric bilinear form B and a diagram

VvxvV B ow

ol I

(Fy)™ x (Fg)" —— (Fg)"
so B(u,v) = 0(¢p(u) x ¢(v)) for u,v € V. More generally

3 B@,09) =003 o) + 6(o7)) € 6(C)

where C' = im(¢).
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Introduction
A possible motivation

Start from a symmetric bilinear form B and a diagram

VvxvV B ow

ol I

*

(F)" x (Fg)® —— (Fg)"

so B(u,v) = 0(¢p(u) x ¢(v)) for u,v € V. More generally
Y B,y =603 o) x ¢(u)) € 6(C?)

where C' = im(¢).
Occurs in various contexts:

@ algebraic complexity theory

@ multi-party computation.
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Introduction

Most often V=W = F, and B is field multiplication. We say (¢, 6)
define a (symmetric) multiplication algorithm of length n for Fyr.
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Introduction

Most often V=W = F, and B is field multiplication. We say (¢, 6)
define a (symmetric) multiplication algorithm of length n for Fyr.
Example: multiplication in F 2 = FF,[a]

(@ +ya)(a'+y'o) =
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Introduction

Most often V=W = F, and B is field multiplication. We say (¢, 6)
define a (symmetric) multiplication algorithm of length n for Fyr.
Example: multiplication in F 2 = F,[a] with 4 - in T,

(z+ya) (@' +ya)=xa + (o +2"y) - a+yy o (note: non-symmetric)
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Introduction

Most often V=W = F, and B is field multiplication. We say (¢, 6)
define a (symmetric) multiplication algorithm of length n for Fyr.
Example: multiplication in F 2 = F,[a] with 3 - in F,

(z+ya)(@'+ya)=wa’-(1-a)+(z+y) @' +y) - at+yy (o’ -a)

(Karatsuba; geometric interpretation: evaluate at 0, 1, c0).
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Introduction Results and basic strategy A failed attempt How to fix it A last-minute obstacle and a narrow escape

Most often V=W = F, and B is field multiplication. We say (¢, 6)
define a (symmetric) multiplication algorithm of length n for Fyr.
Example: multiplication in F 2 = F,[a] with 3 - in F,

(z+ya)(@'+ya)=za' (1 -a)+ (@ +y)- (@' +y)-a+yy - (® —a)
(Karatsuba; geometric interpretation: evaluate at 0, 1, c0).
Could work more generally with symmetric ¢-linear maps.

Might then ask for:
@ resistance to noise (random errors)
@ resistance to malicious users (passive or active)

@ threshold properties.

All these are governed essentially by the minimum distance of C'®.

Hugues Randriam — Asymptotically good codes & their squares DIAMANT Symposium — 2012.11.30



Introduction

Parameters:
o dimension dim"(C) = dim(C*)
e rate R (C) = R(C)
@ minimum distance dgﬁn(C’) = dpin (C™)

o relative distance 6% (C) = §(C{")).
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Introduction

Parameters:

o dimension dim® (C) = dim(C")

e rate R (C) = R(C)

@ minimum distance dgn(C) = dppin (C®)

o relative distance 6" (C) = §(C¥).
For some given ¢, we would like to construct C such that all these
parameters up to a certain order t are large. We are interested in the
asymptotic case n — co. For ¢ = 2, already ¢ = 2 is non-trivial.
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Introduction Results and basic strategy A failed attempt How to fix it A last-minute obstacle and a narrow escape

Parameters:
o dimension dim® (C) = dim(C")
e rate R (C) = R(C)
o minimum distance d\*) (') = dpin(C®)

min
o relative distance 6" (C) = §(C¥).
For some given ¢, we would like to construct C such that all these
parameters up to a certain order t are large. We are interested in the
asymptotic case n — co. For ¢ = 2, already ¢ = 2 is non-trivial.
Easy to show:

Proposition

dim* () > dim® (C)
dh ) <a (o)

min min

Hence: suffices to give lower bounds on dim(C') and dgn(C’)
(or on R(C) and 5{"(C)).
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Introduction

Generalize the fundamental functions of block coding theory:

a!!(n, d) = max{k > 0|3C C (F,)", dim(C) = k, d{}.(C) > d}

min
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Introduction

Generalize the fundamental functions of block coding theory:

a!!(n, d) = max{k > 0|3C C (F,)", dim(C) = k, d{}.(C) > d}

min

(t)
o (8) = lim sup aq_(n, |9n]))

q
n—o0
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Introduction

Generalize the fundamental functions of block coding theory:

a!!(n, d) = max{k > 0|3C C (F,)", dim(C) = k, d{}.(C) > d}

min

afﬁ () = lim sup —aét> (n, [on])
n—,oo
and then:
7(q) = sup{t € N| ozfp #0}
the supremum value (possibly +007?) of ¢ such that there are asymptotically
good codes C; over F, whose t-th powers C’ft) are also asymptotically good:

liminf R(C;) >0  and  liminf 6 (C;) > 0.
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Results and basic strategy

Results

Theorem 0

ol (6) > 1-6 1

t A(q)

hence

where A(q) is the lhara function that governs the asymptotic number of
points on curves over .
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Introduction  Results and basic strategy A failed attempt  How to fix it A last-minute obstacle and a narrow escape

Results

Theorem 0

1-6 1

a(t) (5) > - A(q)

hence

where A(q) is the lhara function that governs the asymptotic number of
points on curves over .

(2) > i = 2 ~ 1872 — 0.5294
ay ' (6) > 30525 175 0.00187 0.5294 6
hence
7(2) > 2

(and more generally 7(q) > 2 for all g).
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Results and basic strategy
Proof of Theorem 0 (quite standard)

X curve of genus g over F, with n points Py,...,P,, G=P +---+ P,
D disjoint from G, L(D) space of functions on X with poles at most D,
I(D) = dim L(D),

CD,G) ={(f(P1),..., f(Pa)) | f € L(D)}.
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Results and basic strategy
Proof of Theorem 0 (quite standard)

X curve of genus g over F, with n points Py,...,P,, G=P +---+ P,
D disjoint from G, L(D) space of functions on X with poles at most D,
I(D) = dim L(D),

CD,G) ={(f(P1),..., f(Pa)) | f € L(D)}.

C(D,&) c C(tD,G).
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Introduction  Results and basic strategy A failed attempt  How to fix it A last-minute obstacle and a narrow escape

Proof of Theorem 0 (quite standard)

X curve of genus g over Fy, with n points Py,...,P,, G=P +---+ P,
D disjoint from G, L(D) space of functions on X with poles at most D,
I(D) = dim L(D),

CD,G) ={(f(P1),..., f(Pa)) | f € L(D)}.

Lemma

C(D,&) c C(tD,G).

Lemma (Goppa)
Suppose g < deg(D) < n. Then

| N\

dimC(D,G) =1(D) > deg(D)+1—g

dnin(C(D, G)) > n — deg(D).
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Results and basic strategy

Concatenation

C an [n, k]-code over Fyr, ¢ : Fgr — (F)™ an injective Fy-linear map,
(

define ¢(C) = {d(c) = (¢(c1), ..., ¢(cn)) | c = (c1,...,cn) € C}.
Then ¢(C) is an [mn, kr]-code over F, (identify ((Fy)™)™ = (Fq)™").

Other terminology: the outer code is Cy,; = C, the inner code is
Cin = im(¢) C (Fq)™, the concatenated code is Cyyt 0 Cin = ¢(C).

Strategy: use Theorem 0 over an extension field F,, then concatenate to
get Theorem 1 over F,.
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Results and basic strategy
Concatenation

C an [n, k]-code over Fyr, ¢ : Fgr — (F)™ an injective Fy-linear map,

define ¢(C) = {¢(c) = (¢(c1), ... ( cn)) [ e=(c1,...,cn) € CF.
Then ¢(C) is an [mn, kr]-code over F, (identify ((Fy)™)™ = (Fq)™").

Other terminology: the outer code is Cy,; = C, the inner code is
Cin = im(¢) C (Fq)™, the concatenated code is Cyyt 0 Cin = ¢(C).

Strategy: use Theorem 0 over an extension field F,, then concatenate to
get Theorem 1 over F,.

Example: a related problem? C'is e-N if
c1,c2 € C\ {0} = wt(cy *c2) > en.
Easy:
Cout N & Cyp €'-N = Cyys 0 Cyyy is e’-N.

Same flavour but no logical connection between C' e-N and §(2(C) > e.
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A failed attempt

Start with C over Fg- with control on dgn(C), concatenate with

¢ : Fgr — (F¢)™, how can we control 4 (9p(C))?

min

CxC —— @2
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A failed attempt

Start with C' over F,r with control on d<2> .(C), concatenate with
¢ : Fgr — (F¢)™, how can we control d< ) (9p(C))?

min

CxC —— @2

| I

$(C) x ¢(C) —— ¢(C)2

A smart move is to take ¢ from a multiplication algorithm:

qu X qu —_— qu
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A failed attempt

Unfortunately, this fails...
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FAI'

Unfortunately, this fails...

. the obstruction is ker(f).
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How to fix it

Some preliminary remarks

Suppose there exists a ¢ : Fyr — (F;)"™ such that for all C' over Fr,

§2(a(C)) = k62 (0).

Write ¢ = (¢1, ..., ¢m) so the ¢; are the columns of the generating matrix
of the inner code. Take m’ > m and put some more columns in to get
¢ :Fyr — (F,)™. Then we still have

s%(¢'(0) = #'6P(0)
with " = L r, since ¢/(C) is an extension of ¢(C).

The longer ¢, the more chances we have (if any) to prove such a bound.

T__ . .
Extreme example: m = qq_—l, ¢ =all linear forms, C;, =simplex code.
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How to fix it

Also, the longer ¢, the easier to find a 6: indeed 6 exists iff multiplication in
F, factors through ® = (¢2,..., ¢%?).

]qu X ]Fq’r —> Fq’f

ol I

(Fg)™ x (Fg)™ —— (Fg)™
Recall, if X is a linear form, A®2 is the symmetric bilinear form
(v, w) = A(v)A(w)

(or in terms of matrices it is AAT).
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Introduction  Results and basic strategy A failed attempt  How to fix it A last-minute obstacle and a narrow es

On the other hand, perhaps we should not take ¢ too long. In particular we
could avoid linear dependencies between the ¢2. Indeed:

o If we extend ¢ by adding some ¢y, to it such that ¢2, is linearly
dependent on the other gb?Q, then we extend ¢(C') by adding a new
coordinate in each block, so that in the squared code, these new
coordinates are linearly dependent on the others. So if a codeword in
#(C)2) is zero on some block, it is still zero on this block after
extending.

@ Linear relations between the ¢f§2 make the choice of 6 non-unique,
hence non-canonical. We want to understand the structure of ker(6).
Most often, canonical objects have a more interesting structure than
non-canonical ones.
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How to fix it

The symmetric square of a space

Let V' be a vector space over ;. Recall:

S%qv = (u - V)ywev/(sym. bilin. rel.)
=VoV/ (u®@v—v®uyey
= Sym(V;F,)".

In the last identification, u - v is Sym(V;Fy) — Fq, ¢ — ¢(u,v).

Every symmetric bilinear map B : V x V. — W factorizes uniquely as

VXV — RV W
(u,v) = w-v +— B(u,v)=B(u-v)

(proof: compose with linear forms on W to reduce to the case W =TF,).
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Introduction esults a asic s eg > >mpt  How to fix it A last-minute obstacle a

Let Ai,..., )\, be a basis of VV. Then the T(TQ—H) elements )\?2 for
1<i<rand (N +X;)® for1<i<j<rform a basis of Sym(V;F,).

So we take {¢1, ey ¢r(r2+1) } = {Ai}lgigr U {>\i + Aj}1§i<j§r-
Here V = F,r. We get a unique 6 with
qu X qu e ]qu

= Ta

r(r+1) r(r+1) r(r+1)

(Fy) 2 x(Fg) 2 —— (Fy) 2 =~S5Fg

and if we use ¢ to concatenate, the inner code has generating matrix
1000111000

O O O
_= o O
= = O

1
0
0

O = O
= o O

1 11
0 10
0 01

o = O
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How to fix it

Does this help in understanding ker(6)? Only a little bit...

Recall N
For @ Fgr — (Fgr)" B
r@y = (zyayl. oyt )
so the composite map
0
(Fq'r)r ~ ]Fq'r ® Fq'r — S]I‘%QIFQT — ]Fq’!‘

is projection on the first coordinate. But then?7?
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How to fix it

Does this help in understanding ker(6)? Only a little bit...

Recall N
For @ Fgr — (Fgr)" B
r@y = (zyayl. oyt )
so the composite map
0
(Fq'r)r ~ ]Fq'r ® Fq'r — S]I‘%QIFQT — ]Fq’!‘

is projection on the first coordinate. But then?7?

N
FAIL

. —
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How to fix it

Does this help in understanding ker(6)? Only a little bit...

Recall N
For @ Fgr — (Fgr)" B
r@y = (zyayl. oyt )
so the composite map
0
(Fq'r)r ~ ]Fq'r ® Fq'r — S]I‘%QIFQT — ]Fq’!‘

is projection on the first coordinate. But then?7?

N
FAIL

(well, not completely...)
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Introduction  Results and basic strategy A failed attempt  How to fix it A last-minute obstacle and a narrow escape

Recall Sym(F,-;F,) is generated by the A®2 for A € F,»¥. And each such
A is of the form Tr(a .).

Now contemplate this formula:

=1l r—1

Tr(az) Tr(ay) = (az+a%z9+---+a? 27 ) (ay+a%yi+ - +a? y7 )

= Tr(a’zy) + Z Tr(a'* (zy? + 27y))
1<j<|r/2]

(actually if r is even, the very last Tr should not be the trace from [y to
Fy but from F /> to Fy).
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Introduction Results and basic strategy A failed attempt How to fix it A last-minute obstacle and a narrow escape

Recall Sym(F,-;F,) is generated by the A®2 for A € F,»¥. And each such
A is of the form Tr(a .).

Now contemplate this formula:

=1l r—1

Tr(az) Tr(ay) = (az+a%z9+---+a? 27 ) (ay+a%yi+ - +a? y7 )

= Tr(a’zy) + Z Tr(a'* (zy? + 27y))
1<j<|r/2]

(actually if r is even, the very last Tr should not be the trace from [y to
Fy but from F /> to Fy).

Let
mo(z,y) = Ty

and introduce higher twisted multiplication laws
mj(z,y) = 2y” +a%y

on Fyr (actually if 7 is even, m,./; takes values in F,/2).
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How to fix it

The formula says that any symmetric bilinear form on [F;» can be expressed
in terms of traces and of the m;. So in this way we can construct another
basis of Sym(F,~;F,). Let's sum all this up.
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Introduction  Results and basic strategy A failed attempt  How to fix it A last-minute obstacle and a narrow

The formula says that any symmetric bilinear form on [F;» can be expressed
in terms of traces and of the m;. So in this way we can construct another
basis of Sym(F,~;F,). Let's sum all this up.

Let
ﬂ
U = (’I?’LO, A ,m\_r/gj) : ]Fq'r X ]qu — (]qu) 2
(where by abuse of notation (]qu)rJzrl = (Fyr)™/? x F /2 if 7 is even).
Also recall
®2 ®2 r(r+1)
q):(¢1""’ T)SFqTXFqT—)(Fq) 2

Then ® and V¥ are two symmetric F,-bilinear maps that give two
representations of S]%qIqu with its universal map (z,y) — z -y (and
moreover W is a polynomial map over ;- of algebraic degree 1 + quJ).
By the universal property they are linked by some invertible Fy-linear

rr+l)  ~ r+1

0:(Fy) 2 — (Fgr)2
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How to fix it

Now we concatenate:

CxC —Y (e, o)
¢x¢l :Ta
B(C) x p(C) ——  ¢(C)?

with
(B(C,0)) € (mo(C,C)) x -+ x(my, 2 (C,C))

and .
(mj(C,C)) c i+,
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Introduction Results and basic strategy A failed attempt How to fix it A last-minute obstacle and a narrow escape

Now we concatenate:

cxCc =Y 1w, o)

¢x¢l :Ta

$(C) x ¢(C) ——  $(C)®

with
(B(C,0)) € (mo(C,C)) x -+ x(my, 2 (C,C))
and .
(mj(C,C)) c C+a),
Hence:

Proposition
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A last-minute obstacle and a narrow escape

Let's say ¢ = p is prime, for instance g = 2.
To conclude: el

o A2 (#(C)) = i ()

o take C over F,r whose powers up to order 1 + gt/ are

asymptotically good.

Theorem 0: possible up to order 7(¢") > [A(q")] — 1.
Drinfeld-Vladut bound: A(¢") < ¢'/? — 1 with equality for r even.
Of course we take r even since we want 7(¢") as big as possible.
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Introduction  Results and basic strategy A failed attempt ~ How to fix it A last-minute obstacle and a narrow escape

Let's say ¢ = p is prime, for instance ¢ = 2.

To conclude: el
o 42 ((0)) = i (o)

o take C over F,r whose powers up to order 1 + gt/ are
asymptotically good.
Theorem 0: possible up to order 7(¢") > [A(q")] — 1.
Drinfeld-Vladut bound: A(¢") < ¢'/? — 1 with equality for r even.
Of course we take r even since we want 7(¢") as big as possible.
So we need powers up to order 1 4 ¢"/? and we have the estimate ¢'/% — 2
for 7(¢").
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Introduction  Results and basic strategy A failed attempt ~ How to fix it A last-minute obstacle and a narrow escape

Let's say ¢ = p is prime, for instance ¢ = 2.

To conclude: el
o 42 ((0)) = i (o)

o take C over F,r whose powers up to order 1 + gt/ are
asymptotically good.
Theorem 0: possible up to order 7(¢") > [A(¢")] — 1.
Drinfeld-Vladut bound: A(¢") < ¢'/? — 1 with equality for r even.
Of course we take r even since we want 7(¢") as big as possible.
So we need powers up to order 1 4 ¢"/? and we have the estimate ¢'/% — 2
for 7(q").... Not enough!
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A last-minute obstacle and a narrow escape

Why not try something stupid? Take 7 odd.

Then 1+ ¢l"/2) < [¢"/2 — 1] — 1 so there is some (little) room below
Drinfeld-Vladut. But does A(q") fit in between?

Yes: for ¢ prime, a recent construction of Garcia-Stichtenoth-Bassa-Beleen

gives
r 2q [r/2]
4 > (———
(Q)_(q 1+0(1))q

when r — 0o odd.
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Introduction  Results and basic strategy A failed attempt ~ How to fix it A last-minute obstacle and a narrow escape

Why not try something stupid? Take 7 odd.

Then 1+ ¢l"/2) < [¢"/2 — 1] — 1 so there is some (little) room below
Drinfeld-Vladut. But does A(q") fit in between?

Yes: for ¢ prime, a recent construction of Garcia-Stichtenoth-Bassa-Beleen

gives
r 2q /2]
> (. 2E
A(q") > (qu1 +0(1))q
when r — oo odd.

Actually for ¢ = 2 we take r = 9. GSBB gives A(512) > 465/23 ~ 20.217.

17 _
Theorem 0: aém)((s) > 11—75 - A(5112)'

The concatenation map ¢ has parameters [45, 9] hence
2 1 a7
oy’ (8) > Sagy (450)

which is Theorem 1.
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