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Abstract— We propose a new classification of multiple antenna
channels. The classification is performed in the space of Hermi-
tian forms defined by the channel representation. We introduce
a geodesic metric between Hermitian forms and we build a finite
number of classes. The centroids of the classification are found
by a Generalized Lloyd algorithm. Numerical examples illustrate
the geodesic orbits, capacity and error rate for 2 and 4 antennas.

I. INTRODUCTION

The material described in this paper can be applied to any
problem that admits a lattice representation. The great interest
of the research community and public in multiple antenna
digital transmissions [1] made us focus the application of
our Hermitian forms classification on that particular subject.
The classification of multiple-input multiple-output (MIMO)
frequency non-selective fading channels has a considerable
importance in information and communication theory. Some
potential applications would be adaptive modulation and adap-
tive channel coding in wireless local area networks and in
3G-4G mobile radio data networks. Other applications may
also be related to transmitter and receiver algorithmic design.
The classification algorithm given in this paper is valid for
both types of frequency non-selective MIMO channels, i.e.,
channels with correlated and uncorrelated fading coefficients.
The main procedure is illustrated in Fig. 1. Given the number
of transmit and receive antennas, or equivalently, given the
space dimension of Hermitian forms, given the number of
classes to be distinguished, the classification algorithm runs
in its training phase on a large number M of Hermitian form
training instances. Once a codebook of K centroids is built,
any instance H can be quantized to the nearest class centroid.
The classification needs a metric and an update rule as in
the classical multidimensional Lloyd also known as k-Means
clustering algorithm [3][6].
Let us briefly recall the mathematical model for a multiple
antenna channel [1] and introduce some notations. We restrict
our study to a square channel where the number nt of transmit
antennas is equal to the number nr of receive antennas. Let
n = nt = nr. The input-output model is given by

r = Hz + ν

where the transmitted vector z belongs to Z[i]n, Z[i] being
the ring of Gaussian integers, ν ∈ Cn is an additive white
Gaussian noise, H = [hij ] is an n × n matrix defining the
MIMO channel coefficients, and r is the received vector. We
suppose that H is perfectly known at the receiver side. No
channel state information is needed in the transmitter because,

in most imaginable applications, the classification will be
performed at the receiver side. A widely used model assumes
that hij is complex Gaussian distributed with zero mean and
unit variance. In the sequel, we assume that det(H) = 1 which
corresponds to adding a multiplicative factor to the signal-
to-noise ratio (a simple shift when expressed in dB). The
probability distribution of det(H) can be further taken into
account in potential applications of the proposed classification.
A matrix H in SLn(C) generates a complex lattice Λ(H) with
a normalized fundamental volume [2]. The lattice Λ(H) is
associated to the Hermitian form z†H†Hz where A† denotes
the transpose conjugate of A. The equivalence classes of
MIMO channels are discussed in the next section. Mainly, two
channels are equivalent in the quotient set SU(n)\SLn(C) if
there exist a unitary matrix U such that H2 = UH1. Based on
the homogeneous property of the quotient set and its embedded
Riemannian structure, a geodesic distance is introduced in
section III. The complex cubic lattice Z[i]n associated to the
identity matrix will play the role of a reference Hermitian
form.
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Fig. 1. The procedure of MIMO classification.

II. EQUIVALENCE OF MIMO CHANNELS

From a differential geometric point of view, the objects
considered in this paper can be described as follows. Elements
of Cn will be considered as column vectors, so that an
unimodular basis of C

n corresponds to an element of the
special linear group SLn(C), and the natural action of the
special unitary group SU(n) on Cn induces an action of
SU(n) on SLn(C), given by left multiplication. Thus the
equivalence class of such a basis under unitary transformations
corresponds to an element of the quotient set

SU(n)\SLn(C).



Elements of this quotient set are cosets of the form [H ] =
SU(n) · H for H ∈ SLn(C). (Remark that if we had chosen
line notation instead of column notation, then SU(n) would
have acted by right multiplication, and the quotient set to
consider would have been SLn(C)/SU(n), whose elements
are cosets of the form H · SU(n).)

We also mention another construction of related interest,
although it will not be used in this paper. Two matrices in
SLn(C) span the same lattice over Z[i] if and only if they
differ by right multiplication by an element of SLn(Z[i]).
Thus the set of equivalence classes of unimodular lattices over
the ring of Gaussian integers up to unitary transformations
in complex dimension n can be identified with the double
quotient space

SU(n)\SLn(C)/SLn(Z[i]),

whose elements are double cosets of the form SU(n) · H ·
SLn(Z[i]). The classification problem that will be treated in
this paper for SU(n)\SLn(C) could also be carried out for
SU(n)\SLn(C)/SLn(Z[i]) with essentially the same tech-
niques, although a few more tools are needed. This will be
the subject of a forthcoming paper, so we do not enter into
details here.
The quotient set SU(n)\SLn(C) is an example of homoge-
neous space, that is, the quotient of a Lie group by a closed
subgroup. As such, it carries a differential structure and an
action of SLn(C), given by right multiplication. There is
another way to describe this space that is quite useful in
practice. Observe that two unimodular matrices H1 and H2

in SLn(C) have the same Gram matrix

G = H†
1H1 = H†

2H2

if and only if there is a unitary matrix U ∈ SU(n) such that
H2 = UH1, that is if and only if the classes of H1 and H2

in SU(n)\SLn(C) coincide. Conversely, any positive definite
Hermitian matrix G of determinant 1 can be written in the
form G = H†H for H ∈ SLn(C) uniquely determined up to
left multiplication by a unitary matrix (in fact one can mention
two specific choices of H that are of particular interest: the
first one is to take H upper triangular, given by Cholesky
decomposition, while the second is to take H Hermitian, by
extracting the square root of G). These considerations allow
to identify SU(n)\SLn(C) with the space of positive definite
Hermitian matrices of determinant 1, by identifying the coset
SU(n) ·H with the Gram matrix G = H†H . The differential
structure on SU(n)\SLn(C) can be retrieved as the natural
differential structure on this space of Hermitian matrices seen
as a real submanifold of Cn×n, and the right action of SLn(C)
on this space can be described as follows: if G is an Hermitian
matrix and P ∈ SLn(C), then P acts on G by sending it to
P †GP .

III. GEODESIC DISTANCE FOR HERMITIAN MATRICES

It appears in fact that SU(n)\SLn(C) is a special type of
homogeneous space, called a symmetric space, and thus carries
a natural Riemannian structure. We will refer to [4] which is

the classical reference on this topic (along with E. Cartan’s
original works). More precisely, following the classification
given in [4], §IX.6.1, SU(n)\SLn(C) is the Riemannian
global symmetric space of type IV associated with the Lie
algebra of type an−1. The aim of the following proposition is
to describe the geodesics and the distance associated to this
Riemannian structure.

Proposition 1: Let G1 and G2 be two positive definite
Hermitian matrices of size n with determinant 1. Let P1 be
any element of SLn(C) such that G1 = P1

†P1, and put
G = (P1

†)−1G2P1
−1 and L = log(G). Then:

1) There is a unique geodesic segment γ joining G1 to G2,
given by the parameterization γ(t) = P1

† exp(tL)P1 for
t ∈ [0, 1].

2) Up to multiplication by a constant, the geodesic distance
between G1 and G2 is

dgeod(G1, G2) = (
∑

1≤i≤n

| log λi|
2)1/2,

where λ1, ..., λn are the eigenvalues of G.
(Recall that if A is an Hermitian matrix, and F a real analytic
function that is well defined on the eigenvalues of A, then
F (A) can be defined as follows: if A = V †Diag(µ1, ..., µn)V
is the diagonalization of A, with V unitary and µ1, ..., µn

real, then F (A) = V †Diag(F (µ1), ..., F (µn))V .
In particular, with the notations of the proposition,
if one writes G = U †Diag(λ1, ..., λn)U with U
unitary, then L = U †Diag(log(λ1), ..., log(λn))U and
γ(t) = P1

†U †Diag(λt
1, ..., λ

t
n)UP1.)

Proof: Since the right action of SLn(C) must send
geodesics to geodesics and preserve the distance, one can
suppose that G1 = In, P1 = In, and G2 = G.
Since SU(n) is the set of fixed points of the analytic
involution σ : H 7→ (H†)−1 of SLn(C), one can apply [4],
Proposition IV.3.4, to retrieve the fact that SU(n)\SLn(C) is
a Riemannian globally symmetric space. The tangent space to
SLn(C) at In is easily seen to be the space of matrices with
trace zero, and from [4], Proposition IV.3.3(iii), it follows
that the tangent space T to SU(n)\SLn(C) at In can be
identified with its subspace of anti-invariants under dσ. Since
dσ sends a matrix M to −M †, one sees that this tangent
space T is the space of Hermitian matrices with trace zero.
Since G = U †Diag(λ1, ..., λn)U is of determinant 1, one
checks that L = U †Diag(log(λ1), ..., log(λn))U indeed is an
element of T . Now it follows again from [4], Proposition
IV.3.3(iii) that any geodesic segment starting at In is of the
form γL′ : t 7→ exp(tL′) for some L′ ∈ T , and the condition
γL′(1) = G forces L′ = L. This proves the first part of the
proposition.
Now since γL is a geodesic segment, its tangent vector
has constant norm equal to ‖L‖, where ‖.‖ is the norm on
T given by the Riemannian structure. This norm must be
invariant under the action of SU(n) on T , and since this
action is irreducible, ‖.‖ is unique up to multiplication by a
constant. One can check that the so-called Frobenius norm



defined by

‖L‖ = (
∑

1≤i,j≤n

|Lij |
2)1/2

indeed is invariant. Using this invariance property, this can
also written as:

dgeod(In, G) = length(γ)

= ‖L‖ = ‖U †Diag(log(λ1), ..., log(λn))U‖

= ‖Diag(log(λ1), ..., log(λn))‖

= (
∑

1≤i≤n

| log λi|
2)1/2,

which proves the second part of the proposition.

IV. CENTROIDS UPDATE IN GENERALIZED LLOYD FOR

HERMITIAN FORMS

The Generalized Lloyd algorithm iterates between two
steps. The first step determines the borders of Voronoi regions.
A Voronoi region is also called a class in our terminology.
This Lloyd first step utilizes the geodesic metric given by
proposition (1) in the previous section. The second step
updates the centroid of each class.
In the second step of Lloyd’s algorithm applied to the space
SU(n)\SLn(C), given some positive definite Hermitian ma-
trices G1, ..., GN with determinant 1, one needs to find the
centroid C of this class of cardinality N that minimizes
the sum of the squared distances dgeod(C, G1)

2 + ... +
dgeod(C, GN )2. To our knowledge, there is no exact way to
perform this minimization, however, proposition (1) suggests
a way to find at least a good approximation of this centroid,
based on a gradient heuristic. Indeed, suppose we know that
G1, ..., GN already are not too far from an “old” centroid C0.
Using the invariance of the geodesic distance under the action
of SLn(C), one can reduce to the case C0 = In. Then if Li

is the tangent vector at In to the geodesic segment ending at
Gi, so that Li = log(Gi), the gradient at In of the function
C 7→ dgeod(C, G1)

2 + ... + dgeod(C, GN )2 is proportional to
L = L1+ ...+LN . It is thus natural to take for C the endpoint
of the geodesic with tangent vector 1

N L, that is

C = exp(
1

N
(log G1 + ... + log GN )) (1)

One can check easily that if N = 1, or if N = 2 and C0

already lies on the unique geodesic passing through G1 and
G2, then this approximate C is the exact C that minimizes
the sum of the squared distances.
From a computational point of view, a drawback with these
mathematical constructions is that they require to diagonalize
some of the matrices involved, which can be heavily time-
consuming. A computationally lighter alternative is then to
consider the space of positive definite Hermitian matrices with
determinant 1 as a subset of the affine space of all Hermitian
matrices, and to use the distance and the averaging process
coming from this affine structure. More precisely, this amounts

to replacing the geodesic distance dgeod with the Frobenius
distance

dlin(G1, G2) = (
∑

1≤i,j≤n

|(G1 − G2)ij |
2)1/2,

and to defining the linear average of G1, ..., GN as C ′ =
1
N (G1 + ... + GN ) and the new centroid its central projection
C = (det C ′)−1/nC ′.
The design of a quantizer for SU(n)\SLn(C) via the different
distances and these different centroids averaging processes
should be tuned to the specific target application.

V. NUMERICAL RESULTS

We considered channels with uncorrelated coefficients be-
fore doing the determinant normalization. Our numerical re-
sults on MIMO classification are obtained via a Generalized
Lloyd similar to the one-dimensional Lloyd [5].

1) Build an initial codebook with K elements chosen randomly.
2) Assign each data sample to its nearest centroid (in the geodesic

metric sense).
3) Update the centroid of class i based on the Ni data samples

belonging to this class, for i = 1, . . . , K. These are the new
K centroids.

4) Go back to step 2 during nL iterations.

Figures 2, 3, and 4 show the geodesic orbits of centroids af-
ter nL Lloyd iterations on M = 106 Hermitian form samples.
The origin represents the identity matrix. A square symbol
represents a centroid placed on a circle of radius equal to its
geodesic distance to the identity. Angles surrounding centroids
are proportional to the size of their classes. For some values
of K considered as small, the codebook is spherical in the
geodesic representation and classes are equiprobable if Lloyd
reaches a steady state at large nL. Clearly, when K is high,
the codebook includes many orbits. Some singular orbits may
correspond to rare Hermitian forms or to a non convergence
state of Lloyd algorithm. Fig. 5 illustrates the capacity (log-
det formula from [7]) versus SNR when n = 2. This figure
reflects the 3 orbits found on Fig. 3. For higher dimensions,
the same geodesic orbit may correspond to different channel
capacities. Finally, Figures 6 and 7 show how the error rate
behaves among K = 256 classes for n = 4 with a 16-QAM
modulation and maximum-likelihood decoding [8].
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Fig. 2. Geodesic orbits for n = 4 antennas, K = 64 classes, nL = 32

Lloyd iterations.
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Fig. 3. Geodesic orbits for n = 2 antennas, K = 64 classes, nL = 50

Lloyd iterations.
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Fig. 4. Geodesic orbits for n = 4 antennas, K = 256 classes, nL = 32

Lloyd iterations.
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Fig. 5. Capacity versus signal-to-noise ratio for n = 2 antennas, K = 64

classes. The graph displays the capacity curve of 20 distinct classes.
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Fig. 6. Point error rate performance for n = 4 antennas, K = 256 classes.
Components of z are Gaussian integers taken from a 16-QAM constellation
(uncoded).
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Fig. 7. Bit error rate (worst bit) performance for n = 4 antennas, K =

256 classes. Components of z are Gaussian integers taken from a 16-QAM
constellation (uncoded). The worst bit in the lattice constellation labeling is
considered. The 16-QAM is Gray labeled.


