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Abstract
In this paper we study the number of carries occurring while performing an addition
modulo 2k − 1. For a fixed modular integer t, it is natural to expect the number
of carries occurring when adding a random modular integer a to be roughly the
Hamming weight of t. Here we are interested in the number of modular integers in
Z/(2k − 1)Z producing strictly more than this number of carries when added to a
fixed modular integer t ∈ Z/(2k− 1)Z. In particular it is conjectured that less than
half of them do so. An equivalent conjecture was proposed by Tu and Deng in a
different context.

Although quite innocent, this conjecture has resisted different attempts of proof
and only a few cases have been proved so far. The most manageable cases involve
modular integers t whose bits equal to 0 are sparse. In this paper we continue to
investigate the properties of Pt,k, the fraction of modular integers a to enumerate, for
t in this class of integers. Doing so we prove that Pt,k has a polynomial expression
and describe a closed form for this expression. This is of particular interest for
computing the function giving Pt,k and studying it analytically. Finally, we bring
to light additional properties of Pt,k in an asymptotic setting and give closed-form
expressions for its asymptotic values.

1. Introduction

For a fixed modular integer t ∈ Z/(2k − 1)Z, it is natural to expect the number
of carries occurring when adding a random modular integer a ∈ Z/(2k − 1)Z to
be roughly the Hamming weight of t. Following this idea, it is of interest to study
the distribution of the number of carries around this value. Quite unexpectedly the
following conjecture, indicating a kind of regularity, seems to be verified.
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Conjecture 1. Let St,k denote the following set:

St,k =
{
a ∈ Z/(2k − 1)Z | r(a, t) > w(t)

}
,

and Pt,k the fraction of modular integers in St,k:

Pt,k = |St,k| /2k.

Then
Pt,k ≤

1
2
.

(We are fully aware that there are only 2k−1 elements in Z/(2k−1)Z, but we will
often use the abuse of terminology we made above and speak of fraction, probability
or proportion for Pt,k.) An equivalent conjecture was originally proposed by Tu and
Deng [8] in a different context. For the connection between the conjecture of Tu
and Deng and the one given here, we refer the reader to [4]. Tu and Deng verified
computationally the validity of their assumption for k ≤ 29.

Up to now, different attempts [4, 5, 3, 2] were conducted and lead to partial
proof of the conjecture in very specific cases. A list of the different cases proven
to be true can be found in [5, Section 5]. Unfortunately a direct proof or a simple
recursive one seems hard to find [5, Section 4]. What however came out of these
works is that supposing that t has a high Hamming weight [3, 2] or more generally
that its 0 bits are sparse [4, 5], greatly simplifies the study of Pt,k. This condition
casts a more algebraic and probabilistic structure upon it.

In this paper we restrict ourselves to this class of numbers. We do not prove any
further cases of the conjecture, but extend the study of Pt,k as a function of t for this
class of numbers. It is organized as follows. In the first section we recall definitions
and results found in [4]. In the second section we explore the algebraic nature of
Pt,k, deduce a closed-form expression for it as well as additional properties that this
expression verifies. This is of particular interest for computing the function giving
Pt,k and studying it analytically. In the third section we analyze the probabilistic
nature of Pt,k, find useful closed-form expressions for the asymptotic value of Pt,k

and give relations verified by different limits.

1.1. Notations

Unless stated otherwise, we use the following notations:

• k ∈ N is the number of bits we are currently working on.

• t ∈ Z/(2k − 1)Z is a fixed modular integer.

Moreover we will assume that t $= 0. The case t = 0 is trivial and can be found
in [4, Proposition 2.1].

The Hamming (or binary) weight of a natural or modular integer is defined as
follows.
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Definition 2. (Hamming Weight)

• For a ∈ N, w(a) is the weight of a, i.e., the number of 1’s in its binary
expansion.

• For a ∈ Z/(2k − 1)Z, w(a) is the weight of its unique representative in{
0, . . . , 2k − 2

}
.

The number of carries is then defined as follows.

Definition 3. For a ∈ Z/(2k − 1)Z, a $= 0, we set

r(a, t) = w(a) + w(t)− w(a + t),

i.e., r(a, t) is the number of carries occurring while performing the addition of a and
t. By convention we set

r(0, t) = k,

i.e., 0 behaves like the binary string 1...1︸ ︷︷ ︸
k

. We also remark that r(−t, t) = k.

The set St,k is described as

St,k = {a | r(a, t) > w(t)} .

We recall that t can be multiplied by any power of 2 (which corresponds to rotating
its binary expansion) without affecting the value of Pt,k [4, Proposition 2.2].

1.2. A Block Splitting Pattern

To compute Pt,k, a fruitful idea is to split t in several blocks and perform the
computation in each block as independently as possible. Here we recall the splitting
pattern defined in [4].

We split t($= 0) (once correctly rotated, i.e., we multiply it by a correct power
of 2 so that its binary expansion on k bits begins with a 1 and ends with a 0) in
blocks of the form [1∗0∗] (i.e., as many 1’s as possible followed by as many 0’s as
possible) and write it down as follows.

Definition 4. We let

t =
α1 {

1---1

β1 {

0---0︸ ︷︷ ︸
t1

...

αi {

1---1

βi {

0---0︸ ︷︷ ︸
ti

...

αd {

1---1

βd {

0---0︸ ︷︷ ︸
td

with d the number of blocks, αi and βi the numbers of 1’s and 0’s of the i-th block
ti. We define B =

∑d
i=1 βi = k − w(t).

We define corresponding values for a (a number to be added to t) as follows.
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Definition 5. We let

t =
α1 {

1---1

β1 {

0---0...

αi {

1---1

βi {

0---0...

αd {

1---1

βd {

0---0,

a = ?10-0

{

γ1

?01-1

{

δ1

...?10-0

{

γi

?01-1

{

δi

...?10-0

{

γd

?01-1

{

δd

,

i.e., γi is the number of 0’s in front of the end of the 1’s subblock of ti and δi is the
number of 1’s in front of the end of the 0’s subblock of ti. One should be aware
that γi’s and δi’s depend on a and are considered as variables.

Then αi − γi is the number of carries occurring in the i-th block, but only if no
carry comes out of the previous block.

If a carry comes out of the previous block, the situation is more complicated
because we must take into account the fact that it will propagate in the 0 subblock
and could even propagate into the 1 subblock if δi = βi. Therefore we define γ′i as
follows.

• if δi $= βi, we define γ′i = γi as before,

• if δi = βi, we define γ′i = 0 (i.e., the carry coming from the previous block
goes through the 0’s subblock so the 1’s subblock always produces αi carries).

We define δ′i = δi for notation consistency. Then αi−γ′i +δ′i is the number of carries
occurring if a carry comes out of the previous block.

Unfortunately the γ′i’s and δ′i’s are no longer pairwise independent. Indeed within
the same block, γ′i and δ′i are correlated. However each block remains independent
of the other ones. The distributions of γ′i and δ′i are given in Table 1.

ci = 0 1 . . . ci . . . αi − 1 αi αi + 1 . . .

P (γ′i = ci) 1+1/2βi

2
1−1/2βi

4 . . . 1−1/2βi

2ci+1 . . . 1−1/2βi

2αi

1−1/2βi

2αi
0 . . .

di = 0 1 . . . di . . . βi − 1 βi βi + 1 . . .
P (δ′i = di) 1/2 1/4 . . . 1/2di+1 . . . 1/2βi 1/2βi 0 . . .

Table 1: Distributions of γ′i and δ′i

Finally, for computational reasons, it will sometimes be easier to count the num-
ber of carries not occurring within a block. Hence we define εi = γi + δi and
ε′i = γ′i + βi − δ′i. It is the number of carries lost in the i-th block depending on
whether a carry comes out of the previous block or not.
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1.3. The Constrained Case

It is now time to define what we understand by sparse 0 bits. Informally we want
each of the blocks defined in the previous subsection to have a large number of
1’s and only a few 0’s. Mathematically we impose that t verifies the following
constraint:

min
i

(αi) ≥
d∑

i=1

βi − 1 = B − 1 = k − w(t)− 1.

Under that hypothesis, if a is in St,k, then a carry has to go through each subblock
of 1’s. Therefore each block is independent of the other ones. Moreover it can be
shown that we get an equivalence between r(a, t) > w(t) and

∑d
i=1 γ′i <

∑d
i=1 δ′i.

Proposition 6. [4, Proposition 3.8]

Pt,k = P

[
∑

d

γ′ <
∑

d

δ′
]

.

Formulated in a different way, it also means that for such t ∈ Z/(2k − 1)Z,
a ∈ St,k is equivalent to

∑
d ε′i < B = k−w(t) and we get the following proposition.

Proposition 7. [4, Proposition 3.9]

Pt,k =
B−1∑

E=0

∑
∑

d ei=E
0≤ei

∏

d

P (ei)

where P (ei) is defined by

P (ei) = P (ε′i = ei) =






2−βi if ei = 0,
2−βi

3 (2ei − 2−ei) if 0 < ei < βi,
2βi−2−βi

3 2−ei if βi ≤ ei.

As soon as a given set of βi’s and αi’s verifies the constraint mini αi ≥ B−1, the
above expression shows that the value of Pt,k for the corresponding t and k only
depends on the value of the βi’s. Furthermore it does not depend on the ordering
of the βi’s and so is a symmetric function of them, whence the following definition.

Definition 8. We denote by fd(β1, . . . ,βd) the value of Pt,k for any t made of
d blocks, with that set of βi’s and any set of of αi’s such that mini αi ≥ B − 1.
Obviously fd is a symmetric function of the βi’s.

This function will be our main object of interest in this paper.
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2. A Closed-Form Expression for Pt,k

The main goal of this section is to describe a closed-form expression of fd and its
properties.

After giving some experimental results in Subsection 2.1, we will prove that fd

has the following “polynomial” expression.

Proposition 9. For any d ≥ 1, fd can be written in the following form:

fd(β1, . . . ,βd) =
∑

I⊂{1,...,d}

4−
∑

i∈I βiP |I|
d ({βi}i∈I),

where Pn
d is a symmetric multivariate polynomial in n variables of total degree d−1

and of degree d − 1 in each variable if n > 0. If n = 0, then P 0
d = 1

2 (1 − Pd), the
value computed in 44.

The proof of this result covers three subsections:

1. in Subsection 2.2, we split the expression giving fd as a sum into smaller pieces
and establish a recursion relation in d;

2. in Subsection 2.3, we study the expression of the residual term appearing in
this relation;

3. in Subsection 2.4, we put the pieces back together to conclude.

Once this proposition is shown, we will be allowed to denote by ad,n
(i1,...,in) the

coefficient of Pn
d (x1, . . . , xn) of multi-degree (i1, . . . , in) normalized by 3d. In Sub-

section 2.5 we give simple expressions for some specific values of ad,n
(i1,...,in) as well

as the following general expression.

Proposition 10. Suppose that i1 > . . . > im $= 0 > im+1 = 0 > . . . > in = 0 and
m > 0. Let us denote by l the sum l = i1 + . . . + in > 0 (i.e., the total degree of the
monomial). Then

ad,n
(i1,...,in) = (−1)n+1

(
l

i1, . . . , in

)
bd,n
l,m,

with

bd,n
l,m =

n−m∑

i=0

(
n−m

i

) d−n∑

j=0

(
d− n

j

) ∑

kj≥0,j∈I∪J,1≤j≤m

(l + S −m)!
l!




∑

k≥1

2k

(h− k)!

[
h− k

l + S −m

]


∏

j∈J

Akj

kj !

∏

j∈I

Akj − 3kj=0

kj !

m∏

j=1

Ckj−1

|kj − 1|! .

Within bd,n
l,m, the following notations are used:
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• I = {m + 1, . . . ,m + i};

• J = {n + 1, . . . , n + j};

• S =
∑

j∈I∪J,1≤j≤m kj;

• h = d−m− j− i;

and

Cj =






Aj + Bj+1
j+1 if j > 0,

−13
6 if j = 0,

1 if j = −1.

Here Ai is a sum of Eulerian numbers and Bi a Bernoulli number which are
described in Subsection 2.3.

Finally, we prove in Subsection 2.6 an additional property predicted experimen-
tally.

Proposition 11. For 0 < j ≤ i,

ad,n
(i,j,...) =

i + 1
j

ad,n
(i+1,j−1,...);

i.e., the value of bd,n
l,m does not depend on m.

2.1. Experimental Results

For d = 1, by [4, Theorem 3.6], we have

f1(β1) =
2
3
4−β1 +

1
3
.

The case d = 2 has been treated in [4, Proposition 3.12] and leads to a similar
expression:

f2(β1,β2) =
11
27

+ 4−β1

(
2
9
β1 −

2
27

)

+ 4−β2

(
2
9
β2 −

2
27

)
+ 4−β1−β2

(
20
27
− 2

9
(β1 + β2)

)
.

In both cases, fd has the correct form and has been shown to verify Conjecture 1.
The tables in Appendix 4 give the coefficients of the multivariate polynomials

Pn
d for the first few d’s. Graphs of some functions derived from fd are given in

Figures 2.1 and 2.1. All of this data was computed using Sage [7], Pynac [10] and
Maxima [9].

Moreover looking at the tables in Appendix 4, some additional properties seem
to be verified. Here are some examples. The value of ad,d

(1,...,1,0) is easy to predict:

ad,d
(1,...,1,0) = (−1)d+12;
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Figure 1: fd(βi) for βi = 1, i $= 1.

Figure 2: fd(βi) for βi = 10, i $= 1.
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we prove this in Proposition 28. There is a recursion relation between coefficients
with different d’s:

ad,n+1
(i1,...,in,0) + ad,n

(i1,...,in) = 3ad−1,n
(i1,...,in);

this is Corollary 27. There is a relation between coefficients with a given d:

ad,n
(i,j,...) =

i + 1
j

ad,n
(i+1,j−1,...);

this is Proposition 11. All of these results will be proved in the next subsections.
It should also be noted that we already know the value of fd(1, . . . , 1).

Theorem 12. [4, Theorem 4.14] For d ≥ 1,

fd(1, . . . , 1) =
1
2
.

2.2. Splitting the Sum into Atomic Parts

We consider a general d ≥ 1. From Proposition 7:

fd(β1, . . . ,βd) =
B−1∑

E=0

∑
∑

d ei=E
0≤ei

∏

d

P (ei),

where P (ei) has three different expressions according to the value of ei:

P (ei) =






2−βi if ei = 0,
2−βi

3 (2ei − 2−ei) if 0 < ei < βi,
2βi−2−βi

3 2−ei if βi ≤ ei.

Let us denote for a vector X ∈ {0, 1, 2}d:

• the i-th coordinate by Xi with 1 ≤ i ≤ d;

• jk = wk(X) = |{i|Xi = k}| for 0 ≤ k ≤ 2;

• B0,1 =
∑

{i|Xi )=2} βi;

• E1 =
∑

{i|Xi=1} ei.

We can now define subsets Sd
X of the sum in Proposition 7 where each P (ei) has a
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specific behavior given by the value of the i-th coordinate of such a vector X:

Sd
X =

B−1∑

E=0

∑
∑

d ei=E
ei=0 if Xi=0

0<ei<βi if Xi=1
βi≤ei if Xi=2

n∏

i=1

P (ei)

=
B−1∑

E=0

∑
∑

d ei=E
ei=0 if Xi=0

0<ei<βi if Xi=1
βi≤ei if Xi=2




∏

{i|Xi=0}

2−βi
∏

{i|Xi=1}

2−βi

3
(2ei − 2−ei)

∏

{i|Xi=2}

2βi − 2−βi

3
2−ei



 ,

so that

fd(β1, . . . , βd) =
∑

X∈{0,1,2}d

Sd
X .

Here we drop the dependency in the βi’s for conciseness. The sum Sd
X already has

some properties of fd.

Lemma 13. Sd
X is symmetric for each set {i | Xi = k} where k ∈ {0, 1, 2}. To

compute Sd
Y where Y is any permutation of X, one has just to permute the βi’s

accordingly in Sd
X .

The previous lemma shows that it is enough to study the X’s such that

X = (

j0︷ ︸︸ ︷
0, . . . , 0,

j1︷ ︸︸ ︷
1, . . . , 1,

j2︷ ︸︸ ︷
2, . . . , 2).

The following lemma is obvious.

Lemma 14. Sd
(0,...,0) = 2−

∑d
i=1 βi and Sd

(2,...,2) = 0.

And when j2 = 0, Sd
X has a simple expression.

Proposition 15. If j2 = 0 and X = (

j0︷ ︸︸ ︷
0, . . . , 0,

j1︷ ︸︸ ︷
1, . . . , 1), then

Sd
X =

2−
∑ j0

i=1 βi

3j1

d∏

i=j0+1

(1 + 2 · 4−βi − 3 · 2−βi).

Proof. This is a simple consequence of the fact that we can sum up in each ei
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independently:

Sd
X =

2−B

3j1

∑

0<ei<βi
j0+1≤i≤d

d∏

i=j0+1

(2ei − 2−ei) =
2−B

3|j1|

d∏

i=j0+1

∑

0<ei<βi

(2ei − 2−ei)

=
2−B

3j1

d∏

i=j0+1

(2βi + 2 · 2−βi − 3)

= 2−
∑ j0

i=1 βi

d∏

i=j0+1

1 + 2 · 4−βi − 3 · 2−βi

3
.

The next proposition is the key to our proof. It exhibits a recursion relation
between Sd

X for different values of d and will reduce the proof of Proposition 9 to
the case j2 = 0 and the study of a residual term denoted by T d

X .

Proposition 16. For j2 ≥ 1 and X = (

j0︷ ︸︸ ︷
0, . . . , 0,

j1︷ ︸︸ ︷
1, . . . , 1,

j2︷ ︸︸ ︷
2, . . . , 2), we have

Sd
X = 2

1− 4−βd

3
Sd−1

X − 2T d
X ,

where

T d
X =

4−B0,1

3j1+j2

d∏

i=j0+j1+1

(1− 4−βi)
∑

0<ei<βi
j0+1≤i≤j0+j1

j0+j1∏

i=j0+1

(4ei − 1)
∑

0≤ei,
∑

ei<B0,1−E1
j0+j1+1≤i≤d−1

1.

Proof. Replacing P (ei) by its expression, we get

Sd
X =

j0∏

i=1

2−βi
∑

0<ei<βi
j0+1≤i≤j0+j1

j0+j1∏

i=j0+1

2−βi

3
(2ei − 2−ei)

∑

βi≤ei∑
ei<B−E1

j0+j1+1≤i≤d

d∏

i=j0+j1+1

2βi − 2−βi

3
2−ei

=
2−B0,1

3j1+j2

d∏

i=j0+j1+1

(1− 4−βi)
∑

0<ei<βi
j0+1≤i≤j0+j1

j0+j1∏

i=j0+1

(2ei − 2−ei)
∑

0≤ei∑
ei<B0,1−E1

j0+j1+1≤i≤d

d∏

i=j0+j1+1

2−ei ,

letting ei = ei − βi for j0 + j1 + 1 ≤ i ≤ d. We now explicitly compute the sum on
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ed:

Sd
X =

2−B0,1

3j1+j2

d∏

i=j0+j1+1

(1− 4−βi)
∑

0<ei<βi
j0+1≤i≤j0+j1

j0+j1∏

i=j0+1

(2ei − 2−ei)

∑

0≤ei∑
ei<B0,1−E1

j0+j1+1≤i≤d−1

d−1∏

i=j0+j1+1

2−ei

(
2
(
1− 2−B0,1+E1+

∑d−1
i=j0+j1+1 ei

))

= 2
1− 4−βd

3
Sd−1

X − 2
4−B0,1

3j1+j2

d∏

i=j0+j1+1

(1− 4−βi)
∑

0≤ei∑
ei<B0,1−E1

j0+j1+1≤i≤d−1

1

= 2
1− 4−βd

3
Sd−1

X − 2T d
X .

2.3. The Residual Term T d
X

We now study the term T d
X for j2 ≥ 1 and X = (

j0︷ ︸︸ ︷
0, . . . , 0,

j1︷ ︸︸ ︷
1, . . . , 1,

j2︷ ︸︸ ︷
2, . . . , 2) and show

that fd has the following expression.

Proposition 17. For j2 ≥ 1 and X = (

j0︷ ︸︸ ︷
0, . . . , 0,

j1︷ ︸︸ ︷
1, . . . , 1,

j2︷ ︸︸ ︷
2, . . . , 2),

T d
X =

1
3j2

d∏

i=j0+j1+1

(1− 4−βi)Σd
X

where

Σd
X =

4−
∑ j0

i=1 βi

3j1(j2 − 1)!

j2−1∑

l=0

[
j2 − 1

l

] ∑

k+kj0+1+...+kj0+j1=l

(
l

k, kj0+1, . . . , kj0+j1

)(
j0∑

i=1

βi

)k

Πd
X

and

Πd
X =

∏

{j0≤j≤j0+j1|kj=0}

1− 4−βj − 3βj4
−βj

3

∏

{j0≤j≤j0+j1|kj $=0}

(
Akj (1− 4−βj )−

(
1

kj + 1
β

kj+1
j +

5
6
β

kj
j

+

kj−1∑

i=1

(
kj

i

) (
Ai +

Bi+1

i + 1

)
βkj−i

)
4−βj

)
.
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Also, Σd
X is a sum for I ⊂ {j0 + 1, . . . , j0 + j1} of terms of the form 4−

∑ j0
i=1 βi−

∑
i∈I βi

multiplied by a multivariate polynomial of degree in βi exactly j2 if i ∈ I, j2 − 1 if
1 ≤ i ≤ j0, 0 otherwise, and of total degree j2 + |I|− 1.

The end of this subsection is devoted to the proof of this proposition. This is a
quite technical part, but it is also of great interest to prove Proposition 10.

We denote by Rd
X the sum at the end of T d

X :

Rd
X =

∑

0≤ei,
∑

ei<B0,1−E1
j0+j1+1≤i≤d−1

1,

which is simply the number of j2 − 1-tuples of natural integers such that their sum
is strictly less than B0,1−E1; and by Σd

X the sum on the ei’s for j0+1 ≤ i ≤ j0+j1:

Σd
X =

4−B0,1

3j1

∑

0<ei<βi
j0+1≤i≤j0+j1

j0+j1∏

i=j0+1

(4ei − 1)Rd
X ,

so T d
X is given by

T d
X =

1
3j2

d∏

i=j0+j1+1

(1− 4−βi)Σd
X .

We first check the proposition for j2 = 1. Then Rd
X = 1 and the sum Σd

X to
compute is

Σd
X =

4−B0,1

3j1

∑

0<ei<βi
j0+1≤i≤j0+j1

j0+j1∏

i=j0+1

(4ei − 1) =
4−B0,1

3j1

j0+j1∏

i=j0+1

4βi − 1− 3βi

3

=
4−

∑ j0
i=0 βi

3j1

j0+j1∏

i=j0+1

1− 4−βi − 3βi4−βi

3
,

so T d
X becomes

T d
X =

1
3
(1− 4−βd)

4−
∑ j0

i=0 βi

3j1

j0+j1∏

i=j0+1

1− 4−βi − 3βi4−βi

3

which is what the proposition states.
Let us now proceed to a general j2 ≥ 1. In what follows Bi is a Bernoulli

number [6, Formula 6.78] (here B1 = 1/2) and
[
i
j

]
is an unsigned Stirling number
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of the first kind [6, Section 6.1]. We recall that the sum of the first n k-th powers
is given as a polynomial in n by

n∑

i=0

ik =
1

k + 1

k∑

i=0

(
k + 1

i

)
Bin

k+1−i.

Here is a classical combinatorial lemma.

Lemma 18. For n ≥ 1 and m > 0, the number of n-tuples of natural integers such
that their sum is strictly less than m is given by

∑

0≤ij ,1≤j≤n∑n
j=1 ij<m

1 =
(

n + m− 1
n

)
=

1
n!

n∑

l=1

[
n
l

]
ml.

Proof. This is indeed the same thing as the number of (n + 1)-tuples of natural
integers such that their sum is exactly m− 1.

Then the sum Rd
X in T d

X for j2 ≥ 1, which counts the number of j2 − 1-tuples of
natural integers such that their sum is strictly less than B0,1 − E1, is given by the
following expression:

Rd
X =

1
(j2 − 1)!

j2−1∑

l=0

[
j2 − 1

l

]
(B0,1 −E1)l

=
1

(j2 − 1)!

j2−1∑

l=0

[
j2 − 1

l

]

×
∑

k+kj0+1+···+kj0+j1=l

(
l

k, kj0+1, . . . , kj0+j1

)(
j0∑

i=1

βi

)k j0+j1∏

i=j0+1

(βi − ei)ki .

And Σd
X becomes

Σd
X =

4−B0,1

3j1

∑

0<ei<βi
j0+1≤i≤j0+j1

j0+j1∏

i=j0+1

(4ej − 1)Rd
X

=
4−

∑ j0
i=1 βi

3j1(j2 − 1)!

j2−1∑

l=0

[
j2 − 1

l

]

×
∑

k+kj0+1+...+kj0+j1=l

(
l

k, kj0+1, . . . , kj0+j1

)(
j0∑

i=1

βi

)k

Πd
X ,
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where Πd
X is defined as

Πd
X = 4−

∑ j0+j1
i=j0+1 βi

j0+j1∏

i=j0+1

βi−1∑

ei=1

(βi − ei)ki(4ei − 1).

We now study the different sums on ei according to the value of ki. We drop the
subscripts for clarity.

If k = 0, then the sum is simply
β−1∑

e=1

(4e − 1) =
β−1∑

e=0

(4e − 1) =
4β − 1− 3β

3
.

When k ≥ 1, we do the change of summation variable e = β− e, so that the sum
becomes

β−1∑

e=1

(β − e)k(4e − 1) = 4β
β−1∑

e=1

(β − e)k(1/4)β−e −
β−1∑

e=1

(β − e)k

= 4β
β−1∑

e=1

ek4−e −
β−1∑

e=1

ek.

The second part of this difference is related to the sum of the first n k-th powers.
Here we sum up to β − 1 so the formula is slightly different:

β−1∑

e=0

ek =
1

k + 1

k∑

i=0

(−1)1i=1

(
k + 1

i

)
Biβ

k+1−i.

For the first part, the sum
∑n

i=1 ikzi is a multivariate polynomial in n, z and zn

of degree exactly k in n and 1 in zn. More precisely the series
∑∞

i=0 ikzi is related

to the Eulerian numbers
〈

k
i

〉
[6, Section 6.2] defined by

〈
0
i

〉
= 1i=0,

〈
k
i

〉
= (i + 1)

〈
k − 1

i

〉
+ (k − i)

〈
k − 1
i− 1

〉
for k > 0,

and expressed in closed form as [6, Formula 6.38]
〈

k
i

〉
=

i∑

j=0

(−1)j

(
k + 1

j

)
(i + 1− j)k.

The series is then given by the following classical formula for k ≥ 1 and |z| < 1:

∞∑

i=1

ikzi =

∑k
j=0

〈
k
j

〉
zj+1

(1− z)k+1
.
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The formula for the truncated sum is slightly more involved as stated in the next
lemma.

Lemma 19. For k ≥ 1 and |z| $= 1,

n∑

i=1

ikzi =
∑k

j=0 A0(k, j)zj+1

(1− z)k+1
−

(∑k
i=0

(k
i

) (∑k
j=0 Ai(k, j)zj+1

)
ni

)
zn

(1− z)k+1
,

where Ai(k, j) is defined by the same recursion relation as
〈

k
j

〉
and the initial

conditions:
Ai(i, j) = Ai(i + 1, j) = (−1)j

(
i

j

)
.

In particular, A0(k, j) =
〈

k
j

〉
and we have the simple recursion formula for i ≥ 1:

Ai(k, j) = Ai−1(k − 1, j)−Ai−1(k − 1, j − 1).

We are interested in the case where z = 1/4, n = β−1 and 1 ≤ k ≤ j2−1, which
is written as

β−1∑

e=1

ek4−e =
∑k

j=0 A0(k, j)4−j−1

(3/4)k+1

−

(∑k−1
i=0

(k
i

) (∑k
j=0 Ai(k, j)4−j−1

)
βi

)
4−β

(3/4)k+1

−

(∑k
j=0 Ak(k, j)4−j

)
βk4−β

(3/4)k+1
.

Beware that we are summing up to β− 1 and not β, so the expression is slightly
different from the one above.

Moreover we have the identity given in the following lemma.

Lemma 20. For 0 ≤ i ≤ k,

3
k∑

j=0

Ai(k, j)4−j = 4
k+1∑

j=0

Ai+1(k + 1, j)4−j .
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Proof. Indeed,

4
k+1∑

j=0

Ai+1(k + 1, j)4−j = 4
k+1∑

j=0

(Ai(k, j)−Ai(k, j − 1))4−j

= 4
k∑

j=0

Ai(k, j)4−j − 4
k+1∑

j=1

Ai(k, j − 1)4−j

= 4
k∑

j=0

Ai(k, j)4−j − 4
k∑

j=0

Ai(k, j)4−j−1

= 3
k∑

j=0

Ai(k, j)4−j .

Whence the following definition.

Definition 21. For i ≥ 0, let us denote by Ai the quantity

Ai =
∑i

j=0 A0(i, j)4−j−1

(3/4)i+1
=

∑i
j=0

〈
i
j

〉
4−j−1

(3/4)i+1
.

The first few values for Ai are given in Table 2.

i = 0 1 2 3 4 5 6 7
Ai = 1/3 4/9 20/27 44/27 380/81 4108/243 17780/243 269348/729

Table 2: Ai for 0 ≤ i ≤ 7

Then the following corollary of Lemmas 19 and 20 gives a simple expression of
the sum.

Corollary 22. We have

β−1∑

e=1

ek4−e = Ak −
(

k−1∑

i=0

(
k

i

)
Ak−iβ

i

)
4−β − 4A0β

k4−β .
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So for k ≥ 1, the sum becomes

β−1∑

e=1

(β − e)k(4e − 1) = Ak4β −
k−1∑

i=0

(
k

i

)
Ak−iβ

i − 4A0β
k

− 1
k + 1

k∑

i=0

(−1)1i=1

(
k + 1

i

)
Biβ

k+1−i

= Ak4β −
k∑

i=1

(
k

i

)
Akβk−i − 4A0β

k

− 1
k + 1

βk+1 +
1
2
βk −

k∑

i=2

(
k + 1

i

)
Biβ

k+1−i

= Ak(4β − 1)− 1
k + 1

βk+1 − 5
6
βk

−
k−1∑

i=1

(
k

i

)(
Ai +

Bi+1

i + 1

)
βk−i.

According to the above discussion about the different sums on ei, Πd
X can be

expressed as

Πd
X = 4

−
∑j0+j1

i=j0+1 βi
∏

{j0+1≤j≤j0+j1|kj=0}

4βj − 1− 3βj

3

×
∏

{j0+1≤j≤j0+j1|kj $=0}

(
Akj (4

βj − 1)− 1
kj + 1

β
kj+1
j − 5

6
β

kj
j

−
kj−1∑

i=1

(
kj

i

) (
Ai +

Bi+1

i + 1

)
βkj−i

)

=
∏

{j0+1≤j≤j0+j1|kj=0}

1− 4−βj − 3βj4
−βj

3

∏

{j0+1≤j≤j0+j1|kj $=0}

(
Akj (1− 4−βj )−

(
1

kj + 1
β

kj+1
j +

5
6
β

kj
j

+

kj−1∑

i=1

(
kj

i

) (
Ai +

Bi+1

i + 1

)
βkj−i

)
4−βj

)
,

Hence Πd
X , Σd

X and T d
X are all as stated in the proposition. The values of the

degrees of the multivariate polynomials follow from the above expressions.
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2.4. A Polynomial Expression

We can now prove a first step towards Proposition 9. We show that Sd
X is a product

of exponentials in basis 2 and 4 (but not only 4 !) by multivariate polynomials.

Proposition 23. For j2 > 0 and X = (

j0︷ ︸︸ ︷
0, . . . , 0,

j1︷ ︸︸ ︷
1, . . . , 1,

j2︷ ︸︸ ︷
2, . . . , 2),

Sd
X =

2j2

3j2

d∏

i=j0+j1+1

(1− 4−βi)
(
Sd−j2

X − Ξd
X

)
,

where

Ξd
X =

j2−1∑

i=0

2−iΣd−j2+1+i
X

=
4−

∑ j0
i=1 βi

3j1

j2−1∑

l=0

(
j2−1∑

i=l

2−i

i!

[
i
l

])

×
∑

k+kj0+1+...+kj0+j1=l

(
l

k, kj0+1, . . . , kj0+j1

)(
j0∑

i=1

βi

)k

Πd
X .

Ξd
X is a sum for I ⊂ {j0 + 1, . . . , j0 + j1} of terms of the form 4−

∑ j0
i=1 βi−

∑
i∈I βi

multiplied by a multivariate polynomial of degree in βi exactly j2 if i ∈ I, j2 − 1 if
1 ≤ i ≤ j0, 0 otherwise, and of total degree j2 + |I|− 1.

Proof. The proof goes by induction on j2 ≥ 1. For j2 = 1, this is Proposition 16.
Suppose now that j2 > 1. From Proposition 16,

Sd
X = 2

1− 4−βd

3
Sd−1

X − 2T d
X ;

by induction hypothesis on j2

Sd
X = 2

1− 4−βd

3
2j2−1

3j2−1

d−1∏

i=j0+j1+1

(1− 4−βi)
(
Sd−j2

X − Ξd−1
X

)
− 2T d

X

=
2j2

3j2

d∏

i=j0+j1+1

(1− 4−βi)
(
Sd−j2

X − Ξd−1
X

)
− 2T d

X ;

using Proposition 17, we have

T d
X =

1
3j2

d∏

i=j0+j1+1

(1− 4−βi)Σd
X ,
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so that

Sd
X =

2j2

3j2

d∏

i=j0+j1+1

(1− 4−βi)
(
Sd−j2

X − Ξd−1
X − 2−j2+1Σd

X

)

=
2j2

3j2

d∏

i=j0+j1+1

(1− 4−βi)
(
Sd−j2

X − Ξd
X

)
,

whence the proposition.

In fact as soon as we know that Sd
X is a sum of exponentials multiplied by multi-

variate polynomials, we know which βi’s can appear in the multivariate polynomials.
Indeed, as it is a fraction of fd, we know that Sd

X is finite and even bounded be-
tween 0 and 1 for every tuple of βi’s, so that Sd

X would explode as βi goes to infinity
whereas the other ones are fixed if this βi appeared in a multivariate polynomial,
but not in the exponential.

We can now prove the final step towards Proposition 9. We claim that for
I ⊂ {1, . . . , d}, Sd

I that we define as

Sd
I =

∑

{X|Xi=2 if i∈I,Xi )=2 if i)∈I}

SX

already has an appropriate form, whence Proposition 9 because

fd(β1, . . . ,βd) =
∑

I⊂{1,...,d}

Sd
I .

For I, J ⊂ {1, . . . , d} such that I ∩ J = ∅, we define X(I, J) as the only vector
in {0, 1, 2}d such that

Xi =






2 if i ∈ I,
1 if i ∈ J,
0 otherwise.

We denote Sd
X(I,J) simply by Sd

I,J so that

Sd
I =

∑

J⊂Ic

Sd
I,J .

We define in the same way T d
I,J and T d

I and so on when I $= ∅.

Proposition 24. Sd
I is a symmetric function in the βi’s such that i $∈ I, as well as

in the βi’s such that i ∈ I.
For I = ∅, we have

Sd
∅ =

1
3d

∑

J⊂{1,...,d}

2|J|4−
∑

j∈J βj ,
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and for {d} ⊂ I = {j0 + j1 + 1, . . . , d}, we have

Sd
I =

2j2

3j2

d∏

i=j0+j1+1

(1− 4−βi)
(
Sd−j2
∅ − Ξd

I

)
.

For {d} ⊂ I = {j0 + j1 + 1, . . . , d}, Ξd
I is a sum for J ⊂ Ic of terms of the form

4−
∑

j∈J βj multiplied by a multivariate polynomial of degree in βj exactly |I| if j ∈ J ,
0 otherwise, and of total degree min(d− 1, |I| · |J |).

Proof. This assertion does not depend on the exact value of I, but only of |I|, even if
the value of Sd

I does: one has to permute the βi’s to deduce one from another. Hence
we can assume that I = {j0 + j1 + 1, . . . , d}. The symmetry of Sd

I in each subset
of variables follows from its definition. The proof goes by induction on j2 = |I|.

Suppose first that j2 = 0, i.e., I = ∅. We go by induction on d. For d = 1,

S1
∅ = S1

(0) + S1
(1) = f1(β1) =

2
3
4−β1 +

1
3
.

Suppose now that d > 1. We have

Sd
∅ =

∑

J⊂{1,...,d}

Sd
∅,J =

∑

J⊂{1,...,d−1}

Sd
∅,J +

∑

{d}⊂J⊂{1,...,d}

Sd
∅,J

= 2−βdSd−1
∅ + 2−βd

2βd + 2 · 2−βd − 3
3

Sd−1
∅

=
2 · 4−βd + 1

3
1

3d−1

∑

J⊂{1,...,d−1}

2|J|4−
∑

j∈J βj

=
1
3d

∑

J⊂{1,...,d}

2|J|4−
∑

j∈J βj ,

using the induction hypothesis on d, which proves the proposition for I = ∅.
Suppose now that I = {j0 + j1 + 1, . . . , d} is not empty, so that that d > 1. Then

Sd
I =

∑

J⊂{1,...,j0+j1}

Sd
I,J

=
∑

J⊂{1,...,j0+j1}

2j2

3j2

d∏

i=j0+j1+1

(1− 4−βi)
(
Sd−j2

I,J − Ξd
I,J

)

=
2j2

3j2

d∏

i=j0+j1+1

(1− 4−βi)




∑

J⊂{1,...,j0+j1}

Sd−j2
I,J −

∑

J⊂{1,...,j0+j1}

Ξd
I,J





=
2j2

3j2

d∏

i=j0+j1+1

(1− 4−βi)
(
Sd−j2
∅ − Ξd

I

)
.
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Proposition 9 is a simple corollary to the last proposition and hence is finally
proven.

2.5. The Coefficients ad,n
(i1,...,in)

We can now properly define the coefficients appearing in the multivariate polyno-
mials.

Definition 25. We denote by ad,n
(i1,...,in) the coefficient of Pn

d (x1, . . . , xn) of multi-
degree (i1, . . . , in) normalized by 3d.

It should be remembered that d is the index of the function fd, n represents
the number of βi’s appearing in the exponential in front of the polynomial and the
ij ’s the degrees (potentially 0) in each of these βi’s of a monomial appearing in Pn

d .
This does not depend on the ordering of the ij ’s because Pn

d is symmetric, so we can
suppose that (i1 > . . . > in). Moreover ad,n

(i1,...,in) = 0 as soon as
∑n

j=1 ij ≥ d− 1.

Lemma 26. For d ≥ 1, we have fd+1(β1, . . . ,βd, 0) = fd(β1, . . . ,βd).

Proof. This is obvious from the expression of fd(β1, . . . ,βd) as a sum.

Hence we obtain a simple recursion relation on the coefficients of Pn
d .

Corollary 27. For d ≥ 2 and 0 ≤ n < d,

ad,n+1
(i1,...,in,0) + ad,n

(i1,...,in) = 3ad−1,n
(i1,...,in).

We now give closed-form expressions for the coefficients ad,n
(i1,...,in).

Here is a simple proposition proving an experimental observation.

Proposition 28. We have ad,d
(1,...,1,0) = (−1)d+12 and ad,d−1

(1,...,1) = (−1)d2.

Proof. From Propositions 24 and 23, the monomial of multi-degree (1, . . . , 1, 0) in
P d−1

d and P d
d comes from Sd

{d}, within it from Sd
(1,...,1,2). Moreover

Sd
(1,...,1,2) =

2
3
(1− 4−βd)

(
Sd−1

(1,...,1) − Ξd
(1,...,1,2)

)
,

so it is clear that ad,d
(1,...,1,0) = −ad,d−1

(1,...,1). The coefficient ad,d−1
(1,...,1,0) must come from

Ξd
(1,...,1,2) so that

Ξd
(1,...,1,2) =

1
3d−1

Πd
(1,...,1,2) =

1
3d−1

d−1∏

i=0

1− (1 + 3βi)4−βi

3
,

and we finally have

ad,d−1
(1,...,1,0) = −3d 2

3
1

3d−1
(−1)d−1 = (−1)d2.
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More generally, we have the following expression for a monomial of total degree
d− 1.

Proposition 29. Suppose that i1 + . . . + in = d− 1. Then

ad,n
(i1,...,in) = 2

(−1)n+1

i1! . . . in!
.

Proof. We can suppose that i1 > . . . > ij1 $= 0 > ij1+1 = 0 > . . . > in. These
notations are coherent because the different constraints on the degrees show that
such a monomial can only appear in Sd

X when j1 = |{ij |ij $= 0}| and j2 = d− j1, so
that this coefficient only comes from

Sd
(1,...,1,2,...,2) =

2j2

3j2

d∏

i=j1+1

(1− 4−βi)
(
Sd−j2

(1,...,1) − Ξd
(1,...,1,2,...,2)

)
.

Moreover within Ξd
(1,...,1,2,...,2) it can only appear in Σd−i

(1,...,1,2,...,2) when i = 0. Look-
ing at the expression of Πd

X , we have the following expression

ad,n
(i1,...,in) =(−1)n−j1(−2)

(−1)j1

(j2 − 1)!

[
j2 − 1

d− 1− j1

](
d− 1− j1

i1 − 1, . . . , ij1 − 1

) j1∏

j=1

1
(ij − 1) + 1

= 2
(−1)n+1

(j2 − 1)!

[
j2 − 1
j2 − 1

](
j2 − 1

i1 − 1, . . . , ij1 − 1

) j1∏

j=1

1
(ij − 1) + 1

= 2
(−1)n+1

i1! . . . ij1 !
= 2

(−1)n+1

i1! . . . in!
.

As a corollary, we get the following dependence relation.

Corollary 30. For 0 ≤ n ≤ l ≤ d− 1, and
∑n

j=1 ij = l,

d−l∑

j=0

(
d− l

j

)
ad,n+j

i1,...,in,0,...,0 = 0.

Proof. The proof goes by induction on d− 1− l. For l = d− 1, this is the previous
proposition. For l < d− 1, one uses the induction hypothesis and Corollary 27.

Finally, here is the general expression for ad,n
(i1,...,in).

Proposition 10. Suppose that i1 > · · · > im $= 0 > im+1 = 0 > . . . > in and
m > 0. Let us denote by l the sum l = i1 + · · ·+ in > 0 (i.e., the total degree of the
monomial). Then

ad,n
(i1,...,in) = (−1)n+1

(
l

i1, . . . , in

)
bd,n
l,m,
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with

bd,n
l,m =

n−m∑

i=0

(
n−m

i

) d−n∑

j=0

(
d− n

j

) ∑

kj≥0,j∈I∪J,1≤j≤m

(l + S −m)!
l!




∑

k≥1

2k

(h− k)!

[
h− k

l + S −m

]


∏

j∈J

Akj

kj !

×
∏

j∈I

Akj − 3kj=0

kj !

m∏

j=1

Ckj−1

|kj − 1|! .

Within bd,n
l,m, the following notations are used:

• I = {m + 1, . . . ,m + i};

• J = {n + 1, . . . , n + j};

• S =
∑

j∈I∪J,1≤j≤m kj;

• h = d−m− j− i;

and

Cj =






Aj + Bj+1
j+1 if j > 0,

−13
6 if j = 0,

1 if j = −1.

Proof. If Xj = 2, then the degree of βj in Sd
X is zero. If Xj = 0, then 4−βj can

be factored out of Sd
X and βj will appear in every exponential. Therefore we can

consider only X’s which verify the following constraints to compute ad,n
(i1,...,in):

Xj =






0, 1 if 1 ≤ j ≤ m,
0, 1, 2 if m + 1 ≤ j ≤ n,
1, 2 if n + 1 ≤ j ≤ d.

From Proposition 23,

Sd
X =

2j2

3j2

∏

{j|Xj=2}

(1− 4−βj )
(
Sd−j2

X − Ξd
X

)
,

and the monomials of non-zero degree only come from Ξd
X .

Moreover Ξd
X can be written as

Ξd
X =

1
3j1

∑

kj≥0,{j|Xj )=2}

(
j2−1∑

k=0

2−k

k!

[
k∑

{j|Xj )=2} kj

])

×

(∑
{j|Xj )=2} kj

)
!

∏
{j|Xj )=2} kj !




∏

{j|Xj=0}

β
kj

j 4−βj



Πd
X .
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So to get a multinomial of multi-degree (i1, . . . , in), different choices can be made
for the kj ’s.

• If Xj = 0, then we must take kj = ij . This happens for 1 ≤ j ≤ n.

• If Xj = 1, then we can take any kj ≥ min(ij − 1, 0) and take into account the
correct coefficient in Πd

X . This happens for 1 ≤ j ≤ d

• If Xj = 2, then there is no choice to make. This happens for m + 1 ≤ j ≤ d.

In the following sum, we gathered the contributions of all X’s. We denote by I
the set of indices m + 1 ≤ j ≤ n such that Xj = 0, 1 (the other ones are such that
Xj = 2) and by J the set of indices n + 1 ≤ j ≤ d such that Xj = 1 (the other ones
are such that Xj = 2).

The summation variables kj where j is in I ∪J or [1,m] are to be understood as
the degree we choose in the above expression of Ξd

X . Following the above discussion
on the choice of the kj ’s:

• If j ∈ J , we can choose any positive degree kj and extract the constant
coefficient Akj .

• If j ∈ I, we can choose any positive degree kj and we extract the constant
coefficient Akj as above if kj > 0, and A0 − 3 if kj = 0 (the −3 comes from
the choice Xj = 0 which gives 1 = 3 · 1/3).

• Finally, if 1 ≤ j ≤ m, we have to choose kj ≥ ij − 1, and the corresponding
coefficient is 1

kj+1 = 1
ij

if kj = ij−1, 5/6−3 = −13/6 if kj = ij (as above the

−3 comes from the choice Xj = 0) and
(kj

ij

) (
Akj−ij +

Bkj−ij+1

kj−ij+1

)
if kj > ij .

We denote that coefficient by Dkj ,ij .

We denote by S and h the quantities S =
∑

j∈I∪J,1≤j≤m kj and h = d−m−|J |−|I|.
Then ad,n

(i1,...,in) can be expressed as

ad,n
(i1,...,in) = (−1)n+1

∑

I⊂{m+1,...,n}
J⊂{n+1,...,d}

∑

kj≥0,j∈I∪J
kj≥ij−1,1≤j≤m

S!∏
j∈I∪J kj !

∏m
j=1 kj !




∑

k≥1

2k

(h− k)!

[
h− k

S

]


∏

j∈J

Akj

∏

j∈I

(
Akj − 3kj=0

) m∏

j=1

Dkj ,ij .

Extracting the binomial coefficient of Dkj ,ij , we can factor out the multinomial
coefficient

( l
i1,...,in

)
(remember that l was defined as l =

∑n
j=1 ij):
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ad,n
(i1,...,in) = (−1)n+1

(
l

i1, . . . , in

) ∑

I⊂{m+1,...,n}
J⊂{n+1,...,d}

∑

kj≥0
j∈I∪J

kj≥ij−1
1≤j≤m

S!
l!




∑

k≥1

2k

(h− k)!

[
h− k

S

]



∏

j∈J

Akj

kj !

∏

j∈I

Akj − 3kj=0

kj !

m∏

j=1

Ckj−ij

|kj − ij |!
,

where

Cj =






Aj + Bj+1
j+1 if j > 0

−13
6 if j = 0

1 if j = −1
.

The exact values of I and J are not important, only their cardinalities are, so
defining I = {m + 1, . . . ,m + i} and J = {n + 1, . . . , n + j},

ad,n
(i1,...,in) = (−1)n+1

(
l

i1, . . . , in

) n−m∑

i=0

(
n−m

i

) d−n∑

j=0

(
d− n

j

) ∑

kj≥0,j∈I∪J
kj≥ij−1,1≤j≤m

S!
l!




∑

k≥1

2k

(h− k)!

[
h− k

S

]


∏

j∈J

Akj

kj !

∏

j∈I

Akj − 3kj=0

kj !

×
m∏

j=1

Ckj−ij

|kj − ij |!
.

We finally make the change of summation variables kj = kj − ij + 1:

ad,n
(i1,...,in) = (−1)n+1

(
l

i1, . . . , in

) n−m∑

i=0

(
n−m

i

) d−n∑

j=0

(
d− n

j

) ∑

kj≥0
j∈I∪J
1≤j≤m

(l + S −m)!
l!

×




∑

k≥1

2k

(h− k)!

[
h− k

l + S −m

]


∏

j∈J

Akj

kj !

∏

j∈I

Akj − 3kj=0

kj !

m∏

j=1

Ckj−1

|kj − 1|!

= (−1)n+1

(
l

i1, . . . , in

)
bd,n
l,m.

2.6. An Additional Relation

In this subsection we prove the following experimental fact.
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Proposition 11. For 0 < j ≤ i,

ad,n
(i,j,...) =

i + 1
j

ad,n
(i+1,j−1,...);

i.e., the value of bd,n
l,m does not depend on m.

Proof. From Proposition 10,

ad,n
(i1,...,in) = (−1)n+1

(
l

i1, . . . , in

)
bd,n
l,m,

where bd,n
l,m only depends on d, n, l and m. Therefore if j > 1, this value does not

vary and the theorem is a simple corollary of Proposition 10.
If there is some degree equal to zero in (i, j, . . .), i.e., if n > m, then we can use

the result of Corollary 27:

ad,n
(i,j,...,0) + ad,n−1

(i,j,...) = 3ad−1,n−1
(i,j,...) ;

hence we can restrict ourselves to the study of tuples where n = m.
Finally, the only tuples we must treat are the ones such that i > j = 1 and

n = m. We write the degree i $= 0 in first position even if it not the greatest one.
Then

ad,n
(i,...,1) = (−1)n+1

(
l

i, . . . , 1

)
bd,n
l,n ,

ad,n
(i+1,...,0) = (−1)n+1

(
l

i + 1, . . . , 0

)
bd,n
l,n−1,

so it suffices to show that bd,n
l,n = bd,n

l,n−1.
We use the same notations as in Proposition 10 except that S and h denote the

quantities S = l +
∑

j∈I∪J,1≤j≤n−1 kj − n and h = d − n − j. For bd,n
l,n , I must be

empty:

bd,n
l,n =

d−n∑

j=0

(
d− n

j

) ∑

kj≥0,j∈J,1≤j≤n

(S + kn)!
l!

×




∑

k≥1

2k

(h− k)!

[
h− k
S + kn

]


∏

j∈J

Akj

kj !

n∏

j=1

Ckj−1

|kj − 1|!

=
d−n∑

j=0

(
d− n

j

) ∑

kj≥0,j∈J,1≤j≤n−1

1
l!

∏

j∈J

Akj

kj !

n−1∏

j=1

Ckj−1

|kj − 1|!

×
∑

kn≥0

(S + kn)!




∑

k≥1

2k

(h− k)!

[
h− k
S + kn

]

 Ckn−1

|kn − 1|! ;
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whereas for bd,n
l,n−1, I can contain n:

bd,n
l,n−1 =

1∑

i=0

(
1
i

) d−n∑

j=0

(
d− n

j

) ∑

kj≥0,j∈I∪J,1≤j≤n−1

(S + 1)!
l!

×




∑

k≥1

2k

(h + 1− k − i)!

[
h + 1− k − i

S + 1

]



×
∏

j∈J

Akj

kj !

∏

j∈I

Akj − 3kj=0

kj !

n−1∏

j=1

Ckj−1

|kj − 1|!

=
d−n∑

j=0

(
d− n

j

) ∑

kj≥0,j∈J,1≤j≤n−1

1
l!

∏

j∈J

Akj

kj !

n−1∏

j=1

Ckj−1

|kj − 1|!

×



(S + 1)!




∑

k≥1

2k

(h + 1− k)!

[
h + 1− k

S + 1

]



+
∑

kn≥0

(S + kn + 1)!




∑

k≥1

2k

(h− k)!

[
h− k

S + kn + 1

]

 Akn − 3kn=0

|kn − 1|!



 .

The sums on j and kj for j ∈ J and 1 ≤ j ≤ n− 1 are identical, so it is sufficient to
show the equality of the remaining terms, or that ∆ defined as

∆ =
∑

kn≥0

(S + kn)!
|kn − 1|!




∑

k≥1

2k

(h− k)!

[
h− k
S + kn

]

Ckn−1

− (S + 1)!




∑

k≥1

2k

(h + 1− k)!

[
h + 1− k

S + 1

]



−
∑

kn≥0

(S + kn + 1)!
|kn − 1|!




∑

k≥1

2k

(h− k)!

[
h− k

S + kn + 1

]

 (Akn − 3kn=0)

is zero. We split out the first two terms of the first sum indexed on kn:

S!




∑

k≥1

2k

(h− k)!

[
h− k

S

]

− 13
6

(S + 1)!




∑

k≥1

2k

(h− k)!

[
h− k
S + 1

]

 ,

and the first one of the second sum indexed on kn:

(S + 1)!




∑

k≥1

2k

(h− k)!

[
h− k
S + 1

]


(

1
3
− 3

)
,
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so that ∆ becomes

∆ =
∑

kn≥2

(S + kn)!
|kn − 1|!




∑

k≥1

2k

(h− k)!

[
h− k
S + kn

]


(

Akn−1 +
Bkn

kn

)

+ S!




∑

k≥1

2k

(h− k)!

[
h− k

S

]

 +
1
2
(S + 1)!




∑

k≥1

2k

(h− k)!

[
h− k
S + 1

]



− (S + 1)!




∑

k≥1

2k

(h + 1− k)!

[
h + 1− k

S + 1

]

 −
∑

kn≥1

(S + kn + 1)!
|kn − 1|!

×




∑

k≥1

2k

(h− k)!

[
h− k

S + kn + 1

]

 Akn .

Making the change of summation variable kn = kn + 1 in the second sum on kn,
the terms in Akn cancel out between the two sums on kn and we get

∆ =
∑

kn≥2

(S + kn)!
kn!




∑

k≥1

2k

(h− k)!

[
h− k
S + kn

]

Bkn + B0S!




∑

k≥1

2k

(h− k)!

[
h− k

S

]



+B1(S + 1)!




∑

k≥1

2k

(h− k)!

[
h− k
S + 1

]

−(S + 1)!




∑

k≥1

2k

(h + 1− k)!

[
h + 1− k

S + 1

]



=
∑

kn≥0

(S + kn)!
kn!




∑

k≥1

2k

(h− k)!

[
h− k
S + kn

]

Bkn

− (S + 1)!




∑

k≥1

2k

(h + 1− k)!

[
h + 1− k

S + 1

]



= S!
∑

k≥1

2k

(h− k)!




∑

kn≥0

(
S + kn

S

)
Bkn

[
h− k
S + kn

]



− (S + 1)!




∑

k≥1

2k

(h + 1− k)!

[
h + 1− k

S + 1

]



= S!
∑

k≥1

2k

(h− k)!




∑

kn≥0

(
S + kn

S

)
Bkn

[
h− k
S + kn

]
− S + 1

h + 1− k

[
h + 1− k

S + 1

]

 .

The difference in parenthesis is shown to be zero using Lemma 31, so that ∆ = 0.

Lemma 31. For n ≥ k ≥ 0,
n−k∑

l=0

(
k + l

k

)
Bl

[
n

k + l

]
=

k + 1
n + 1

[
n + 1
k + 1

]
.
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Proof. Let us fix k ≥ 0. We first recall classical results about exponential generating
functions:

∑

n≥0

Bn
zn

n!
=

z

1− e−z
,

∑

n≥0

[
n
k

]
zn

n!
=

(− log(1− z))k

k!
.

We now form the exponential generating function of the coefficients of interest:

∑

n≥0

(
n∑

l=k

(
l

k

)
Bl−k

[
n
l

])
zn

n!
=

∑

l≥k

∑

n≥l

(
l

k

)
Bl−k

[
n
l

]
zn

n!
=

∑

l≥k

(
l

k

)
Bl−k

∑

n≥l

[
n
l

]
zn

n!

=
∑

l≥k

(
l

k

)
Bl−k

(− log(1− z))l

l!

=
(− log(1− z))k

k!

∑

l≥k

Bl−k
(− log(1− z))l−k

(l − k)!

=
(− log(1− z))k

k!

∑

l≥0

Bl
(− log(1− z))l

l!

=
(− log(1− z))k

k!
− log(1− z)
1− elog(1−z)

=
k + 1

z

(− log(1− z))k+1

(k + 1)!

=
k + 1

z

∑

n≥0

[
n

k + 1

]
zn

n!
=

∑

n≥0

k + 1
n + 1

[
n + 1
k + 1

]
zn

n!
,

whence the identity of the lemma.

3. Asymptotic Behavior

In this section, we study the behavior of Pt,k = fd(β1, . . . ,βd) when a given number
of βi’s go to infinity. To this end, we take advantage of its probabilistic nature
which is described by Proposition 6.

Proposition 6. We have

Pt,k = P

[
∑

d

γ′ <
∑

d

δ′
]

.
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In Subsection 3.1, we study the case where all of the βi’s go to infinity and give
useful closed-form expressions for the limit towards which it converges, as well as
the behavior of this limit. In Subsection 3.2, we consider a more general setting and
give relations involving the limit of fd when a βi is set to 1 while the other ones go
to infinity.

3.1. The Limit fd(∞, . . . , ∞)

We denote the limit of fd when all the βi’s go to infinity by fd(∞, . . . ,∞). The
expression of fd given in Proposition 9 shows that this value is well defined and is
nothing but the constant term P 0

d in that expression.
In this subsection we give several expressions involving Gaussian hypergeometric

series which are defined as follows [1, Formula 15.1.1].

Definition 32. The Gaussian hypergeometric series 2F1(a, b; c; z) is

2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n

zn

n!
,

where c $∈ −N and (x)n = x(x+1)(x+2) · · · (x+n− 1) is the Pochhammer symbol
and represents the rising factorial.

It should be first remarked that, as all the βi’s go to infinity, the probability
distributions of the γ′i’s and the δ′i’s converge towards the distributions of inde-
pendent geometrically distributed variables with parameter 1/2. From now on
let G1, . . . , Gd and H1, . . . ,Hd be 2d such independent random variables. Then
Pt,k = P [

∑
γ′ <

∑
δ′] converges towards

P

[
d∑

i=1

Gi <
d∑

i=1

Hi

]
=

1
2

(
1− P

[
d∑

i=1

Gi =
d∑

i=1

Hi

])
.

This quantity is obviously strictly lower than 1/2 for any d > 0 and the above
discussion therefore proves that the conjecture is asymptotically true.

We now look for an explicit expression of this limit.

Definition 33. Let Xd be the random variable

Xd =
d∑

i=1

Gi −
d∑

i=1

Hi,

and let Pd denote
Pd = P [Xd = 0] .
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With these notations,

fd(∞, . . . ,∞) = P 0
d =

1
2
(1− Pd),

whence the importance of the random variable Xd.
First, it is readily seen that Xd is symmetric, i.e., P [Xd = k] = P [Xd = −k]. So

studying P [Xd = k] for k a positive integer is sufficient.
Second, to get an explicit expression for P [Xd = k], we need the following easy

lemma giving the probability mass function of a sum of d independent geometrically
distributed variables with parameter 1/2.

Lemma 34. For j ≥ 0,

P

[
d∑

i=1

Gi = j

]
=

(
d− 1 + j

d− 1

)
1

2j+1
.

It is then possible to express P [Xd = k] as a hypergeometric series.

Proposition 35. For d ≥ 1 and k ≥ 0,

P [Xd = k] =
1
4d

1
2k

∞∑

j=0

(
d− 1 + j

d− 1

)(
d− 1 + k + j

d− 1

)
1
4j

=
1
4d

1
2k

(
d− 1 + k

d− 1

)
2F1(d, d + k; k + 1; 1/4),

so that

Pd = P [Xd = 0] =
1
4d

∞∑

j=0

(
d− 1 + j

d− 1

)2 1
4j

=
1
4d 2F1(d, d; 1; 1/4).

In particular 1
3d ≤ Pd ≤ 1+3·2d−2

4d . Moreover P1 = 1/3 and P2 = 5/27.

Proof. To get the expression of P [Xd = k] as a power series, the idea is to split it
according to the value of one of the two sums of d random variables (the value of
the other sum is then also fixed) and to use the above lemma:

P [Xd = k] =
∞∑

j=0

P

[
d∑

i=1

Gi = j

]
P

[
d∑

i=1

Hi = j + k

]

=
∞∑

j=0

P

[
d∑

i=1

Gi = j

]
P

[
d∑

i=1

Hi = j + k

]

=
1
4d

1
2k

∞∑

j=0

(
d− 1 + j

d− 1

)(
d− 1 + k + j

d− 1

)
1
4j

.
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This power series is easily seen to be equal to

1
4d

1
2k

(
d− 1 + k

d− 1

)
2F1(d, d + k; k + 1; 1/4).

Setting k = 0 in the above expressions gives

Pd = P [Xd = 0] =
1
4d

∞∑

j=0

(
d− 1 + j

d− 1

)2 1
4j

=
1
4d 2F1(d, d; 1; 1/4).

This power series can be bounded from below by

1
4d

∞∑

j=0

(
d− 1 + j

d− 1

)
1
4j

=
1
4d

1
(1− 1/4)d

=
1
3d

,

and from above by

1
4d



1 +
∞∑

j=1

(
d− 1 + j

d− 1

)
2d−2+j

4j



 =
1
4d

+
2d−2

4d

∞∑

j=0

(
d− 1 + j

d− 1

)
1
2j
− 2d−2

4d

=
1 + 4d−1 − 2d−2

4d
=

1 + 3 · 2d−2

4d
.

which gives the desired inequality.
Finally, if d = 1, then

(d−1+j
d−1

)
= 1, so that the sum becomes

P1 =
1
4

1
1− 1/4

=
1
3
;

and if d = 2, then
(d−1+j

d−1

)
= j + 1, so that

P2 =
1
42

∞∑

j=0

(j + 1)2

4j
=

1
4

∞∑

j=0

j2

4j

=
1
4

(
2 1

42
(
1− 1

4

)3 +
1
4(

1− 1
4

)2

)

=
2
27

+
1
9

=
5
27

.

When the number of blocks, d, goes as well to infinity, fd(∞, . . . ,∞) converges
towards 1/2. Indeed 1

3d ≤ Pd ≤ 1
4d + 3

4
1
2d converges towards 0 as d goes to infinity.

As we show below, it does so monotonically so that fd(∞, . . . ,∞) goes to 1/2
monotonically as well.

A first step towards proving the monotonicity of Pd in d is to study the spe-
cial case d = 1. In this case the value P [X1 = k] has indeed a short closed-form
expression.
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Lemma 36. For d = 1,

P [X1 = k] =
1

3 · 2|k| .

Proof. Indeed, for k ≥ 0,

P [X1 = k] = P [G1 = k + H1] =
∞∑

i=0

P [G1 = i]P [H1 = k + i]

=
∞∑

i=0

1
2i+1

1
2k+i+1

=
1

2k+2

∞∑

i=0

1
4i

=
1

2k+2

4
3

=
1
3

1
2k

.

In the general case d ≥ 1, it can also be proven quite directly that the maximal
value of P [Xd = k] is attained for k = 0.

Lemma 37. For d ≥ 1 and k $= 0, we have P [Xd = k] < P [Xd = 0] .

Proof. Consider the real Hilbert space H = l2(Z, R) of square summable sequences.
It is equipped with norm-preserving translation operators τk defined by (τku)j =
uj+k for a sequence u = (uj)j∈Z ∈ H. Consider now the sequence u(d) ∈ H defined
by

u(d)
j = P

[
d∑

i=1

Gi = j

]
= P

[
d∑

i=1

Hi = j

]

whose exact values are given in Lemma 34 for j ≥ 0, and u(d)
j = 0 for j < 0.

Then, as shown at the beginning of the proof of Proposition 35, we have

P [Xd = k] =
∞∑

j=0

P

[
d∑

i=1

Gi = j

]
P

[
d∑

i=1

Hi = j + k

]
= 〈u(d), τku(d)〉

where 〈·, ·〉 is the scalar product of H. We now use the Cauchy-Schwarz inequality
and the fact that τk is norm-preserving to conclude:

P [Xd = k] = 〈u(d), τku(d)〉<
√
〈u(d), u(d)〉〈τku(d), τku(d)〉 = 〈u(d), u(d)〉 = P [Xd = 0]

(We remark the Cauchy-Schwarz inequality is strict here because u(d) and τku(d)

are not proportional when k $= 0.)

Combining Lemmas 36 and 37, we get the monotonicity of Pd in d.

Proposition 38. For d ≥ 1, we have Pd > Pd+1.
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Proof. We have

Pd+1 = P [Xd+1 = 0] = P [X1 + Xd = 0]

=
+∞∑

k=−∞
P [X1 = −k]P [Xd = k]

=
+∞∑

k=−∞

1
3 · 2|k| P [Xd = k]

<
+∞∑

k=−∞

1
3 · 2|k| P [Xd = 0]

< P [Xd = 0] = Pd.

Corollary 39. fd(∞, . . . ,∞) converges monotonically towards 1
2 as d goes to in-

finity.

Now that P [Xd = k] has been expressed as a Gaussian hypergeometric series,
we can use classical transformations to obtain other closed-form expressions for it.
Here is a first example.

Proposition 40. We have

P [Xd = k] =
2k

32d+2k

(
d− 1 + k

d− 1

)
2F1(k + 1/2, d + k; 2k + 1; 8/9),

= 3−2d
∞∑

j=k

(
d− 1 + j

j

)(
2j

k + j

)
2j3−2j .

Proof. It follows directly from the quadratic transformation [1, Formula 15.3.27]:

2F1(a, b; a− b + 1; z) = (1 +
√

z)−2a
2F1

(
a, a− b +

1
2
; 2a− 2b + 1;

4
√

z

(1 +
√

z)2

)
,

valid for |z| < 1. We obtain the following expression where we shift the summation
index j by k.

P [Xd = k] =
2k

32d+2k

∞∑

j=0

(
d− 1 + k + j

d− 1

)(
2k + 2j

j

)
2j3−2j

= 3−2d
∞∑

j=k

(
d− 1 + j

j

)(
2j

k + j

)
2j3−2j .

This expression is interesting because it can be used to strengthen Proposition 37.
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Corollary 41. For d ≥ 1, Xd follows a unimodal distribution centered in 0, i.e.,
P [Xd = k] grows for k ≤ 0 and decreases for k ≥ 0.

Proof. Indeed, P [Xd = k] is an even function of k and for fixed j ≥ 0 and k ≥ 0
each summand of the expression given in the proposition decreases as k grows.

Moreover, specializing this expression at k = 0 yields an expression for Pd where
d appears only twice.

Corollary 42. For d ≥ 1,

Pd = 3−2d
∞∑

j=0

(
d− 1 + j

j

)(
2j
j

)
2j3−2j .

Finally, we give the other closed-form expressions for P [Xd = k] which can be
deduced using linear transformations. They are of particular interest for actual
computation because they express P [Xd = k] as a finite sum.

Proposition 43. For d ≥ 1 and 0 ≤ k,

1.

P [Xd = k] =
4d−1

2k32d−1

(
d− 1 + k

d− 1

)
2F1(k + 1− d, 1− d; k + 1; 1/4)

=

{
2k

32d−1

∑d−1−k
j=0

(d−1−k
j

)(d−1+k
j+k

)
4j if 0 ≤ k ≤ d− 1

4d−1

2k32d−1

∑d−1
j=0(−1)j

(d−1+k
k+j

)(k−d+j
k−d

)
4−j if d− 1 < k

;

2.

P [Xd = k] =
2k

3d+k

(
d− 1 + k

d− 1

)
2F1(k + 1− d, k + d; k + 1;−1/3)

=

{
2k

3d+k

∑d−1−k
j=0

(d−1+k+j
d−1

)(d−1−k
j

)
3−j if 0 ≤ k ≤ d− 1

2k

3d+k

∑∞
j=0(−1)j

(d−1+k+j
d−1

)(k−d+j
k−d

)
3−j if d− 1 < k

;

3.

P [Xd = k] =
1

2k3d

(
d− 1 + k

d− 1

)
2F1(d, 1− d; k + 1;−1/3)

=
1

2k3d

d−1∑

j=0

(
d− 1 + j

d− 1

)(
d− 1 + k

k + j

)
3−j .
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Proof. The first expression comes from Euler’s transformation [1, Formula 15.3.3]:

2F1(a, b; c; z) = (1− z)c−a−b
2F1(c− a, c− b; c; z).

The second one from Pfaff’s transformation [1, Formula 15.3.5]:

2F1(a, b; c; z) = (1− z)−b
2F1(c− a, b; c; z/(z − 1)).

The third one from the other Pfaff’s transformation [1, Formula 15.3.4]:

2F1(a, b; c; z) = (1− z)−a
2F1(a, c− b; c; z/(z − 1)).

Setting k = 0 in the above expressions yields expressions for Pd as finite sums.

Corollary 44. For d ≥ 1,

Pd =
1

32d−1 2F1(1− d, 1− d; 1; 4) =
1

32d−1

d−1∑

j=0

(
d− 1

j

)2

4j

=
1
3d 2F1(1− d, d; 1;−1/3) =

1
3d

d−1∑

j=0

(
d− 1 + j

d− 1

)(
d− 1

j

)
3−j .

It can be verified, in an elementary way, that both of these expressions for Pd

are actually equal by writing 4 = 1 + 3 in the first one, developing the power using
the binomial theorem, and using the identity

(
2n + k

n + k

)
=

n∑

j=0

(
n

j

)(
n + k

j + k

)
,

which is a special case of the Chu-Vandermonde identity.

3.2. The Limit fd(1, ∞, . . . , ∞)

In the previous subsection we studied the behavior of Pt,k = fd(β1, . . . ,βd) as all
the βi’s go to infinity. We will now fix a subset of them to 1 and let the other ones
go to infinity. As was the case in the previous subsection, the expression of fd given
in Proposition 9 shows that such limits are well-defined.

Recall the distribution probability for ε′i = γ′i + βi − δ′i given by Proposition 7.

Proposition 7. For ei ≥ 0,

P (ε′i = ei) =






2−βi if ei = 0,
2−βi

3 (2ei − 2−ei) if 0 < ei < βi,
2βi−2−βi

3 2−ei if βi ≤ ei.
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Therefore, if we set βi = 1 and let αi go to infinity for some i ∈ {1, . . . , d}, Propo-
sition 7 shows that ε′i has a similar behavior to those of γ′i and δ′i: its probability
distribution converges towards the distribution of an independent geometrically dis-
tributed variable with parameter 1/2. Then we have a probabilistic interpretation
for

lim
βj→∞,j>i

fd(
i︷ ︸︸ ︷

1, . . . , 1,

d−i︷ ︸︸ ︷
βi+1, . . . ,βd),

which we denote by fd(
i︷ ︸︸ ︷

1, . . . , 1,
d−i︷ ︸︸ ︷

∞, . . . ,∞).
As in the previous subsection, let G1, . . . , Gd and H1, . . . ,Hd be 2d independent

geometrically distributed variables with parameter 1/2 and Xk denote the random
variable Xk =

∑k
j=1 Gj −

∑k
j=1 Hj . Then

fd(
i︷ ︸︸ ︷

1, . . . , 1,
d−i︷ ︸︸ ︷

∞, . . . ,∞) = lim
βj→∞,j>i

P

[
∑

d

γ′ <
∑

d

δ′
]

= lim
βj→∞,j>i

P

[
∑

i

ε′ +
∑

d−i

γ′ < i +
∑

d−i

δ′
]

= P




d∑

j=1

Gj < i +
d−i∑

j=1

Hj





= P



Xd−i +
d∑

j=i+1

Gj < i



 .

The first few values of such expressions computed using the closed-form expression
of fd described in Section 2 are given in Table 3.

i = d d− 1 . . .
d = 1 1/2 1/3
d = 2 1/2 4/9 11/27
d = 3 1/2 101/216 4/9 35/81
d = 4 1/2 619/1296 112/243 328/729 971/2187
d = 5 1/2 15029/31104 10969/23328 112/243 2984/6561 8881/19683
d = 6 1/2 90829/186624 2777/5832 1024/2187 9104/19683 9028/19683 2993/6561

Table 3: fd(1, . . . , 1,∞, . . . ,∞) for d ≥ 1

Using this probabilistic interpretation, it is possible to express fd(1,∞, . . . ,∞)
using fd(∞, . . . ,∞) = P 0

d = 1/2(1 − Pd), and so to compute it using the short
closed-form expressions of the previous subsection.



INTEGERS: 12 (2012) 39

Proposition 45. For d ≥ 2,

fd(1,∞, . . . ,∞) =
3
2
fd(∞, . . . ,∞)− 1

2
fd−1(∞, . . . ,∞).

Proof. We equivalently show that

fd(∞, . . . ,∞) =
1
3
fd−1(∞, . . . ,∞) +

2
3
fd(1,∞, . . . ,∞),

i.e., written in a probabilistic way:

P [0 < Xd] =
1
3
P [0 < Xd−1] +

2
3
P [Xd−1 < 1−Gd] .

The first step is then to split Xd as Xd = Xd−1 +X1 in the left side of that equality.

P [0 < Xd] = P [0 < Xd−1 + X1] =
+∞∑

i=−∞
P [X1 = i]P [−i < Xd−1]

=
1
3
P [0 < Xd−1] +

1
3

∞∑

i=1

1
2i

(P [i < Xd−1] + P [−i < Xd−1])

=
1
3
P [0 < Xd−1] +

1
3

∞∑

i=1

1
2i

(P [i < Xd−1] + P [Xd−1 < i])

=
1
3
P [0 < Xd−1] +

1
3

∞∑

i=1

1
2i

(P [Xd−1 $= i])

=
1
3
P [0 < Xd−1] +

1
3

∞∑

i=1

1
2i

(1− P [Xd−1 = i])

=
1
3
P [0 < Xd−1] +

1
3

(
1−

∞∑

i=1

1
2i

P [Xd−1 = i]

)
.

Injecting this equality back into the original one, it is then enough to show that

2P [Xd−1 < 1−Gd] = 1−
∞∑

i=1

1
2i

P [Xd−1 = i] ,

which is proved by splitting the left term of the equality according to the value of
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Gd:

P [Xd−1 < 1−Gd] =
∞∑

i=0

1
2i+1

P [Xd−1 < 1− i]

=
1
2
P [Xd−1 < 1] +

1
4

∞∑

i=0

1
2i

P [Xd−1 < −i]

=
1
2

(1− P [1 ≤ Xd−1]) +
1
4

∞∑

i=0

1
2i

P [i < Xd−1]

=
1
2
− 1

2

∞∑

i=1

P [Xd−1 = i] +
1
4

∞∑

i=1




i−1∑

j=0

1
2j



P [Xd−1 = i]

=
1
2
− 1

2

∞∑

i=1

P [Xd−1 = i] +
1
2

∞∑

i=1

(
1− 1

2i

)
P [Xd−1 = i]

=
1
2
− 1

2

∞∑

i=1

1
2i

P [Xd−1 = i] .

As a corollary of the above equality and of the monotonicity of Pd, we deduce
the following inequality.

Corollary 46. For d ≥ 2, fd(1,∞, . . . ,∞) > fd(∞,∞, . . . ,∞).
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4. Appendix: Coefficients of fd

In the following tables, 4n means an exponential where the exponent is the opposite
of the sum of n different βi’s. The following n-tuples indicate the multi-exponent of
the monomial and the corresponding coefficient. The total degree of the multivariate
polynomial is exactly d− 1, except for n = 0. The omitted coefficients are obtained
from the previous ones by permuting the βi’s. These coefficients were obtained
using Sage [7], Pynac [10] and Maxima [9].

4ˆ 1 4ˆ 0
(0, ) 2 () 1

Table 4: d = 1,(1/3) = (1/31)∗

4ˆ 2 4ˆ 1 4ˆ 0
(1, 0) −2 (1, ) 2
(0, 0) 20/3 (0, ) −2/3 () 11/3

Table 5: d = 2, (1/9) = (1/32)∗

4ˆ 3 4ˆ 2 4ˆ 1 4ˆ 0
(2, 0, 0) 1 (2, 0) −1 (2, ) 1
(1, 1, 0) 2 (1, 1) −2
(1, 0, 0) −11 (1, 0) 5 (1, ) 1
(0, 0, 0) 64/3 (0, 0) −4/3 (0, ) −2/3 () 35/3

Table 6: d = 3, (1/27) = (1/33)∗
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4ˆ 4 4ˆ 3 4ˆ 2 4ˆ 1 4ˆ 0
(3, 0, 0, 0) −1/3 (3, 0, 0) 1/3 (3, 0) −1/3 (3, ) 1/3
(2, 1, 0, 0) −1 (2, 1, 0) 1 (2, 1) −1
(1, 1, 1, 0) −2 (1, 1, 1) 2
(2, 0, 0, 0) 23/3 (2, 0, 0) −14/3 (2, 0) 5/3 (2, ) 4/3
(1, 1, 0, 0) 46/3 (1, 1, 0) −28/3 (1, 1) 10/3
(1, 0, 0, 0) −416/9 (1, 0, 0) 119/9 (1, 0) 16/9 (1, ) 11/9
(0, 0, 0, 0) 1808/27 (0, 0, 0) −80/27 (0, 0) −28/27 (0, ) −26/27 () 971/27

Table 7: d = 4, (1/81) = (1/34)∗

4ˆ 5 4ˆ 4 4ˆ 3 4ˆ 2 4ˆ 1 4ˆ 0
(4, 0, 0, 0, 0) 1/12 (4, 0, 0, 0) −1/12 (4, 0, 0) 1/12 (4, 0) −1/12 (4, ) 1/12
(3, 1, 0, 0, 0) 1/3 (3, 1, 0, 0) −1/3 (3, 1, 0) 1/3 (3, 1) −1/3
(2, 2, 0, 0, 0) 1/2 (2, 2, 0, 0) −1/2 (2, 2, 0) 1/2 (2, 2) −1/2
(2, 1, 1, 0, 0) 1 (2, 1, 1, 0) −1 (2, 1, 1) 1
(1, 1, 1, 1, 0) 2 (1, 1, 1, 1) −2
(3, 0, 0, 0, 0) −59/18 (3, 0, 0, 0) 41/18 (3, 0, 0) −23/18 (3, 0) 5/18 (3, ) 13/18
(2, 1, 0, 0, 0) −59/6 (2, 1, 0, 0) 41/6 (2, 1, 0) −23/6 (2, 1) 5/6
(1, 1, 1, 0, 0) −59/3 (1, 1, 1, 0) 41/3 (1, 1, 1) −23/3
(2, 0, 0, 0, 0) 161/4 (2, 0, 0, 0) −69/4 (2, 0, 0) 13/4 (2, 0) 7/4 (2, ) 9/4
(1, 1, 0, 0, 0) 161/2 (1, 1, 0, 0) −69/2 (1, 1, 0) 13/2 (1, 1) 7/2
(1, 0, 0, 0, 0) −9421/54 (1, 0, 0, 0) 1933/54 (1, 0, 0) 209/54 (1, 0) 79/54 (1, ) 119/54
(0, 0, 0, 0, 0) 16832/81 (0, 0, 0, 0) −560/81 (0, 0, 0) −160/81 (0, 0) −92/81 (0, ) −142/81 () 8881/81

Table 8: d = 5, (1/243) = (1/35)∗


