Galois descent for vector spaces in half a page

Hugues Randriam

September 1, 2019

Let L/K be a finite Galois extension, of degree n and Galois group G = $\{\sigma_1,\ldots,\sigma_n\}$. Let V be a finite dimensional L-vector space equipped with a skew-linear action of G, which means $\sigma(lv) = \sigma(l)\sigma(v)$ for all $\sigma \in G$, $l \in L$, $v \in V$. Let $V^G \subseteq V$ be the K-subspace of vectors fixed by G.

Theorem 1. Under these hypotheses, the natural L-linear map

$$V^G \otimes_K L \longrightarrow V$$

compatible with the action of G, is an isomorphism.

Proof. By linear independence of characters and equality of dimension, the map

$$\begin{array}{cccc}
L \otimes_K L & \longrightarrow & L^n \\
x \otimes y & \longmapsto & (x\sigma_1(y), \dots, x\sigma_n(y))
\end{array}$$

is an isomorphism. Thus we can find $x_1, \ldots, x_n, y_1, \ldots, y_n \in L$ such that

$$\sum_{i} x_i y_i = 1,$$
 $\sum_{i} x_i \sigma(y_i) = 0$ for $\sigma \neq id$.

For any $v \in V$ we then have

$$v = \sum_{\sigma \in G} \sum_{i} x_i \sigma(y_i) \sigma(v) = \sum_{i} x_i \sum_{\sigma \in G} \sigma(y_i v).$$

Since $\sum_{\sigma \in G} \sigma(y_i v) \in V^G$, this shows V is generated by V^G over L. From this we conclude. Pick $u_1, \ldots, u_N \in V^G$ that form a basis of V over L. Let $U \subseteq V^G$ be their K-linear span, so u_1, \ldots, u_N also form a basis of U over K, and we have a natural L-linear G-compatible isomorphism

$$U \otimes_K L \xrightarrow{\sim} V.$$

But then we get $U = (U \otimes_K L)^G = V^G$, which finishes the proof.