
Introduction to Computer Architecture: exam

R. Pacalet

2022-12-01

The text in black is the original one. The text in red is examples of the expected
correct answers. Only this text was expected, possibly in shorter form, nothing
more. The text in blue is extra comments about the expected correct answers.
Warning: the course changes frequently (content, vocabulary, examples. . .); some
questions and answer proposals can thus be partly or completely out of scope.
Warning: some questions can be answered in many different ways; the proposed
answers are just examples and they are not exhaustive.

You can use any document but communicating devices are strictly forbidden.
Please number the different pages of your paper and indicate on each page your
first and last names. You can write your answers in French or in English, as you
wish. Precede your answers with the question’s number. If some information
or hypotheses are missing to answer a question, add them. If you consider a
question as absurd and thus decide to not answer, explain why. If you do not
have time to answer a question but know how to, briefly explain your ideas.
Note: copying verbatim the slides of the lectures or any other provided material
is not considered as a valid answer. Advice: quickly go through the document
and answer the easy parts first.

1 CMOS logic (2.5 points)
The baz logic gate has two inputs A and B, one output X and the following CMOS
schematic:

A BX

Figure 1: The baz logic gate

1. Write its truth table.

1

2. Write the boolean equation of the X output of baz using the NOT, AND and
OR operators and parentheses. Do not assume any precedence between the
boolean operators, use parentheses to make your equation non ambiguous.

3. Imagine a graphical symbol for baz and draw it.

1. The truth table is:

A B X
0 0 1
0 1 1
1 0 0
1 1 1

2. X = (NOT A) OR B.

3. Using the style seen in class we could represent the baz gate as shown on
Figure 2.

XA
B

Figure 2: Symbol of the baz gate

2 RISC-V assembly (1 points)
1. Explain what an ABI is and what it is used for.

2. What difficulties could be encountered in a software project if no ABI was
agreed on by the developers?

1. An ABI (for Application Binary Interface) is a set of conventions that
compilation tool chains or assembly programmers use to guarantee the
proper behavior of software programs. It specifies the use of registers and
of the memory. For instance it defines what registers must be preserved
across function calls, what register is used to store the return address when
calling functions, what registers are used to pass arguments to functions
and to return results, what registers are used as stack pointer, frame
pointer. . .

2. Without an ABI it would not be possible for different software components
to cooperate. Component A could store arguments in some registers before
calling a function from component B while component B would expects
the arguments to be passed in other registers. Or component A and B
would use different stack pointers which would lead to memory corruption.
Another example of difficulties is that of the saved registers: component
A would expect a set of saved registers to be preserved across function
calls but a function implemented by component B would modify them and
preserve other registers.

2

3 CMOS logic (2.5 points)
The qux logic gate has 3 inputs A, B and C, one output X and the following truth
table:

A B C X
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

1. Draw the CMOS schematic of qux using only N and P transistors.
2. Write the boolean equation of the X output of qux using the NOT, AND and

OR operators and parentheses. Do not assume any precedence between the
boolean operators, use parentheses to make your equation non ambiguous.

3. Imagine a graphical symbol for qux and draw it.

1. We can observe that the qux output is 1 if and only if the C input is 0 and
at least one of A or B is also 0. This immediately gives the network of P
transistors between the power supply and the qux output: a P transistor
which grid is C in series with a group of 2 P transistors in parallel which
grids are A and B respectively. This way, if C is not 0 or if A and B are 1
there is no path between the power supply and the output, while in all
other circumstances there is such a path and the output is 1. As always
with CMOS logic the network of N transistors between the ground and the
qux output is dual of the network of P transistors: a N transistor which
grid is C in parallel with a group of 2 N transistors in series which grids
are A and B respectively. The CMOS schematic is represented on Figure 3.

B
A

C

B
C

X

Figure 3: CMOS schematic of the qux gate

2. X = (NOT C) AND ((NOT A) OR (NOT B)) = NOT (C OR (A AND B))

3. Using the style seen in class we could represent the qux gate as shown on
Figure 4.

3

X
A
B
C

Figure 4: Symbol of the qux gate

4 Arithmetic and Logical Unit (ALU) (5 points)
A 32-bits hardware microprocessor implements the RV32I Instruction Set Archi-
tecture (RISC-V 32 bits integer ISA, without extensions). We want to design
an ALU for this microprocessor, starting with a small subset of the various
operations. The ALU operates on two 32-bits input operands, A = a31 · · · a0
and B = b31 · · · b0, that can represent signed numbers in two’s complement,
unsigned numbers or anything else that fits on 32 bits (ASCII characters. . .). A
control input f selects the ALU operation. The ALU outputs a 32-bits result
S = s31 · · · s0 and three one bit flags, vs, vu and sgn. The vs, vu and sgn flags
are always equal to 0 except when the ALU operation is an addition and:

• if, considering the operands as signed numbers, there is an overflow vs
takes value 1.

• if, considering the operands as unsigned numbers, there is an overflow vu
takes value 1.

• if, considering the operands as signed numbers, the result is strictly negative
sgn takes value 1; important: even if there is an overflow, sgn must be
exact.

The functional specification of the ALU is summarized in Table 3.

Table 3: ALU functional specification

f ALU operation
0 addition (S ← A + B)
1 bitwise XOR (S ← A XOR B)

At the heart of the ALU there will 32 identical ael elements connected together
as shown on Figure 5. The ith ael receives one bit of the first ALU operand
(ai), one bit of the second ALU operand (bi), one carry input (ci) from the
previous ael (or 0 for the first ael), plus the control input f that selects the
ALU operation. It outputs a one bit result (si) and a carry output (ci+1). Inside
ael the inputs and outputs are named f , a, b, x, s and y, as shown on the
leftmost ael instance on Figure 5.

c31

s0

x y

f

0 ael ael ael
bfa

s

s1 si s31

a0 b31a31biaib1a1b0

c32
c1 c2 ci ci+1

Figure 5: 32-bits ALU

1. Write the truth tables of the s and y outputs of ael depending on its a, b,
x and f inputs.

4

2. Design the schematic of ael using only the logic gates and symbols of
Figure 6. Try to optimize your design such that it uses as few hardware as
possible.

3. Using the same logic gates and symbols design a circuit to compute the vs
flag. The inputs can be any signal of Figure 5.

4. Do the same for the vu flag.
5. Do the same for the sgn flag.

inverter 2-inputs AND 2-inputs OR 2-inputs XOR

2-inputs XNOR2-inputs NOR2-inputs NAND

constant 0 constant 1

connected

not connected
lines

lines

Figure 6: Logic gates and symbols

1. The y output of ael is meaningless when f = 1. We represent this in the
truth table with a - to indicate that any value would be fine.

f x a b y s

0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 0 1
0 0 1 1 1 0
0 1 0 0 0 1
0 1 0 1 1 0
0 1 1 0 1 0
0 1 1 1 1 1
1 0 0 0 - 0
1 0 0 1 - 1
1 0 1 0 - 1
1 0 1 1 - 0
1 1 0 0 - 0
1 1 0 1 - 1
1 1 1 0 - 1
1 1 1 1 - 0

2. The schematic of ael is shown on Figure 7. It is slightly optimized by
reusing the same XOR gate for the addition and bitwise XOR operations.

5

The y output is always that of the addition operation, even for the bitwise
XOR operation, because in this case we don’t care y while anything else
would cost extra hardware. It is computed as seen in class for the carry
output of a full adder: y = ((a XOR b) AND x) OR (a AND b).

The s output is computed as s = (a XOR b) XOR (x AND (NOT f)).
When f = 0 (addition), this simplifies as s = a XOR b XOR x, which is
indeed the equation of the sum bit of a full adder. When f = 1 (bitwise
XOR), this simplifies as s = a XOR b XOR 0 = a XOR b.

a

y

s

f

x

b

Figure 7: Schematic of the ael element

3. As seen in class the equation of the vs flag is vs = c31 XOR c32. The
schematic is thus as shown on Figure 8.

vsc32
c31

Figure 8: Schematic of the vs flag

4. The unsigned overflow flag vu is the output carry c32 itself. The schematic
is thus as shown on Figure 9 where the diamond symbol represents the
renaming.

vuc32

Figure 9: Schematic of the vu flag

5. The sign flag sgn is the same as the most significant bit of the 33 bits output
we would have if we were sign-extending the two inputs from 32 to 33 bits
(a32 = a31 and b32 = b31). This is thus sgn = a32 XOR b32 XOR c32 =
a31 XOR b31 XOR c32. The schematic is thus as shown on Figure 10.

5 RISC-V assembly (2 points)
In the following we use the RV32I Instruction Set Architecture (ISA) with the
Integer, Long and Pointer 32 bits (ILP32) Application Binary Interface (ABI).
Only basic instructions are allowed, pseudo-instructions are forbidden. We
assume that each executed instruction takes exactly one clock cycle.

1. Write in RV32I assembly language a function named foo that takes two
32-bits signed numbers as arguments denoted a and b, computes their sum

6

sgn
c32

a31
b31

Figure 10: Schematic of the sgn flag

s = a + b, their difference d = a− b and returns the bitwise exclusive or
s XOR d between the sum and the difference.

2. Assuming the input arguments are random and independent what is the
average number of clock cycles taken by your foo function?

3. Could you optimize it for speed? If yes propose a faster version and
calculate the new average number of clock cycles per foo execution.

1. The ABI specifies that the two arguments are passed in registers a0
(argument a) and a1 (argument b), that the result shall be returned in
register a0 and that the return address is in register ra. It also specifies
that we can freely use the t0 to t6 registers to store intermediate values
because they are not saved registers. The foo function could be written
as follows where we do not use the stack, store the sum in register t0 and
the difference in register t1:

1 f o o :
2 add t0 , a0 , a1 # t 0 <− a0+a1 (s <− a+b)
3 sub t1 , a0 , a1 # t 1 <− a0−a1 (d <− a−b)
4 xor a0 , t0 , t1 # a0 <− t 0 XOR t 1 (a0 <− s XOR d)
5 j a l r zero , 0 (ra) # r e t u r n a t ra , d i s c a r d PC+4

2. The number of clock cycles taken by the foo function is exactly 4.

3. There is no obvious way to optimize foo.

6 Binary representation of numbers (5 points)
Unless otherwise stated all given integer values are in base 10. Let A be an
integer and a8a7a6 · · · a1a0 its 2’s complement representation on 9-bits.

1. If A ≥ 0 what is the 10 bits sign and magnitude representation of A?
2. If A < 0 what is the 10 bits sign and magnitude representation of A?
3. What is the minimum number of bits to represent +67 in 2’s complement?
4. What is the minimum number of bits to represent -265 in 2’s complement?
5. What is the minimum number of bits to represent -1024 in 2’s complement?
6. What is the minimum number of bits to represent +128 in 2’s complement?
7. Write the 8 bits binary sign and magnitude representation of +67.
8. Write the 8 bits binary sign and magnitude representation of -102.
9. Write the 8 bits binary sign and magnitude representation of -96.

10. Write the 8 bits binary sign and magnitude representation of +125.

1. A = a9a8a7a6 · · · a1a0 with a9 = 0
2. A = b9b8b7b6 · · · b1b0 with b9 = 1 and b8b7b6 · · · b1b0 = a8a7a6 · · · a1a0 + 1

(we denote x the inverse of bit x)
3. 8 (−27 = −128 ≤ 67 ≤ 127 = 27 − 1 but 26 − 1 = 63 < 67)

7

4. 10 (−29 = −512 ≤ −265 ≤ 511 = 29 − 1 but −265 < −256 = −28)
5. 11 (−1024 = −210)
6. 9 (−28 = −256 ≤ 128 ≤ 255 = 28 − 1 but 27 − 1 = 127 < 128)
7. 6710 = 010000112 (67 = 64 + 2 + 1 = 26 + 21 + 20)
8. −10210 = 111001102 (102 = 64 + 32 + 4 + 2 = 26 + 25 + 22 + 21)
9. −9610 = 111000002 (96 = 64 + 32 = 26 + 25)

10. 12510 = 011111012 (125 = 64+32+16+8+4+1 = 26+25+24+23+22+20)

7 RISC-V assembly (2 points)
In the following we use the RV32I Instruction Set Architecture (ISA) with the
Integer, Long and Pointer 32 bits (ILP32) Application Binary Interface (ABI).
Only basic instructions are allowed, pseudo-instructions are forbidden. We
assume that each executed instruction takes exactly one clock cycle.

A programmer wrote the following assembly code for a function bar:

1 bar :
2 addi sp , sp , −32
3 sw s0 , 2 8 (sp)
4 addi s0 , sp , 3 2
5 sw ra , −4(s0)
6 lw t0 , 0 (a0)
7 lw t1 , 0 (a1)
8 andi t2 , a2 , 1
9 beq t2 , zero , l a b e l

10 addi t2 , zero , t0
11 addi t0 , zero , t1
12 addi t1 , zero , t2
13 l a b e l :
14 sw t0 , 0 (a0)
15 sw t1 , 0 (a1)
16 lw ra , −4(s0)
17 lw s0 , 2 8 (sp)
18 addi sp , sp , 3 2
19 j a l r zero , 0 (ra)

1. Explain what the input arguments and output results are and what the
bar function does.

2. Assuming the input arguments are random and independent what is the
average number of clock cycles taken by the bar function?

3. Do you think this code is correct? If not explain what is wrong with it
and write a new code with the errors fixed.

4. Could the code be optimized for speed? If yes propose a faster version and
calculate the new average number of clock cycles per bar execution.

1. bar takes 3 input parameters in registers a0, a1 and a2. a0 and a1 are
the addresses in memory of two 32-bits words. a2 is an integer value. bar
loads the two 32-bits words. It then swaps them if a2 is odd. Finally it
stores back the two 32-bits words in memory. There is no output result
(or, equivalently, the output results are the unmodified input parameters).

2. If a2 is even bar takes 14 clock cycles. If a2 is odd bar takes 17 clock
cycles. In average bar takes (14 + 17)/2 = 15.5 clock cycles.

8

3. The code is not correct because registers s0 and ra are saved at the same
position in the stack frame (if s0 = sp + 32, 28(sp) = -4(s0)). Storing
and restoring ra at address -8(s0) instead of -4(s0) suffices to fix the
bug:

1 bar :
2 addi sp , sp , −32
3 sw s0 , 2 8 (sp)
4 addi s0 , sp , 3 2
5 sw ra , −8(s0)
6 lw t0 , 0 (a0)
7 lw t1 , 0 (a1)
8 andi t2 , a2 , 1
9 beq t2 , zero , l a b e l

10 addi t2 , zero , t0
11 addi t0 , zero , t1
12 addi t1 , zero , t2
13 l a b e l :
14 sw t0 , 0 (a0)
15 sw t1 , 0 (a1)
16 lw ra , −8(s0)
17 lw s0 , 2 8 (sp)
18 addi sp , sp , 3 2
19 j a l r zero , 0 (ra)

4. The code could be optimized by not using the stack, by testing a2 first,
and with a smarter swap of the two 32-bits words:

1 bar :
2 andi t0 , a2 , 1
3 beq t0 , zero , l a b e l
4 lw t0 , 0 (a0)
5 lw t1 , 0 (a1)
6 sw t0 , 0 (a1)
7 sw t1 , 0 (a0)
8 l a b e l :
9 j a l r zero , 0 (ra)

The new average number of clock cycles is (3 + 7)/2 = 5.

9

	CMOS logic (2.5 points)
	RISC-V assembly (1 points)
	CMOS logic (2.5 points)
	Arithmetic and Logical Unit (ALU) (5 points)
	RISC-V assembly (2 points)
	Binary representation of numbers (5 points)
	RISC-V assembly (2 points)

