

Shape deformation

What is deformation ?

What is deformation ?

What is deformation ?

What is deformation ?

What is deformation ?

What is deformation ?

For today

● Direct manipulation of a surface (a shape is
deformed when a user grabs vertices and move
them)

● Deformation transfer (a shape is deformed
similarly to another shape)

● Shape interpolation (a shape is the result of a
blending of various poses)

● Mathematical properties of a deformation
function, powerful algorithms to solve difficult
and ill-defined problems

Manipulation of a MESH !!!

As-rigid-as-possible modelling

Why ARAP for today’s lesson ?

● State of the art for shape direct manipulation
● Will allow me to show you how to setup a linear

system (basics of numerical optimization)
● Will present the Procustes problem (basic

problem in geometry)

[Sorkine & Alexa] : As-Rigid-As-Possible Surface Modeling

Principle

● A few vertex positions are specified by the user
● The other vertices should be placed in « a

natural fashion »

Minimizing stretch (enforcing
rigidity)

● Physically « plausible »
● Impact on textures, stretch, volume

What is rigidity ?

● A small piece of the shape should be globally
rotated :

pi pi '

Ri

Rigidity energy

● A small piece of the shape should be globally
rotated :

pi pi '

Ri

ARAP framework

● Unknowns : New positions p’ AND rotations R
● Constraints : A few specified positions

Problem

● Unknowns : New positions p’ AND rotations R
● Highly NON-LINEAR and NON-CONVEX
● Minimizing R and p’ at the same time is not

feasible
● This is the rigidity energy alone, don’t forget to

add the handle energies !

Ad hoc solution

● Fix R, optimize p’
● Fix p’, optimize R
● Fix R, optimize p’
● ...

Ad hoc solution

● Fix R, optimize p’
● Fix p’, optimize R
● Fix R, optimize p’
● ...

Ad hoc solution

● Fix R, optimize p’
● Fix p’, optimize R
● Fix R, optimize p’
● ...

1) Fix R, optimize p’

● Linear system with p’ as unknowns
● Example on black board
● C++/Matlab : Cholmod, Eigen, ...
● Recall that ! Solving a linear system is the ABC

of numerical optimization !

2) Fix p’, optimize R

● Can be done per vertex i

2) Fix p’, optimize R

● Can be done per vertex i
● Minimize E(Ci, Ci’)

pi pi '

Ri

2) Fix p’, optimize R

∑ j
w j‖e j '−R .e j‖

2

∑ j
w j‖e j '−R .e j‖

2
=∑ j

w j‖e j '‖
2
+∑ j

w j‖R .e j‖
2
−2∑ j

w j (R .e j)
T .e j '

∑ j
w j‖e j '−R .e j‖

2
=const−2∑ j

w jTrace(R .e j . e j '
T
)

Trace (R .∑ j
w j e j . e j '

T)

S :=∑j
w j e j ' .e j

T

S :=U .Σ .V T

R :=U .diag(1,1 , det(U .V T)).V T

To minimize

To maximize

1) Build

2) Compute SVD :

3) Solution :

At this point

● You know how to setup a linear system
● You know how to solve the Procustes problem
● You can implement ARAP in c++ with a few

lines of code (something like 20 in Matlab)

Different flavours of ARAP

Surface ARAP Volume ARAP Surface ARAP, with
« smooth » rotations

[Levi & Gotsman] : Smooth Rotation Enhanced As-Rigid-As-Possible Mesh Animation

Deformation transfer

« Animation by example »

?
● Also called motion retargetting
● If skeletons are available, map the motion of one

skeleton to the other : easy
● What can you « transfer » if you only have surfaces ?

[Sumner & Popović] : Deformation Transfer for Triangle Meshes

Transfer « local gradients », or local
transformations

● Find transformation (3x3 matrix) of each triangle

● Transform similarly the triangles… but they are disconnected :(

● If you also transfer the translation… they are still disconnected :_(

● If you reconstruct the shape in the least-squares sense… magic happens

Seems familiar ? :)

● We just saw before, how one can reconstruct a
shape, is the local transformations around the
vertices are specified (ARAP)

● In the paper, they use a triangle-based
formulation, but it is similar in spirit

Triangle transformation

v1

v 2

v 3

v 4

Q ~v 1

~v 2

~v 3

~v 4

Vertex reconstruction

● Each triangle t should be oriented according to Q_t

● We need to « glue » the triangles (find the new vertex
positions v’)

● We minimize (for example) the energy :

∑t
‖(v ' t2

−v ' t1
)−Q t .(v t2

−v t1
)‖

2
+‖(v 't 3

−v 't 2
)−Qt .(v t 3

−v t 2
)‖

2
+‖(v 't 1

−v ' t3
)−Qt .(v t1

−v t3
)‖

2

It’s a linear system ! Again !

Don’t forget to specify one vertex position per component

Results

Results

Results

Results

Results

Similarities with Poisson editing

● Poisson problem on a mesh :

– Specify per-triangle gradients {g_i} of a per-vertex function f

– Reconstruct function f (linear system)

● Ex : specify gradients of x,y,z → similar to what we have seen :

– Gradients are computed on the target and source base meshes

– Transformations per triangle are computed just like before

– Gradients of x,y,z are transformed on the target mesh

– Positions can be recovered by integrating them

● More general : you can integrate plenty of different functions !

[Yu et al.] : Mesh Editing with Poisson-Based Gradient Field Manipulation

14

Gradient of a scalar function on a
triangle

● Scalar functions are interpolated linearly on the
triangles

p2

p1

p0

q

f2

f1

f0

f (q)=ϕ0(q). f 0+ϕ1(q). f 1+ϕ2(q) . f 2

(ϕ0(q) ,ϕ1(q) ,ϕ2(q))

Barycentric coordinates of q inside t!

Value of f at point q :

f (p0)=ϕ0(p0). f 0+ϕ1(p0) . f 1+ϕ2(p 0). f 2

f (p0)=1 . f 0+0 . f 1+0 . f 2

f (p0)=f 0

15

Gradient of a scalar function on a
triangle

● Gradients are constant inside a triangle, and
easy to compute

p2

p1

p0

q

f2

f1

f0

∇ f (q)=∇ ϕ0(q) . f 0+∇ ϕ1(q) . f 1+∇ ϕ2(q). f 2

Gradient of f at point q :

∇ f =∇ϕ0 . f 0+∇ ϕ1 . f 1+∇ϕ2 . f 2

Gradient is constant inside the triangle :

f (q)=ϕ0(q). f 0+ϕ1(q). f 1+ϕ2(q) . f 2

Value of f at point q :

16

Solving a Poisson equation on a
mesh

« Boundary » based deformations

Propagate smoothly the transformations (weighted by distance)
Solve Poisson equation.

Merging

Propagate smoothly the transformations (weighted by distance)
Solve Poisson equation.

Denoising

Filter normals.
Reconstruct mesh from the normals using Poisson equation.

Shape interpolation

Each triangle has k transformation matrices (for k meshes).
Interpolate these transformation matrices, then solve Poisson eq.

[Xu et al.] : Poisson Shape Interpolation

Problem with Poisson shape
interpolation

● Interpolating
transformations is ill-
posed

● Transformations are
simply not the right
quantity to interpolate !!!

● What is the right quantity
to interpolate ?

Shape interpolation

« Averaging 2 poses »

u=0 u=1u=0,5 u=0,75u=0,25

[Winkler et al.] : Multi-Scale Geometry Interpolation

« Averaging poses »

● K meshes with one-to-one vertex and edge
connectivity

● Interpolate dihedral angles (curvature)
● Interpolate edge lengths (metric)

u=0 u=1u=0,5

Extrapolation

U=-0,25 U=1,25u=0,5 u=1u=0

« Averaging K poses »

Geometrical construction

● Reconstruct small patches,
● Blend small patches to create bigger patches,
● Etc etc. (tedious, complex to implement, slow)

Algebraic construction

● Equip each triangle T with a local orthogonal
frame f = (a, b, n)

● Express the three edges in this basis (2
coordinates per edge in this basis)

n

a

b

v j

v i

v j−v i=α ij .a+βij .b

Inspired from [Wang et al.] : Linear Surface Reconstruction from Discrete Fundamental
Forms on Triangle Meshes

(
α ij

βij

0)=f t
T .(v j−v i)

● From dihedral angles, construct respective
orientation of adjacent triangles :

Algebraic construction

ni a i

bi n ja j

b j

e Rij=R z ((̂ai , e)) .Rx ((̂ni , n j)) .R z ((̂e ,a j))

Rij=f i
−1 . f j

Key property : orientation-insensitive

Frames from dihedral angles

E f = ∑
e=(t i∧t j)

‖R ij
T . f i

T
−f j

T
‖

2 ● Practical in this form (linear system)
● Unknowns are tranposed frames

‖A . X−B‖
2

E f = ∑
e=(t i∧t j)

‖f i .R ij−f j‖
2 ● Enforces preservation of transitions

● Not practical in this form
{Rij}

● Enforces preservation of transitions
● Not practical in this form

Rij
T −I

A

f 1
T

f 2
T

......

X B
I

0

0

f̄ 1
T

=
Add a line to fix global
orientation (one line per
component actually)

Setup equations for each
pair of adjacent triangles i,j

Linear system construction (each element is a 3x3 matrix) :

col i col j

● Computed from desired dihedral anglesRij=f i
−1 . f j

Positions from frames and edge lengths

Ep= ∑
t=(i , j , k)

‖(p j−pi)−
lij '
lij

(αij .at +βij .bt)‖
2

+ ... + ...

−I I

A

p1

p2

......

X B
I

r ij
(t) :=

lij '

lij
(αij .at+βij .bt)

r jk
(t)

p̄1

=
Add a line to fix global
position (one line per
component actually)

Setup 3 equations for each
triangle (i,j,k)

Linear system construction is straightforward

col i col j

New length

Encoded coeffsEncoded length

New frame Similar for edges jk and ki

rki
(t)

...

With and without frame
orthogonalization

● First solve for new frames in triangles, then for new positions
for vertices

● After solving the frames system, the variables are not rotation
matrices. Compare without and with orthonormalization :

Current research in Shape
Deformation

Conformal 3d surface deformations

Conformal 3d surface deformations

[Crane et al.] : Spin Transformations of Discrete Surfaces

Conformal 3d surface deformations

[Crane et al.] : Spin Transformations of Discrete Surfaces

Conformal 3d surface deformations

[Crane et al.] : Spin Transformations of Discrete Surfaces

Conformal 3d surface deformations

Conformal 3d surface deformations

[Vaxman et al.] : Conformal Mesh Deformations with Möbius Transformations

Bounded 3d volume distortion

Bounded 3d volume distortion

[Aigerman et al.] :Injective and Bounded Distortion Mappings in 3D

Shape interpolation using optimal
transport

Shape interpolation using optimal
transport

[Solomon et al.] :Convolutional Wasserstein Distances:
Efficient Optimal Transportation on Geometric Domains

Real-time ARAP

Real-time ARAP

[Wang et al.] :Linear Subspace Design for Real-Time Shape Deformation

Material design

Material design

[Xu et al.] :Nonlinear Material Design Using Principal Stretches

Physically-correct animations

Physically-correct animations

[Teng et al.] :Subspace Condensation: Full Space Adaptivity for Subspace
Deformations

So many more...

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 1
	Diapo 2
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18

