Spectral geometry on triangle
meshes



Harmonics and spectral filtering
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Harmonics and spectral filtering
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Strings harmonics = eigenvectors of unidimensional Laplacien
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Reminder : Laplacian of scalar

functions
)

~T

Note : You may see the version without 1/|v_i| here and
there. Once again, the version without is the integrated
operator (integrated over the area around vertex v_1), and

the version with is the point-wise operator.



Spectral decomposition

Takes scalars defined on vertices, computes the
Laplacian at each vertex

Vf(1) v 2

;((2; V f(O) L(i,j)_ 1 COt(aij>+COt(Bij>
Lli )= 101,

FIvI-1)] [Vr(vi-1)
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Spectral decomposition

Takes scalars defined on vertices, computes the
Laplacian at each vertex

f(0) | V*f(0) . . 1 cot(ay)+cot(By)
o v sty 2
' . - : L(i,i):—;L(i,j)
VI=1)] [V r(vi-1) |

c RV c RVIX!

Eigenvectors of Laplacian shoud be eigenvectors of L



Spectral decomposition

Takes scalars defined on vertices, computes the
Laplacian at each vertex

f(0) | V*f(0) . . 1 cot(ay)+cot(By)
o v ity 2
' . Bl : L(i,i):—;L(i,j)
VI=1)] [V r(vi-1) |

c RV c RVIX!

PROBLEM ! It is not symmetric : L(i,]) not = L(j,i)

Eigenvectors of L are not orthogonal



Spectral decomposition

N | COt(“ij)"'COt(Bij)
L=A"".L, L=
Lii.i)=-X L(i.)

Point-wise Laplacian

~ . . cotla;)+cot(f;
| L(1,j)= <2l reot(By
« Integrated » Laplacian : <
Lel(i,i)J==2, Leli, j)

Diagonal mass matrix : Ali,i)=]v|]



Spectral decomposition

« General » eigenvectors of : — LC. ). = 7\'1'A AP,

Low freq High freq

Pseudo-orthogonality : ;. A.y;=8/ (instead of V; .y, =9

C++ : arpack++ (used for the examples made here) , Eigen3
with Spectra 10



An orthogonal basis

« General » eigenvectors of :  —L_.y.=\ A .,

Pseudo-orthogonality : ;. A. ;=]

—={Yliisa good choice for decomposition : It is an orthonormal
basis. (choice seen in related works, not the most
obvious, see next)
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Decomposition

Given a function f on the vertices
F:=9.f=D_Wi(v,)f(v;) isitsi*th frequency.

f can be recovered from its frequencies (inverse transform) :

f:ZFilT)i
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Decomposition (probably more correct)

Given a function f on the vertices

Fi:=(ylf)= fll) dX IPI A.f isits i*th frequency.
f can be recovered from its frequencies (inverse transform) :
f:Z Fivp; o " .
| Py
A
fl1=|WoW;.. Y A.lf
| n n w;f_l ] h n
N ~ Y %/\/

Basis Dot product with Basis
(¢ .A.p=Id) Y v LALf
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Filtering

Given a function f on the vertices
F:=9.f=D_Wi(v,)f(v;) isitsi*th frequency.

Filter h can be applied on the frequencies: hofzz h(F;)p,

14



Filtering

Given a function f on the vertices
F:=9;.f=> 0(v,)f(v,) isits ith frequency.

Filter h can be applied on the frequencies: hof:Z h(F;)p,

°

®

J CG m=200 m=500

15



Filtering

Given a function f on the vertices
F:=9;.f=>0(v,)f(v,) isitsi*th frequency.

Filter h can be applied on the frequencies: hofzz h(F;)p,
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Filtering

Given a function f on the vertices
F:=9;.f=> 0(v,)f(v,) isits ith frequency.

Filter h can be applied on the frequencies: hof:Z h(F;)p,




Filtering

Given a function f on the vertices
F:=y.f=D.Wi(v,)f(v;) isitsirth frequency.

Filter h can be applied on the frequencies: hof:Z h(F;)p,

18



Quad meshing
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Shape retrieval
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Heat diffusion

LW ); is a good basis for heat diffusion : -

-
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Heat diffusion

pr k)exp(—x;t) : heat kernel at (j,k)

(h,(j,j)}, :multi-scale signature of vertex j

t =10 000
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Heat kernel signature

scale;d HKS1
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Geodesics In Heat

Link with :
e Spectral properties
* Physics (heat)

Different from front-
propagation approaches

[Crane et al. 2008] Geodesics in Heat:A New Approach to Computing Distance Based on Heat

Flow
24



Geodesics In Heat
o.u=V<u
(Ut_ uo)/t=V2 u, Linear

system
u—tVu=u,

(id—t V?)u,=u,

u

Algorithm 1 The Heat Method
I. Integrate the heat flow v = Awu for some fixed time ¢.

[Crane et al. 2008] Geodesics in Heat:A New Approach to Computing Distance Based on Heat
Flow 25



Geodesms In Heat

Algorithm 1 The Heat Method
I. Integrate the heat flow © = Awu for some fixed time ¢.
I1. Evaluate the vector field X = —Vu/|Vul.

[Crane et al. 2008] Geodesics in Heat:A New Approach to Computing Distance Based on Heat
Flow 26



Algorithm 1 The Heat Method
I. Integrate the heat flow © = Awu for some fixed time ¢.

II. Evaluate the vector field X = —Vu/|Vul. Linear
III. Solve the Poisson equation A¢p = V - X. system

[Crane et al. 2008] Geodesics in Heat:A New Approach to Computing Distance Based on Heat
Flow 27



Geodesics In Heat

Step | (id —t VZ) U,=u, Linear system :
can be prefactored indep of u_0O

stepll X=—Vu/|Vu| straightforward

stepil Vo=V .X Linear system :
can be prefactored indep of u_0O

[Crane et al. 2008] Geodesics in Heat:A New Approach to Computing Distance Based on Heat
Flow 28



Geodesics In Heat

Laplacian operators have been studied for general
polygonal meshes and pointsets :

[Crane et al. 2008] Geodesics in Heat:A New Approach to Computing Distance Based on Heat
Flow 29



Geodesics In Heat : value of t ?

t big

(provides smoother approx of geodesics)

[Crane et al. 2008] Geodesics in Heat:A New Approach to Computing Distance Based on Heat
Flow 30






	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31

