Skeleton-based deformations

Why?

Why?

Where ?

Paths \& physics

Crowd simulation

problematics

- What is a skeleton ?
- How to define what is its transformation?
- How to transfer its deformation to the mesh ?
- How to manipulate it easily ?

Skeleton structure

Linear blend skinning

Linear blend skinning

We need to define the influence of the bones onto the mesh vertices

Linear blend skinning

Linear blend skinning

Linear blend skinning

1

Skinning weights properties

$$
f: v_{i} \rightarrow \sum_{j} w_{i j}\left(R_{j} \cdot v_{i}+T_{j}\right)
$$

- Positivity $w_{i j} \geqslant 0$
- Affinity

$$
\sum_{j} w_{i j}=1
$$

Why?

Skinning weights properties

$$
f: v_{i} \rightarrow \sum_{j} w_{i j}\left(R_{j} \cdot v_{i}+T_{j}\right)
$$

- Sparsity : only a few $w_{i j}>0$
Why?

Skinning in modelling tools

- Blender
- Maya
- 3DSMax

DEMO

LBS alternatives

$$
\text { LBS: } f: v_{i} \rightarrow \sum_{j} w_{i j}\left(R_{j} \cdot v_{i}+T_{j}\right)
$$

180 degrees \rightarrow « candy wrapper » effect

Alternatives :

- Dual quaternion skinning (DQS)
- Spline skinning
- Differential blending

Blending transformations

$$
f: v_{i} \rightarrow \sum_{j} w_{i j}\left(R_{j} \cdot v_{i}+T_{j}\right)
$$

Blend « the transformed vertices »

Blending transformations

$$
\begin{aligned}
& f: v_{i} \rightarrow \underbrace{\left(\sum_{j} w_{i j} R_{j}\right) \cdot}_{j} \cdot v_{i}+\left(\sum_{j} w_{i j} T_{j}\right) \\
& \text { Blend «the transformations» }
\end{aligned}
$$

$$
1 / 2\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+1 / 2\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Rotation by 0

Rotation by π

Not a rotation

Blending transformations

$$
\begin{aligned}
& f: v_{i} \rightarrow \underbrace{\left(\sum_{j} w_{i j} R_{j}\right) \cdot v_{i}+\left(\sum_{j} w_{i j} T_{j}\right)}_{j} \\
& \text { Blend «the transformations » }
\end{aligned}
$$

$$
1 / 2\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+1 / 2\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) «=» \sqrt{(2)} / 2\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)
$$

Rotation by 0

Rotation
by π

Rotation by $\pi / 2$

Dual quaternion Skinning

[Kavan et al.] : Skinning with Dual Quaternions

Dual quaternion Skinning

« candy-wrapper »

Disney's CoRs

Key ideas

- LBS and DQS have « orthogonal » problems
- DQS is good at blending the rotations
- The bulge effect is due to a non-optimized translation (or a non-optimized center of rotation)

What is a good CoR ?

- Vertices with similar weights will have a similar rotation
- They are organized as cross sections orthogonal to the bones, and ideally should be transformed rigidly.

What is a good CoR ?

- Vertices with similar weights will have a similar rotation
- They are organized as cross sections orthogonal to the bones, and ideally should be transformed rigidly.
- Requires a similarity function between weights

$$
s\left(w_{1}, w_{2}\right)=1 \quad s\left(w_{1}, w_{3}\right)=0.01 \quad s\left(w_{1}, w_{4}\right)=0
$$

What is a good CoR?

- Vertices with similar weights will have a similar rotation
- They are organized as cross sections orthogonal to the bones, and ideally should be transformed rigidly.
- Requires a similarity function between weights

$$
s\left(\mathbf{w}_{\mathbf{p}}, \mathbf{W}_{\mathbf{v}}\right)=\sum_{\forall j \neq k} \mathbf{w}_{\mathbf{p} j} \mathbf{W}_{\mathbf{p} k} \mathbf{W}_{\mathbf{v} j} \mathbf{w}_{\mathbf{v} k} \mathrm{e}^{-\frac{\left(\mathbf{w}_{\mathbf{p} j} \mathbf{w}_{\mathbf{v} k}-\mathbf{w}_{\mathbf{p} k} \mathbf{w}_{\mathbf{v} j}\right)^{2}}{\sigma^{2}}}
$$

Idea

- Consider the LBS transformation of the mesh
- Use the DQS rotation for each vertex
- Optimize per-vertex translation to fit the LBS deformation while enforcing rigid sections.

Idea

$$
\begin{gathered}
\mathbf{t}_{\mathbf{p}}=\arg \min _{\mathbf{t}} \int_{\mathbf{v} \in \boldsymbol{\Omega}} s\left(\mathbf{w}_{\mathbf{p}}, \mathbf{w}_{\mathbf{v}}\right)\left\|\mathbf{R}_{\mathbf{p}} \mathbf{v}+\mathbf{t}-\widetilde{\mathbf{v}}\right\|_{2}^{2} \mathrm{~d} \mathbf{v} \\
\text { where: } \widetilde{\mathbf{v}}=\sum_{j=1}^{m} w_{\mathbf{p} j}\left(\mathbf{R}_{j} \mathbf{v}+\mathbf{t}_{j}\right)
\end{gathered}
$$

Idea

$$
\begin{gathered}
\mathbf{t}_{\mathbf{p}}=\arg \min _{\mathbf{t}} \int_{\mathbf{v} \in \boldsymbol{\Omega}} s\left(\mathbf{w}_{\mathbf{p}}, \mathbf{w}_{\mathbf{v}}\right)\left\|\mathbf{R}_{\mathbf{p}} \mathbf{v}+\mathbf{t}-\widetilde{\mathbf{v}}\right\|_{2}^{2} \mathrm{~d} \mathbf{v} \\
\text { where: } \widetilde{\mathbf{v}}=\sum_{j=1}^{m} w_{\mathbf{p} j}\left(\mathbf{R}_{j} \mathbf{v}+\mathbf{t}_{j}\right)
\end{gathered}
$$

Idea

$$
\begin{gathered}
\mathbf{t}_{\mathbf{p}}=\arg \min _{\mathbf{t}} \int_{\mathbf{v} \in \boldsymbol{\Omega}} s\left(\mathbf{w}_{\mathbf{p}}, \mathbf{w}_{\mathbf{v}}\right)\left\|\mathbf{R}_{\mathbf{p}} \mathbf{v}+\mathbf{t}-\widetilde{\mathbf{v}}\right\|_{2}^{2} \mathrm{~d} \mathbf{v} \\
\text { where: } \widetilde{\mathbf{v}}=\sum_{j=1}^{m} w_{\mathbf{p} j}\left(\mathbf{R}_{j} \mathbf{v}+\mathbf{t}_{j}\right)
\end{gathered}
$$

Computation

$$
\begin{gathered}
\mathbf{t}_{\mathbf{p}}=\arg \min _{\mathbf{t}} \int_{\mathbf{v} \in \boldsymbol{\Omega}} s\left(\mathbf{w}_{\mathbf{p}}, \mathbf{w}_{\mathbf{v}}\right)\left\|\mathbf{R}_{\mathbf{p}} \mathbf{v}+\mathbf{t}-\widetilde{\mathbf{v}}\right\|_{2}^{2} \mathrm{~d} \mathbf{v} \\
\text { where: } \widetilde{\mathbf{v}}=\sum_{j=1}^{m} w_{\mathbf{p} j}\left(\mathbf{R}_{j} \mathbf{v}+\mathbf{t}_{j}\right)
\end{gathered}
$$

Computation

$$
\begin{gathered}
\mathbf{t}_{\mathbf{p}}=\arg \min _{\mathbf{t}} \int_{\mathbf{v} \in \boldsymbol{\Omega}} s\left(\mathbf{w}_{\mathbf{p}}, \mathbf{w}_{\mathbf{v}}\right)\left\|\mathbf{R}_{\mathbf{p}} \mathbf{v}+\mathbf{t}-\widetilde{\mathbf{v}}\right\|_{2}^{2} \mathrm{~d} \mathbf{v} \\
\text { where: } \widetilde{\mathbf{v}}=\sum_{j=1}^{m} w_{\mathbf{p} j}\left(\mathbf{R}_{j} \mathbf{v}+\mathbf{t}_{j}\right) \\
\mathbf{t}_{\mathbf{p}}=\frac{\int_{\mathbf{v} \in \boldsymbol{\Omega}} s\left(\mathbf{w}_{\mathbf{p}}, \mathbf{w}_{\mathbf{v}}\right)\left(\widetilde{\mathbf{v}}-\mathbf{R}_{\mathbf{p}} \mathbf{v}\right) \mathrm{d} \mathbf{v}}{\int_{\mathbf{v} \in \boldsymbol{\Omega}} s\left(\mathbf{w}_{\mathbf{p}}, \mathbf{w}_{\mathbf{v}}\right) \mathrm{d} \mathbf{v}}
\end{gathered}
$$

Computation

$$
\begin{aligned}
\mathbf{t}_{\mathbf{p}}= & \arg \min _{\mathbf{t}} \int_{\mathbf{v} \in \boldsymbol{\Omega}} s\left(\mathbf{w}_{\mathbf{p}}, \mathbf{w}_{\mathbf{v}}\right)\left\|\mathbf{R}_{\mathbf{p}} \mathbf{v}+\mathbf{t}-\widetilde{\mathbf{v}}\right\|_{2}^{2} \mathrm{~d} \mathbf{v} \\
& \text { where: } \widetilde{\mathbf{v}}=\sum_{j=1}^{m} w_{\mathbf{p} j}\left(\mathbf{R}_{j} \mathbf{v}+\mathbf{t}_{j}\right) \\
\mathbf{t}_{\mathbf{p}}= & \frac{\int_{\mathbf{v} \in \boldsymbol{\Omega}} s\left(\mathbf{w}_{\mathbf{p}}, \mathbf{w}_{\mathbf{v}}\right)\left(\widetilde{\mathbf{v}}-\mathbf{R}_{\mathbf{p}} \mathbf{v}\right) \mathrm{d} \mathbf{v}}{\int_{\mathbf{v} \in \boldsymbol{\Omega}} s\left(\mathbf{w}_{\mathbf{p}}, \mathbf{w}_{\mathbf{v}}\right) \mathrm{d} \mathbf{v}} \\
= & \sum_{j=1}^{m} w_{\mathbf{p} j}\left(\mathbf{R}_{j} \frac{\int_{\mathbf{v} \in \boldsymbol{\Omega}} s\left(\mathbf{w}_{\mathbf{p}}, \mathbf{w}_{\mathbf{v}}\right) \mathbf{v} \mathrm{d} \mathbf{v}}{\int_{\mathbf{v} \in \boldsymbol{\Omega}} s\left(\mathbf{w}_{\mathbf{p}}, \mathbf{w}_{\mathbf{v}}\right) \mathrm{d} \mathbf{v}}+\mathbf{t}_{j}\right)-\mathbf{R}_{\mathbf{p}} \frac{\int_{\mathbf{v} \in \boldsymbol{\Omega}} s\left(\mathbf{w}_{\mathbf{p}}, \mathbf{w}_{\mathbf{v}}\right) \mathbf{v} \mathrm{d} \mathbf{v}}{\int_{\mathbf{v} \in \boldsymbol{\Omega}} s\left(\mathbf{w}_{\mathbf{p}}, \mathbf{w}_{\mathbf{v}}\right) \mathrm{d} \mathbf{v}}
\end{aligned}
$$

Computation

$$
\begin{aligned}
\mathbf{t}_{\mathbf{p}}= & \arg \min _{\mathbf{t}} \int_{\mathbf{v} \in \boldsymbol{\Omega}} s\left(\mathbf{w}_{\mathbf{p}}, \mathbf{w}_{\mathbf{v}}\right)\left\|\mathbf{R}_{\mathbf{p}} \mathbf{v}+\mathbf{t}-\widetilde{\mathbf{v}}\right\|_{2}^{2} \mathrm{~d} \mathbf{v} \\
& \text { where: } \widetilde{\mathbf{v}}=\sum_{j=1}^{m} w_{\mathbf{p} j}\left(\mathbf{R}_{j} \mathbf{v}+\mathbf{t}_{j}\right) \\
\mathbf{t}_{\mathbf{p}}= & \frac{\int_{\mathbf{v} \in \boldsymbol{\Omega}} s\left(\mathbf{w}_{\mathbf{p}}, \mathbf{w}_{\mathbf{v}}\right)\left(\widetilde{\mathbf{v}}-\mathbf{R}_{\mathbf{p}} \mathbf{v}\right) \mathrm{d} \mathbf{v}}{\int_{\mathbf{v} \in \boldsymbol{\Omega}} s\left(\mathbf{w}_{\mathbf{p}}, \mathbf{w}_{\mathbf{v}}\right) \mathrm{d} \mathbf{v}} \\
= & \sum_{j=1}^{m} w_{\mathbf{p} j}\left(\mathbf{R}_{j} \frac{\int_{\mathbf{v} \in \boldsymbol{\Omega}} s\left(\mathbf{w}_{\mathbf{p}}, \mathbf{w}_{\mathbf{v}}\right) \mathbf{v} \mathrm{d} \mathbf{v}}{\int_{\mathbf{v} \in \boldsymbol{\Omega}} s\left(\mathbf{w}_{\mathbf{p}}, \mathbf{w}_{\mathbf{v}}\right) \mathrm{d} \mathbf{v}}+\mathbf{t}_{j}\right)-\mathbf{R}_{\mathbf{p}} \frac{\int_{\mathbf{v} \in \boldsymbol{\Omega}} s\left(\mathbf{w}_{\mathbf{p}}, \mathbf{w}_{\mathbf{v}}\right) \mathbf{v} \mathrm{d} \mathbf{v}}{\int_{\mathbf{v} \in \boldsymbol{\Omega}} s\left(\mathbf{w}_{\mathbf{p}}, \mathbf{w}_{\mathbf{v}}\right) \mathrm{d} \mathbf{v}} \\
= & \sum_{j=1}^{m} w_{\mathbf{p} j}\left(\mathbf{R}_{j} \mathbf{p}^{*}+\mathbf{t}_{j}\right)-\mathbf{R}_{\mathbf{p}} \mathbf{p}^{*}
\end{aligned}
$$

$$
\text { where: } \mathbf{p}^{*}=\frac{\int_{\mathbf{v} \in \boldsymbol{\Omega}} s\left(\mathbf{w}_{\mathbf{p}}, \mathbf{w}_{\mathbf{v}}\right) \mathbf{v} \mathrm{d} \mathbf{v}}{\int_{\mathbf{v} \in \boldsymbol{\Omega}} s\left(\mathbf{w}_{\mathbf{p}}, \mathbf{w}_{\mathbf{v}}\right) \mathrm{d} \mathbf{v}}
$$

Algorithm

```
Algorithm 1 Skeletal Skinning with Optimized Centers of Rotation
Input: \(n\) vertices, vertex \(i\) includes:
    - Rest pose position \(\mathbf{v}_{i} \in \mathbb{R}^{3}\)
    - Skinning weights \(\mathbf{w}_{i} \in \mathbb{R}^{m}\)
    - \(\operatorname{CoR} \mathbf{p}_{i}^{*} \in \mathbb{R}^{3}\) computed by Eq. (1) and Eq. (4)
    \(m\) bones, bone \(j\) transformation is \(\left[\mathbf{R}_{j} \mathbf{t}_{j}\right] \in \mathbb{R}^{3 \times 4}\)
Output: Deformed position \(\mathbf{v}_{i}^{\prime} \in \mathbb{R}^{3}\) for all vertices \(i=1\)..n
    for each bone \(j\) do
        Convert rotation matrix \(\mathbf{R}_{j}\) to unit quaternion \(\mathbf{q}_{j}\)
    end for
    for each vertex \(i\) do
    \(\mathbf{q} \leftarrow w_{i 1} \mathbf{q}_{1} \oplus w_{i 2} \mathbf{q}_{2} \oplus \ldots \oplus w_{i m} \mathbf{q}_{m}\)
        where: \(\mathbf{q}_{a} \oplus \mathbf{q}_{b}= \begin{cases}\mathbf{q}_{a}+\mathbf{q}_{b} & \text { if } \mathbf{q}_{a} \cdot \mathbf{q}_{b} \geq 0 \\ \mathbf{q}_{a}-\mathbf{q}_{b} & \text { if } \mathbf{q}_{a} \cdot \mathbf{q}_{b}<0\end{cases}\)
        ( \(\mathbf{q}_{a} \cdot \mathbf{q}_{b}\) denotes the vector dot product)
        Normalize and convert \(\mathbf{q}\) to rotation matrix \(\mathbf{R}\)
        LBS: \([\widetilde{\mathbf{R}} \widetilde{\mathbf{t}}] \leftarrow \sum_{j=1}^{m} w_{i j}\left[\mathbf{R}_{j} \mathbf{t}_{j}\right]\)
        Compute translation: \(\mathbf{t} \leftarrow \widetilde{\mathbf{R}} \mathbf{p}_{i}^{*}+\widetilde{\mathbf{t}}-\mathbf{R} \mathbf{p}_{i}^{*}\) (Eq. (3b))
        \(\mathbf{v}_{i}^{\prime} \leftarrow \mathbf{R v}_{i}+\mathbf{t}\)
    end for
- Skinning weights \(\mathbf{w}_{i} \in \mathbb{R}\)
\(m\) bones, bone \(j\) transformation is \(\left[\mathbf{R}_{j} \mathbf{t}_{j}\right] \in \mathbb{R}^{3 \times 4}\)
Output: Deformed position \(\mathbf{v}_{i}^{\prime} \in \mathbb{R}^{3}\) for all vertices \(i=1\)..n
for each bone \(j\) do
Convert rotation matrix \(\mathbf{R}_{j}\) to unit quaternion \(\mathbf{q}_{j}\)
end for
for each vertex \(i\) do
\(\mathbf{q} \leftarrow w_{i 1} \mathbf{q}_{1} \oplus w_{i 2} \mathbf{q}_{2} \oplus \ldots \oplus w_{i m} \mathbf{q}_{m}\)
where: \(\mathbf{q}_{a} \oplus \mathbf{q}_{b}= \begin{cases}\mathbf{q}_{a}+\mathbf{q}_{b} & \text { if } \mathbf{q}_{a} \cdot \mathbf{q}_{b} \geq 0 \\ \mathbf{q}_{a}-\mathbf{q}_{b} & \text { if } \mathbf{q}_{a} \cdot \mathbf{q}_{b}<0\end{cases}\)
( \(\mathbf{q}_{a} \cdot \mathbf{q}_{b}\) denotes the vector dot product)
Normalize and convert \(\mathbf{q}\) to rotation matrix \(\mathbf{R}\)
: LBS: \([\widetilde{\mathbf{R}} \widetilde{\mathbf{t}}] \leftarrow \sum_{j=1}^{m} w_{i j}\left[\mathbf{R}_{j} \mathbf{t}_{j}\right]\)
Compute translation: \(\mathbf{t} \leftarrow \widetilde{\mathbf{R}} \mathbf{p}_{i}^{*}+\widetilde{\mathbf{t}}-\mathbf{R} \mathbf{p}_{i}^{*}\) (Eq. (3b))
\(\mathbf{v}_{i}^{\prime} \leftarrow \mathbf{R v}_{i}+\mathbf{t}\)
end for
```

$$
\mathbf{p}^{*}=\frac{\int_{\mathbf{v} \in \boldsymbol{\Omega}} s\left(\mathbf{w}_{\mathbf{p}}, \mathbf{w}_{\mathbf{v}}\right) \mathbf{v} \mathrm{d} \mathbf{v}}{\int_{\mathbf{v} \in \boldsymbol{\Omega}} s\left(\mathbf{w}_{\mathbf{p}}, \mathbf{w}_{\mathbf{v}}\right) \mathrm{d} \mathbf{v}}
$$

$$
\text { CoRs } \quad \mathbf{p}^{*}=\frac{\int_{v \in \Omega} s\left(\mathbf{w}_{\mathbf{p}}, \mathbf{w}_{\mathbf{v}}\right) \mathbf{v} d \mathbf{v}}{\int_{\mathbf{v} \in \Omega} s\left(\mathbf{w}_{\mathbf{p}}, \mathbf{w}_{\mathbf{v}}\right) \mathrm{dv}}
$$

Results

Results

Results

Results

Finally : LBS with Complex bones

Before: $\quad f: v_{i} \mapsto \sum_{j \in B(i)} w_{i j}\left(R j \cdot v_{i}+T j\right)$
Now: $\quad f: v_{i} \mapsto \sum_{j \in B(i)} w_{i j}\left(R_{j}\left(v_{i}\right) \cdot v_{i}+T_{j}\left(v_{i}\right)\right)$

Automatic weights computation methods

- Input:
- Mesh
- Skeleton
- Output :
- Skinning weights for each mesh vertex

HeatBones

- Rather simple
- Very fast
- Lightweight implementation

[Baran\&Popovitch2007]
[Baran \& Popovic] : Automatic rigging and animation of 3d characters

HeatBones : principle

$$
H_{j j}=c / d(j)^{2}
$$

Solve a linear equation, for each bone j.
Positivity and affinity naturally fulfilled.
Intersections with kd-tree.

HeatBones : principle

What the algorithm does is simple in spirit : it takes the Voronoi indicative functions, and it blurs them.

BoneGlow : variant of HeatBones

[Wareham \& Lasenby] : Bone Glow: An Improved Method for the Assignment of Weights for Mesh Deformation

BoneGlow : variant of HeatBones

Bone Heat
Bone Glow

BoneGlow : variant of HeatBones

$$
-\Delta w_{\bullet j}+H w_{\bullet j}=H \chi_{\bullet j}
$$

Replace the binary Voronoi indicative function by a softer bone visibility test

(a) Bone Heat

(b) Bone Glow

Automatic weights (2) Bounded Biharmonic Weights (BBW)

- Rather simple
- Rather slow
- Difficult to implement if positivity constraints are enforced

[Jacobson et al.2011]
[Jacobson et al.] : Bounded Biharmonic Weights for Real-Time Deformation

BBW : principle

$\underset{w_{j},}{\arg \min } \sum_{j=1, \ldots, m}^{m} \frac{1}{2} \int_{\Omega=1}\left\|\Delta w_{j}\right\|^{2} d V$
subject to: $\left.w_{j}\right|_{H_{k}}=\delta_{j k}$

$$
\begin{aligned}
& \sum_{j=1}^{m} w_{j}(\mathbf{p})=1 \\
& 0 \leq w_{j}(\mathbf{p}) \leq 1
\end{aligned}
$$

Minimize the bi-Laplacian on a tetrahedral mesh, with linear inequalities. \rightarrow slow

Automatic methods

Inverse kinematics

One type of IK Solutions

Cyclic-Coordinate Descent

- Starting with the root of our effector, R, to our current endpoint, E.
- Next, we draw a vector from R to our desired endpoint, D
- The inverse cosine of the dot product gives us the angle between the vectors: $\cos (a)=R D \bullet R E$

One type of IK Solutions

Cyclic-Coordinate Descent
Rotate our link so that RE falls on RD

One type of IK Solutions

Cyclic-Coordinate Descent

Move one link up the chain, and repeat the process

One type of IK Solutions

Cyclic-Coordinate Descent

The process is basically repeated until the root joint is reached. Then the process begins all over again starting with the end effector, and will continue until we are close enough to D for an acceptable solution.

One type of IK Solutions

Cyclic-Coordinate Descent

One type of IK Solutions

Cyclic-Coordinate Descent
We've reached the root. Repeat the process

One type of IK Solutions

Cyclic-Coordinate Descent

One type of IK Solutions

Cyclic-Coordinate Descent

We've reached the root again. Repeat the process until solution reached.

Using IK in Game Development

Examples of CCD IK in action:

- Character Animation Demo (Softimage XSI 5.0, Blender, Maya, everywhere)
- Real-Time calculations: E3 2003 Demo Footage of Half-Life 2

Problems of CCD

- Bones optimized « one after the other »
- Might not be optimal in terms of realism
- Does not take « physics » into account (balancing the efforts of bending the various joints)
- Example of alternative methods allowing for all of that : the Jacobian method
- Solve $\quad f\left(\theta_{1}, \theta_{2}, \ldots\right)=(x, y, z)$
- Update $\quad f(\bar{\theta})+J f . d \bar{\theta}=(x, y, z)$

FABRIK : Forward And Backward Reach Inverse Kinematics

- Not much more complex than CCD
- Implemented in Unreal4, Unity, ...
- Comparison with other methods

(d)

(e)

(f)

Conclusions

- Skeletons are adapted to character animation
- You find them in games, shape recognition, movies, ...
- The influence of the bones needs to be defined by weights
- Plenty of possibilities for the weights
- Plenty of possibilities for the blending model (LBS, DQS, ...)
- Simple structure \rightarrow advanced deformation mechanisms (IK)
- Plenty of open problems

