

Skeleton-based deformations

Why ?

Why ?

Where ?

Crowd simulation

Kinect

Leap motion

Paths & physics

modelling

Halo3

Bolt

problematics

● What is a skeleton ?
● How to define what is its transformation ?
● How to transfer its deformation to the mesh ?
● How to manipulate it easily ?
● ...

Skeleton structure

Child

Father

F

C

Linear blend skinning

Linear blend skinning

We need to define the influence of the bones onto
the mesh vertices

Linear blend skinning

Linear blend skinning

Linear blend skinning

Deformation
function

Vertex i

Bones
influencing

vertex i

Weight of bone
j over vertex i

Rotation of
bone j

Translation
of bone j

f : v i → ∑j
w ij(R j .v i+T j)

Skinning weights properties

● Positivity

● Affinity ∑ j
w ij=1

w ij≽0

Why ?

f : v i → ∑j
w ij(R j .v i+T j)

Skinning weights properties

● Sparsity : only a few w ij≻0

Why ?

f : v i → ∑j
w ij(R j .v i+T j)

Skinning in modelling tools

● Blender
● Maya
● 3DSMax DEMO

LBS alternatives

LBS :

180 degrees → « candy wrapper » effect

Alternatives :
● Dual quaternion skinning (DQS)

● Spline skinning

● Differential blending

f : v i → ∑j
w ij(R j .v i+T j)

Blending transformations

Blend « the transformed vertices »

f : v i → ∑j
w ij(R j .v i+T j)

Blend « the transformations »

f : v i → (∑ j
wij R j) .v i+(∑j

w ijT j)

?

1/2(1 0
0 1) 1/2(−1 0

0 −1) (0 0
0 0)

Rotation
by 0

Rotation
by π

Not a
rotation

+ =

Blending transformations

Blend « the transformations »

√(2)/2(1 −1
−1 1)

Rotation
by π/2

1/2(1 0
0 1) 1/2(−1 0

0 −1)
Rotation

by 0
Rotation

by π

+ « = »

Blending transformations

f : v i → (∑ j
wij R j) .v i+(∑j

w ijT j)

?

Dual quaternion Skinning

[Kavan et al.] : Skinning with Dual Quaternions

Dual quaternion Skinning

LBS

DQS
« bulge »

« candy-wrapper »

Disney’s CoRs

Key ideas
● LBS and DQS have « orthogonal » problems

● DQS is good at blending the rotations

● The bulge effect is due to a non-optimized translation (or a
non-optimized center of rotation)

What is a good CoR ?
● Vertices with similar weights will have a similar rotation

● They are organized as cross sections orthogonal to the
bones, and ideally should be transformed rigidly.

What is a good CoR ?
● Vertices with similar weights will have a similar rotation

● They are organized as cross sections orthogonal to the
bones, and ideally should be transformed rigidly.

● Requires a similarity function between weights

v1

v 2

v 3
v 4

s (w1 ,w2)=1 s (w1 ,w3)=0.01 s (w1 ,w4)=0

What is a good CoR ?
● Vertices with similar weights will have a similar rotation

● They are organized as cross sections orthogonal to the
bones, and ideally should be transformed rigidly.

● Requires a similarity function between weights

v1

v 2

v 3
v 4

Idea
● Consider the LBS transformation of the mesh

● Use the DQS rotation for each vertex

● Optimize per-vertex translation to fit the LBS deformation
while enforcing rigid sections.

Idea

Idea

Idea

Computation

Computation

Computation

Computation

Algorithm

CoRs

Results

Results

Results

Results

Finally : LBS with Complex bones

Before :

Now :

Automatic weights computation
methods

● Input :

– Mesh

– Skeleton
● Output :

– Skinning weights for each mesh vertex

HeatBones

[Baran&Popovitch2007]

● Rather simple
● Very fast
● Lightweight implementation

[Baran & Popovic] : Automatic rigging and animation of 3d characters

HeatBones : principle

Laplacian
matrix

Stiffness
diagonal
matrix

Voronoi
indicative
function

Solve a linear equation, for each bone j.

Positivity and affinity naturally fulfilled.

Intersections with kd-tree.

HeatBones : principle

What the algorithm does is simple in spirit : it takes the Voronoi
indicative functions, and it blurs them.

BoneGlow : variant of HeatBones

[Wareham & Lasenby] : Bone Glow: An Improved Method for the
Assignment of Weights for Mesh Deformation

BoneGlow : variant of HeatBones

BoneGlow : variant of HeatBones

Replace the binary Voronoi
indicative function by a softer
bone visibility test

Automatic weights (2)
Bounded Biharmonic Weights (BBW)

[Jacobson et al.2011]

● Rather simple
● Rather slow
● Difficult to implement if positivity

constraints are enforced

[Jacobson et al.] : Bounded Biharmonic Weights for Real-Time Deformation

BBW : principle

Minimize the bi-Laplacian on a tetrahedral
mesh, with linear inequalities. → slow

Automatic methods

Demo

Inverse kinematics

Cyclic-Coordinate DescentCyclic-Coordinate Descent
- Starting with the root of our effector, R, to our current endpoint, E.- Starting with the root of our effector, R, to our current endpoint, E.

- Next, we draw a vector from R to our desired endpoint, D- Next, we draw a vector from R to our desired endpoint, D

- The inverse cosine of the dot product gives us the angle between the vectors: cos(a) = RD - The inverse cosine of the dot product gives us the angle between the vectors: cos(a) = RD ●● RE RE

One type of IK Solutions

Cyclic-Coordinate DescentCyclic-Coordinate Descent
Rotate our link so that RE falls on RDRotate our link so that RE falls on RD

One type of IK Solutions

Cyclic-Coordinate DescentCyclic-Coordinate Descent
Move one link up the chain, and repeat the processMove one link up the chain, and repeat the process

One type of IK Solutions

Cyclic-Coordinate DescentCyclic-Coordinate Descent
The process is basically repeated until the root joint is reached. Then the process begins all over again The process is basically repeated until the root joint is reached. Then the process begins all over again
starting with the end effector, and will continue until we are close enough to D for an acceptable solution. starting with the end effector, and will continue until we are close enough to D for an acceptable solution.

One type of IK Solutions

Cyclic-Coordinate DescentCyclic-Coordinate Descent

One type of IK Solutions

Cyclic-Coordinate DescentCyclic-Coordinate Descent
We’ve reached the root. Repeat the processWe’ve reached the root. Repeat the process

One type of IK Solutions

Cyclic-Coordinate DescentCyclic-Coordinate Descent

One type of IK Solutions

Cyclic-Coordinate DescentCyclic-Coordinate Descent

One type of IK Solutions

Cyclic-Coordinate DescentCyclic-Coordinate Descent

One type of IK Solutions

Cyclic-Coordinate DescentCyclic-Coordinate Descent

One type of IK Solutions

One type of IK Solutions
Cyclic-Coordinate DescentCyclic-Coordinate Descent

Cyclic-Coordinate DescentCyclic-Coordinate Descent
We’ve reached the root again. Repeat the process until solution reached.We’ve reached the root again. Repeat the process until solution reached.

One type of IK Solutions

Using IK in Game Development

Examples of CCD IK in action:
– Character Animation Demo (Softimage XSI 5.0,

Blender, Maya, everywhere)

– Real-Time calculations: E3 2003 Demo Footage of
Half-Life 2

Problems of CCD

● Bones optimized « one after the other »
● Might not be optimal in terms of realism
● Does not take « physics » into account

(balancing the efforts of bending the various
joints)

● Example of alternative methods allowing for
all of that : the Jacobian method
– Solve

– Update

f (θ1 ,θ2 , ...)=(x , y , z)

f (θ)+Jf .dθ=(x , y , z)

FABRIK : Forward And Backward
Reach Inverse Kinematics

● Not much more complex than CCD
● Implemented in Unreal4, Unity, …
● Comparison with other methods

https://www.youtube.com/watch?v=tN6RQ4yrNPU

Conclusions
● Skeletons are adapted to character animation

● You find them in games, shape recognition, movies, ...

● The influence of the bones needs to be defined by weights

● Plenty of possibilities for the weights

● Plenty of possibilities for the blending model (LBS, DQS, …)

● Simple structure → advanced deformation mechanisms (IK)

● Plenty of open problems

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67

