
JHAVI -- An Environment to Actively Engage Students in Web-
based Algorithm Visualizations

Thomas L. Naps, James R. Eagan, Laura L. Norton
Lawrence University

{thomas.naps, james.r.eagan, laura.l.norton}l~lawrence.edu

Abstract
In this paper, we describe JHAVI~ (Java-hosted Algorithm
Visualization Environment), a client-server environment
for delivering algorithm visualizations over the Web. The
first section of the paper briefly summarizes prior research
by a variety of investigators into the pedagogical
effectiveness of algorithm visualization (AV). The design
goals of JHAVI~ are then placed in the context of this
research. After a discussion of some technical details of
the JHAVI~ architecture, we present two examples of
algorithms depicted in JHAVI~. The results of students'
exploring these algorithms with JHAVI~ are analyzed. We
close with a discussion of the general conclusions reached
from our current work and future directions in which it
may lead.

1 Background and Rationale
Algorithm visualization (AV) depicts the execution of an
algorithm as a discrete or continuous sequence of
graphical images, the viewing of which is controlled by the
user. Increasingly many algorithm visualization tools
have been developed and presented at recent SIGCSE and
ITiCSE conferences (eight papers in '98 SIGCSE
proceedings, nine in '98 ITiCSE proceedings, ten in '99
SIGCSE proceedings). These tools can be broken down
into two groups. Many are designed to make it relatively
easy for students to construct their own visualizations by
annotating their programs with calls to functions that, as
much as possible, hide the details of producing the
graphics connected with the visualization. Others merely
have the students watch predefined visualizations designed
by the instructor, There is little doubt that a student will
learn an algorithm in greater depth if she codes her own
visualization of it. This result has been borne out in work
by Rodger [71, Stasko [12], Hundhausen [31, and Naps [61.
However, although having students code their own
visualizations can be very valuable, it can also be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advant
-age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SlGCSE 2000 3/00 Austin, TX, USA
© 2000 ACM 1-58113-213-1/00/0003... $ 5.00

extremely time-consuming. Hence, students are limited to
doing this for only a small number of algorithms in a
particular course. The work we describe in this paper
focuses on an environment for delivering predefined
visualizations to students over the Web. JHAVI~ (Java-
hosted Algorithm Visualization Environment) has beeen
designed with specific and realistic instructional goals and
takes into account pedagogical issues that have been
identified by a number of researchers. To understand the
rationale behind JHAVI~ requires summarizing the
findings of these researchers.

One of the first systematic studies on the effectiveness of
AV systems in teaching algorithms and data structures was
conducted by Stasko, Badre, and Lewis [11] and reported
results that seemed discouraging:

• Subjects trying to learn an algorithm using both
textual materials and algorithm animations
outperformed text-only subjects, but the difference was
not large and not statistically significant. The very
passive mode of engagement on the part of the viewer
was cited as a key reason for this disappointing result.

• To be effective, algorithm visualizations must be
accompanied by comprehensive teacher-provided
explanations. The visualization of an algorithm is a
mapping from a sequence of digital operations within
the computer to an abstract rendering of them on the
graphics screen. Unless the student is provided with
explanations to make her aware of this mapping, the
desired effect of the visualization may be totally lost.

• Without a facility to rewind the visualizationto a
previous state in the algorithm's execution, students
frequently become confused.

Other investigators reported that somewhat better results
were achieved by forcing the students to be more "active"
in watching the visualization. For example, in 1993,
Lawrence [4] found that students who constructed their
own input data for the algoritkm being viewed scored
significantly higher on a post-test than students who
watched the visualization passively. In 1996, Byrne,
Catrambone, and Stasko [I] conducted an experiment in
which viewers were forced to make predictions about what
they would see during the visualization. These viewers

109

• ~ . ~ " : ~ , : , % . i . , • ~ ,~

scored significantly better on a post-test than others who
merely watched identical visualizations without making
such predictions. The success of Wolfe's TERA system
[8] also reinforces the hypothesis that requiring students to
make predictions about what they will see can positively
affect their learning. TERA allows students to explore the
effects of graphics rendering algorithms in two modes --
explore mode and quiz mode. In quiz mode, students are
presented with a scene and must determine the rendering
algorithm used to produce that scene. A recent study by
Wolfe, Grissom, and Naps [14] found that three groups of
students who used TERA did extraordinarily well on exam
questions about the rendering algorithms they had studied.
Findings such as these all point to the same conclusion --
actively engaging students by using hooks that force their
interaction with the visualization is essential to making
AV an effective instructional tool.

We must also be careful in defining the instructional goals
of an AV system. The study of algorithms in CS2 or an
upper-level algorithms course involves five different types
of understanding: (1) understanding the algorithm as a
"recipe", (2) understanding why the recipe solves the
problem, (3) formally proving the algorithm is correct, (4)
performing an efficiency analysis of the algorithm, and (5)
coding the algorithm in a programming language.

In [2], deMarneffe argues that using technology, including
predefined algorithm visualizations, cannot make a
substantive difference in (3), (4), and (5). Certainly the
effect of AV in achieving these types of understanding will
be limited. Consequently, in designing JHAVI~, we
focused on developing a system that would help students
achieve the first and second types of understanding. After
using JHAVI~ to view examples of an algorithm's
execution, we want students to be able to manually trace
the execution of the algorithm with a small data set and
feel that they understand why the algorithm works. If in
fact the visualizations delivered by JHAVE succeed in
reaching these goals, it will allow the instructor to spend
her contact time with students discussing the weightier
issues involved in the latter types of understanding cited
above.

With this as background, the design goals for JHAVI~
emerged as follows:

• Present students with at least two types of
visualizations -- smoothly running animations and
sequences of discrete snapshots. Both should have a
rewind capability.

• Supplement the visualization of the algorithm with
context-sensitive textual material in a Web browser
window. "Context-sensitive" means that the textual

material should change to fit the current state of the
visualization.
Provide the student with input genera tors -- pop-up
windows that allow the student to provide input to the
algorithm so that she can engage in "what-if' kinds of
exploration. Just as one learns concepts in
mathematics by repeatedly doing exercises, so one
comes to an understanding of how an algorithm works
by repeatedly tracing through how the algorithm
manipulates different data sets. In this sense, the
visualizations delivered by JHAVI~ should be
"predefined" only in the sense that, after the student
has triggered the input of data to the algorithm, the
graphic rendering of the algorithm's execution is
dictated by the instructor's design of the visualization.
Force the student into active participation by
interrupting the visualization with "stop-and-think"
questions. Such questions make the student predict
what she will see in the next step of the visualized
algorithm. Without such questions, once a student
becomes confused, continuing to watch a visualization
is akin to watching a movie in which one has lost
interest. Stop-and-think questions change this
dramatically. When a confused student answers a
question incorrectly, continuing with the vis~lization
not only provides the student with the correct answer
but serves to reset the student's perception of the
algorithm back on the track intended by the instructor.

2 The JHAVI~ Architecture
JHAVI~ in itself is not an algorithm visualization system.
Rather it is a client-server architecture, implemented in
Java, into which more specific AV engines may be
plugged. As it is currently configured, there are two such
engines - one for the Samba animation scripting language
designed by Stasko [10,131 and one for the GAIGS data
structure visualization language developed by Naps [5].
Once such an engine "plugs into" JHAVI~, designers of a
visualization using that engine can easily incorporate the
pedagogical tools that come with the JI-IAVI~ environment
-- context-sensitive documentation in a browser window,
input generators, and stop-and-think questions. The main
criterion for an AV engine to be plug-compatible with
JHAVI~ is that it must produce its visualization using a
script file. With the script file methodology, a program
implementing the algorithm to be visualized executes and,
instead of directly rendering a visualization of the
algorithm, it writes visualization commands to the script
file. When the algorithm terminates, this script file is
parsed and rendered by the AV engine.

In JHAVE's client-server model, the server application
manages the available algorithms and generates the
visualization script files that the client can display. In a
standard session, a Web surfer first launches an instance of

110

the AVClient applet, which displays a listing of available
algorithms. When the user selects an algorithm from that
list, the client applet sends a request to the server, which
will run the program that generates the script file for that
algorithm and send it back to the client. The client then
renders it with the appropriate engine. If the algorithm
requires input from the user, the server sends an input
generator object to the client. This is just a frame with
appropriate input areas for the user. Once the user fills out
these areas, the client returns the user's input to the server
as a data set to use when running the algorithm.

Within the listing of available algorithms, algorithms can
be grouped by type to indicate whether they can
interchange data sets. Thus, when a user requests a
visualization of, for example, Prim's minimum spanning
tree algorithm, she can subsequently view how Kruskal's
algorithm would work on the same data set. Alternatively,
the server could provide visualizations of the same
algorithm for different engines, allowing the user to
observe the algorithm's execution from the perspective of
GAIGS' discrete snapshots or Samba's smooth
animations.

One key advantage of JHAVI~'s design lies in its
portability. Written in Java, the server application itself
can be relocated from one operating system to another
without making any changes. This is in stark contrast to
older environments such as WebGAIGS [5] that made
extensive use of CGI scripts to launch visualizations.
Programs that implement algorithms producing
visualization scripts, however, can be written in any
language. They are merely executed at the direction of the
Java server application. This means that, under the
JHAVI~ environment, an instructor who wishes to provide
her own visualizations for students is not tied to writing
them in Java. Hence there is a great deal of variation in
the ways one can produce visualizations that ultimately are
viewed in JHAVI~. For instance, prior to the advent of the
Web, we had written many Pascal and C++ programs that
produced GAIGS and Samba visualization scripts.
Whereas the visualizations produced by these programs
once had to be viewed locally using operating system
specific tools, they now can be conveniently distributed
over the Web. All we had to do to our old programs is
modify them so that, inside the scripts they produced,
annotations were inserted as to when context-sensitive
documentation windows and stop-and-think questions
should pop up during the course of the visualization. This
methodology also allows students in a course to write Web-
viewable visualizations even though they are not
programming in Java. Merely load the students' script-
producing programs on the departmental Web server, and
JHAVI~ can make the visualizations produced by these
programs available for everyone to explore.

3 Examples and User Testing
To initially test the system, we prepared visualizations and
accompanying materials for two algorithms studied in our
upper level algorithms course -- the 0/1 knapsack problem
and the Knuth-Morris-Pratt string search algorithm. For a
discussion of these algorithms, the reader is referred to [9].
The visualization for the knapsack problem was built from
a C++ program that created a Samba script while that for
the KMP algorithm came from a Pascal program that
produced a GAIGS script. During the past summer, these
visualizations were presented to a small group of five
students who had completed our CS2 course but who had
not yet been exposed to the algorithms. For the knapsack
problem, we used JHAVi~'s stop-and-think questions to
interrupt the animation with multiple-choice questions that
asked what two previously computed values in the optimal
value matrix had to be compared to fill in the currently
empty matrix position (see Figure 1). The visualization
for the KMP algorithm interspersed GAIGS snapshots
with fill-in-the-blank questions that asked students first for
the values to be stored in the pattern string's alignment
array and later about the indices at which realignment
would occur in the second phase of the algorithm (see
Figure 2). After studying the algorithms for approximately
two hours, the students were asked to manually trace each
algorithm on a small data set and then to respond to a set
of subjective questions regarding the effectiveness of the
JHAVI~ environment in helping them learn the algorithms.

Figure 1 -- Knapsack problem with Samba co~rols,
context-sensitive documentation, A V rendering window,
and multiple-choice question.

111

. f r ~ n

,~,J,,w ~ ~ .z...t.L.. in,..t...I.t..................................__.......iEw'~'°"~"v'~t"" .i

Me ~ lqlamlttN
.

Figure 2 -- IKMP algorithm with GAIGS controls, context=
sensitive documentation, A V rendering window, and fill-
in-the-blank question.

The ability of the students to trace the algorithms after
participating in the visualizations was guardedly
encouraging. For the knapsack problem, all students
arrived at an understanding of the algorithm to the extent
that they could fill in the matrix of values computed by the
algorithm for a small instance of the problem. Two of the
students made a minor arithmetic error at one stage of the
trace, but an examination of their responses made it clear
that their error was purely one of calculation and not of
understanding. On the post-test questions for the KMP
algorithm, only two of the five students were correctly able
to trace the entire algorithm, that is, both the phase that
determines the values for the pattern string's alignment
array and also the phase in which the alignment array is
consequently used to perform the actual search. The three
students who made errors did so during their trace of the
algorithm's first phase. Their traces of the realignments
during the second phase of the algorithm were then
consistent with their earlier errors.

Student comments on the strengths and weaknesses of the
system were very helpful. There was a split as to whether
the discrete snapshots of GAIGS were more effective than
the smooth animations of Samba. One student who
preferred Samba remarked that the animation "allowed me
to see where things go, what things go together to make
the next step." Another who preferred the GAIGS
visualization noted, "Animations are hard to follow. It
takes some detailed thinking to get to the next step, and
the animation doesn't wait for you to think." The students
were unanimous in emphasizing the importance of the
context-sensitive documentation windows, offering
comments such as "The visual effects do help, but without
the accompanying description of them, I would have no
idea what's happening." Several students criticized that
the particular documentation we provided with these two
algorithms was not enough. For example, one said, "there

should be a better description of how to interpret a
particular picture." Finally, the stop-and-think questions
were universally well received. According to one of the
participants, "Questions are by far the feature most
conducive to understanding the algorithm. They force you
to figure out what's going on. However, I found that I was
able to see the answers to the questions before I completely
understood why those were the right answers."

4 Future Directions and C o n c l u s i o n s
In many respects, JHAVI~ just represents a starting point.
There are a variety of directions to proceed from here:

1. We're anxious to have other computer science
instructors try JHAVI~. This can be done at several
levels. If you merely want to try the algorithms we
already have incorporated into JHAVI~, point your
browser at http://gaigs.cmsc.lawrence.edu. If you
have a program that you used in the past to produce
GAIGS or Samba visualization scripts, we would be
happy to review that program and add it to the
collection of visualizations that can be launched with
JHAVI~ from our server. If you've written an AV
system that could become an AV engine for JHAVI~ or
if you would like to run JHAVI~ directly on your Web
server, please contact us.

2. Much research needs to be done on how to effectively
generate and use stop-and-think questions during the
course of a visualization. These questions have to be
generated in automated fashion by the same program
that is producing the script files and are therefore
highly dependent on the data the program is
manipulating. There are significant computer-
assisted-instruction and artificial intelligence issues
involved in the effective production of such questions.

3. Although JI-IAVI~ is able to synchronize a
visualization with context-sensitive documentation,
the documentation we presently use is still static in
that it knows nothing about the specific data in that
image. For instance, the documentation might inform
the viewer "the red node will be moved up a level in
the tree," but it doesn't know enough t O say "the red
node containing 4 will be moved up a level in the
tree." This is because the documentation has been
written statically, that is, before the execution of the
algorithm that it tries to explain. It would be even
more valuable if the documentation could be
dynamically produced as the algorithm executes. It
would then have much more awareness of the data
being manipulated and could offer a much more
specific explanation to the student.

In addition to these avenues for continued research, there
are lessons learned from our experiences with JI-IAV/~ that
apply to the design and use of all AV systems. In

112

particular, AV can be effective in helping students achieve
the first and second types of algorithm understanding that
were cited in Section 1. What does this imply about the
role of AV in a course like CS2 or an upper-level
algorithms course? One particularly appropriate use of
AV is to help students familiarize themselves with an
algorithm before the lecture in which that algorithm will
be covered. If we, as instructors, can expect that students
will walk into class with a solid understanding of the steps
involved in an algorithm, then we can spend much more
class time on tougher topics like correctness proofs and
efficiency analyses. Of course, used in this way, AV is
analogous to a reading assignment, so the threat of a
"manual trace" quiz at the beginning of class to make sure
the assignment is done may be appropriate. Feedback
from our test group indicated that JHAVI~'s stop-and-think
questions lessen the intimidation factor of such a quiz. In
effect, students know exactly what to expect because
JHAVI3 has already provided them with an unlimited
supply of practice quizzes during their preparation.

Our results reinforce those in of Stasko, Badre, and Lewis
in [11] that accompanying textual explanations are
absolutely essential to the effective instructional use of AV.
As much as computer science instructors may complain
about students' abilities to read an algorithm, having them
read about it in the context of watching an accompanying
visualization may be the ideal motivating factor. Even
though we provided them with context-sensitive
documentation windows, the members of our test group
emphatically asked for more textual material to clarify the
visualizations they were watching. In other words,
perhaps our focus should change from AV being
supplemented by textual materials to textual materials
being augmented and motivated by AV. Though subtle,
this reversal in perspective could be significant because it
substantiates that our work ~ designers of visualizations
does not stop at merely producing high quality graphics.
To be truly effective instructional aides at the
undergraduate level, AV systems must guide their viewer
through a carefully orchestrated exploration of an
algorithm. Designers of AV systems should consider
techniques to provide such guidance to be of equal
importance to the graphical rendering done by the system.
Indeed, the incorporation of such techniques may well
prove to be the difference between students' largely
ignoring the system and their viewing it as an essential
resource.
5 Acknowledgement
We are greatly indebted to John Stasko for providing us
with the Java source code for his Samba animator [13].
With that as a starting point, we were able to add a limited
rewind facility and fit it into the fraruework of an AV
engine for JHAVI~ with relative ease.

6 References
[1] Byrue, M.D., Catrambone, R, and Stasko, J.T., "Do

Algorithm Animations Aid Learning?", Tech. Rep.
No. GIT-GVU-96-18, Georgia Tech Graphics,
Visualization, and Usability Center, 1996

[2[deMarneffe, P.A., "The Problem of Examination
Questions in Algorithmics," in Proceedings of the 3 rd
ITiCSE Conference (Dublin, Ireland, August, 1998).

[3] Hundhansen, C.D., "Toward Effective Algorithm
Visualization Artifacts," Doctoral Thesis, University
of Oregon, June 1999

[4] Lawrence, A.W., "Empirical Studies of the Value of
Algorithm Animation in Algorithm Understanding,"
Doctoral Thesis, Georgia Tech University, 1993

[5] Naps, T.L. and Bressler, E., "A multi-windowed
environment for Simultaneous visualization of related
algorithms on the World Wide Web," in Proceedings
of the SIGCSE Session, ACM Meetings (Atlanta,
Georgia, February, 1998).

[6] Naps, T.L. and Chan, E., "Using Visualization to
Teach Parallel Algorithms" in Proceedings of the
SIGCSE Technical Symposium on Computer Science
Education, New Orleans, Louisiana, February 1998.

[7] Rodger, S., "Integrating Animations into Courses" in
Proceedings of the Conference on Integrating
Technology into Computer Science Education,
(Barcelona, Spain, June, 1996).

[8] Sears, A. and Wolfe, R., "Visual Analysis: Adding
Breadth to a Computer Graphics Course" in
Proceedings of the SIGCSE Technical Symposium,
Nashville, TN, March, 1995.

[9] Sedgwick, IL, Algorithms in C++, Addison Wesley,
Reading, MA, 1990

[10]Stasko, J., "Tango: A Framework and System for
Algorithm Animation" in IEEE Computer,
September, 1990.

[ll]Stasko, J., Badre, A. and Lewis, C., "Do Algorithm
Animations Assist Learning? An Empirical Study
and Analysis" in Proceedings of the INTERCHI '93
Conference on Human Factors in Computing Systems,
(Amsterdam, Netherlands, April, 1993).

[12] Stasko, J., "Using Student-Built Algorithm
Animations as Learning Aids" in Proceedings of the
SIGCSE Session, ACM Meetings (San Jose, CA.,
February, 1997).

[13] Stasko, J., JSamba, described online at
http://www.ec.gatech.edu/gv~softviz/SoflViz.html.

[14]Wolfe, R., Grissom S., Naps, T. and Sears A., "A
Tested Tool for Teaching Graphics" in Journal of
Computing in Small Colleges (Proceedings of the
Third Annual CCSC Midwestern Conference),
Greencastle, IN, vol. 12, no. 2, November 1996.

113

