
The Buzz: Supporting User Tailorability
in Awareness Applications

James R. Eagan
eaganj@cc.gatech.edu

John T. Stasko
stasko@cc.gatech.edu

School of Interactive Computing & GVU Center
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332, USA

ABSTRACT
Information awareness applications offer the exciting poten-
tial to help people to better manage the data they encounter
on a routine basis, but customizing these applications is a
difficult task. Most applications allow users to perform ba-
sic customizations or programmers to create advanced ones.
We present an intermediate customization space and Cocoa
Buzz, an application that demonstrates one way to bridge
these two extremes. Cocoa Buzz runs on an extra display
on the user’s desktop or on a large shared display and cy-
cles through different information sources customized by the
user. We further demonstrate some of the customizations
that have been made using this approach. We show some
preliminary evidence to suggest that this approach may be
useful at providing users with the ability to perform cus-
tomizations across this spectrum.

ACM Classification Keywords
H.5.m Information interfaces and presentation (e.g., HCI):
Misc.

INTRODUCTION
The combination of abundant and ubiquitous access to data
with falling costs of display technologies is forming an ex-
citing opportunity to create new and interesting information
awareness applications. These applications can gather data
from a variety of sources, compound them together in in-
teresting ways, and create new interfaces on the data. For
example, mashups focus on taking data from one or multiple
sources and integrating them together with a different inter-
face, as in combining housing data from Craig’s List with
a mapping interface from Google [21]. Other applications
focus on presenting the data via calm, ambient or peripheral
interfaces [20] that may potentially be able to help people to
better manage interruption [7].

c©ACM, 2008. This is the author’s version of the
work. It is posted here by permission of ACM for
your personal use. Not for redistribution. The definitive
version will be published in the Proceedings of CHI 2008.

CHI 2008, April 5 - 10, 2008, Florence, Italy.
Copyright 2008 ACM 1-59593-178-3/07/0004...$5.00.

Figure 1. Articles from the collaborative news site, Digg.com, as shown
on Cocoa Buzz.

These personal information awareness systems, however, are
inherently personal in nature. Such systems need to support
some degree of customization in order to allow the user to
tailor the content to his or her own personal interests. Sup-
porting such customization, however, requires application
designers to forge a delicate balance between the expres-
siveness of the customization system and the ease of using
such a system. As a result, many systems focus on provid-
ing rudimentary customizations or advanced customizations,
but do not focus on bridging the area in between. Thus,
users can customize basic properties of awareness content,
such as providing a postal (zip) code, an email address, or a
list of stock symbols [8, 3, 5]. Or they can define complex
visual or software programs to manipulate their data or pre-
sentation [24, 4, 8]. But performing intermediate customiza-
tions are either impossible or involve using a full-fledged
programming environment.

We have created a customizable information awareness ap-
plication, called Cocoa Buzz1, that allows users to richly
tailor their information awareness content, or channels. To

1Cocoa Buzz is a play on the caffeine jolt one gets from the drink
and the UI toolkit on which the software is built.



Figure 2. Cocoa Buzz running (a) on a secondary display on the desktop and (b) in a public lounge.

guide the design and construction of this application, we first
interviewed current and potential users of an earlier non-
customizable version of our software in order to identify the
sorts of content they would like to see and the sorts of cus-
tomizations they might wish to make.

Using these interview data, we defined a general-purpose
multiple layer mechanism for data gathering and presenta-
tion. By coupling various data extraction heuristics with a
mixture of general-purpose and specialized data gathering
modules, users can create information awareness collages
using a variety of data sources and formats in various pre-
sentation styles. In a preliminary study, we have found that
some users do make use of these capabilities.

Cocoa Buzz runs on a secondary display on the user’s desk-
top or on a large, shared display (see Figure 2). Approxi-
mately every minute, it presents a different collage, automat-
ically generated from some particular source. Users can sub-
scribe to various channels, each of which handles gathering
data from the content publishers and generating an appropri-
ate representation of those data. Some existing channels in-
clude collaborative news from Digg (Figure 1), a collection
of dossiers on people within the research organization (Fig-
ure 5), and a collection of webcams chosen by the user, in
addition to the standard news, weather, and traffic (Figure 9).

Users can subscribe to channels in order to create their own
personal channel lineup. Channels offer basic configuration
properties, such as postal (zip) code for the weather chan-
nel or tags for a Flickr channel. Channels also offer more
advanced general purpose configuration options that are not
tied directly to a particular data source. One of these con-
figuration methods provides some simple heuristics to do
things like extract the largest image on a web page or to per-
form a [Yahoo] image search using the keywords extracted
from an RSS entry title. By using this more advanced in-
terface, some users could extend the behavior of an exist-
ing channel or define a new one. Finally, we also provide
an API through which programmers can define new compo-

nents to augment the capabilities of the customization inter-
face. We describe this customization interface and a pilot
study in more detail in a later section.

USER-CUSTOMIZABLE CONTENT
Cocoa Buzz’s predecessor was an application similar to the
What’s Happening screensaver [25]. Each minute, it would
display a different informative collage. The primary con-
tent of this screensaver was collages generated from a we-
bcrawler on the College of Computing web server. Addi-
tionally, the system displayed the standard set of awareness
information: news headlines, weather, traffic, and stock data.

In informal conversations with the users of this system, how-
ever, a common theme arose: users expressed a desire to be
able to tailor the content that appeared to their own interests.
For example, one user who took public transportation indi-
cated that she would prefer not to see the traffic information.
Another user indicated that he would like to see the weather
where his parents lived.

Many awareness applications reflect this user desire for cus-
tomizable content [23, 8, 11]. Supporting such customiza-
tion in a general purpose awareness application, however, is
a difficult process. Simple customizations, such as selecting
which information sources to subscribe to, may not be par-
ticularly difficult to support, but more complex operations
must necessarily provide richer options to the user. Such op-
erations add complexity both for the system, which must ac-
commodate such customizability, and for the user, who must
understand the interface provided by software.

As a result, awareness systems typically offer at least one of
two modes of customization. The first is intended for cus-
tomizations by the user, while the second caters to a devel-
oper or a power user. For example, a developer can create
a Konfabulator [3] widget using XML, HTML, and Java-
Script, defining any sorts of behaviors expressible within
the supporting framework. Relatively few users, however,
would be capable and willing to write the necessary code to



Figure 3. A Yahoo Pipe to mashup headlines from the New York Times
with relevant photos from Flickr.

perform basic customizations of such a widget. Thus, the
system also provides a framework whereby widget design-
ers can expose basic properties for users to customize. Thus,
the designer of a stock portfolio widget could perform the
task-specific logic necessary in gathering stock market data
and in representing those data to the user. The user, by con-
trast, would need only to enter the symbols of stocks in his
or her portfolio, a comparatively straightforward operation.

Systems such as Buttons [16, 22], Konfabulator [3], Side-
show [8], Sidebar [17], Dashboard [6], and Google Gad-
gets [2] all use this bicameral approach to customization:
developers create an object with specialized parameters and
users perform basic configurations to those parameters. This
dual-class approach, however, creates a significant hurdle for
users who wish to transition from one role of interaction to
another. If a user desires to modify a weather widget to show
relative humidity, she must transition from providing simple
properties via a configuration interface to writing code.

Various systems attempt to make it easier for users to write
widgets by defining them in markup rather than in code [3,
17, 2, 6]. Although this approach does help lower the height
of the barriers between these two approaches, it does not
eliminate them completely. Users must still transition from
one style of interaction to another.

Yahoo Pipes [4] attempts to blur this distinction between the
two styles of interaction. Instead of requiring users to exit
the program and write code or configuration files, Pipes inte-
grates such behavior directly within the interface. The inter-
face for each pipe prominently displays a button to view its
source. In this way, as a user is configuring basic properties
for a pipe, he or she can readily transition to editing the un-
derlying behavior of the pipe. Furthermore, pipes are created
using a visual programming interface in which users connect
basic operators together via pipes (see Figure 3). This ap-
proach greatly reduces the barriers to creating such tools. Its
focus, however, remains on programming. As such, pipes
are still relatively complex for most users to create.

Figure 4. Range of customizations within an awareness application.

Marmite [24] attempts to reduce this complexity further by
restricting the types of data flows possible and by providing
hints as to possible operators in a data flow. Rather than pro-
viding a free-form visual programming interface as in Pipes,
Marmite uses the concept of a dataflow and an interface in-
spired by Apple’s Automator [5]. In this interface, the user
starts out with an information source and defines a linear se-
quence of operations to perform on the data. At each step in
the process, the system makes suggestions to the user about
possible operators to use at that point. As a result, some
users with spreadsheet experience were able to create inter-
esting data mashups [24]. As with Pipes, Marmite still ap-
pears to be graspable only by users with at least spreadsheet
programming abilities.

Both Pipes and Marmite provide a similar rich customization
capability. Rather than writing code, users can create visual
dataflows. These approaches reduce but do not eliminate the
complexity involved in users creating their own dataflows.
By providing an obvious transition between roles in the in-
terface, a system can help to remove one potential barrier to
rich customization. While it may become obvious how to
customize the software in the interface, using that interface
still remains necessarily complex. Thus, there is an inher-
ent tradeoff between the expressiveness of a customization
interface and its ease of use. As Figure 4 illustrates, user ef-
fort increases along with the expressiveness of the interface.
Visual methods may help to reduce the effort, but can only
offer a certain degree of benefit.

In this sense, there is a cliff [16] between the two styles of in-
teraction, with tweaking properties of the data at the bottom
and defining new behaviors at the top. Pipes and Marmite
use two approaches to helping users climb this cliff. The
first is to bring the top closer to the bottom by reducing the
complexity involved in defining the new behaviors. The sec-
ond is to build a ladder between the two levels in the form of
obvious user interface transitions.

An alternate and complementary approach is to raise the bot-
tom of the canyon by improving the expressiveness of the
basic configuration interface. In order to avoid overburden-
ing the user, however, a balance must be struck between the
complexity and expressiveness involved in customizing the



Figure 5. The People in the GVU channel on Cocoa Buzz.

system. We have taken this gentle-slope approach [18] in de-
signing a new information awareness system, called Cocoa
Buzz.

Our goal in designing Cocoa Buzz is to focus on the middle
customization space shown in Figure 4. As such, the Cocoa
Buzz interface is not as powerful as those of Pipes and Mar-
mite. In sacrificing the capability of the interface, we aim to
make it easier for users to customize it while still retaining
some degree of control over the behavior of the system.

REQUIREMENTS GATHERING
In order to understand what sorts of information users might
wish to see and what sorts of customizations they might wish
to make to the data, we interviewed twelve potential users of
the software. Our goal was to understand both the kinds of
information that users expressed a desire toward seeing in
such an information awareness tool as well as their existing
information practices.

We conducted interviews with twelve participants from the
Georgia Tech community. All but two of these interviews
were conducted at the participants’ normal workplace. In
the interviews, we asked users to describe their typical day
and the sorts of information they routinely access. This in-
cluded email, web sites, databases, etc., as well as offline
media such as television and radio. Our goal in this line of
questioning was to identify what information sources might
be important to support in a personal information awareness
application.

We then asked users to walk us through their bookmarks
and web browser histories. For privacy reasons, participants
were given a chance to self-censor their bookmarks and web
browser histories before our interviews. For each web site,
participants described how they used that resource. What
sorts of monitoring habits did they use? Did they tend to
monitor a particular portion of a web page or web site, or
did they monitor the web site as a whole?

Additionally, we asked what kinds of customizations users
had made to their software. Did they change any of their
preferences in any of their software applications? Did they
use any mail handling rules in their email client? Had they
customized a web portal page? Had they ever downloaded or
used any software plugins or other types of hacks? In partic-
ular, we were interested in what experience our participants
had in customizing their software and to what degree they
were willing to do so.

Finally, we gave our participants a stack of index cards with
various potential data sources on them. We asked our users
to rank each data source into three piles: those that they
would particularly like to see in the awareness application;
those that they might like to see; and those that they did not
care about. For each source, they were then asked to describe
why they cared about that particular source and what sorts of
customizations they might wish to make to them (e.g. loca-
tion for the weather).

These sources on the index cards included those used by the
then-existing system along with sources that we as the de-
signers of the system thought might be useful to include and
sources that users had suggested in our pilot interviews. Fi-
nally, we also gave the participants a stack of blank index
cards on which they could add their own.

Interview Results
Our participants consisted of members of the community
for whom the original software, What’s Happening, was in-
tended to support. Within the College of Computing, we in-
terviewed three Professors, seven graduate students, an ad-
ministrative assistant, and an administrator, all working in
Computer Science or related areas. Being a technical organi-
zation, we expect that our participants demonstrated a higher
degree of capability and willingness to customize their soft-
ware. We believe, however, that this is also similar to the
demographic that is most likely to use a customizable infor-
mation awareness application.

Interestingly, in our interviews, a quarter of our participants
had used customizable portal pages and all but one of them
had customized their portal pages. The participant who had
not performed any customizations indicated that he had ex-
amined the options available but had chosen not to use them
because they were too rudimentary. Furthermore, of these
users who had customized their portal pages, none of them
frequently visited those pages. These users had taken the
time to customize the portal pages, but did not actually use
the resulting artifact. This lack of use suggests that users
may find portal pages too lacking in customization and/or
presentation capabilities to be useful. For example, one user
remarked that he had customized his page to figure out what
he could do with the portal, but once he had done so, did
not feel compelled to use it. Rather than condemning por-
tal pages or information awareness applications in general,
we see this behavior as potentially calling out the need for
richer customization capabilities in information awareness
applications. If users are unable to adequately customize
their awareness tools, they will be unlikely to use them.



Figure 6. Browsing Cocoa Buzz channels.

Our primary goal in probing our users for their information
monitoring habits, however, was to identify what sorts of
triggers existed to their accessing particular pieces of infor-
mation. In Kellar et al’s terminology for monitoring activ-
ities [13], we were looking at when participants tended to
monitor data sources for browsing, fact finding, or informa-
tion gathering purposes. Each of these different purposes
suggests a different kind of interaction. For example, a user
participating in a browsing activity may be content merely to
sit back and let the system determine what content appears
and when. For a fact finding activity, however, the user is
motivated to see a particular piece of information at a partic-
ular time. As such, a direct path to that data should be avail-
able. Therefore, an application such as Cocoa Buzz, which
provides a slideshow style of presentation, should provide a
shortcut to an index of all of the available content if it is to
support fact finding activities.

Finally, we used the index cards to provide an indication of
what kinds of data sources our users might want to moni-
tor. While the standard sources such as news headlines, traf-
fic, weather, and stock quotes quickly rose to the top of the
list, there were also some surprising sources identified. One
user described a “pretty things” collection of pictures she
had taken on her travels: “It sparks conversations and makes
me happy.”

Other sources tended to be relatively one-off in nature. For
example, a professor wanted to see “what the snake says”
on an introduction to programming class wiki. On the web
page for the class in question, the professor puts quick class
announcements in a speech bubble next to a cartoon Python

snake. Seeing what the snake says would help him to keep in
sync with the announcements he or any of the other teaching
assistants might be making to the class. This particular ex-
ample demonstrates an inherent limitation in awareness ap-
plications that focus on handling data in particular formats.
Although data in semantic markup formats such as RSS is
increasingly common, most content is more ad hoc in nature.
For example, the speech bubble of the snake is a clever pre-
sentation trick made by the designer of the class web page.
As a result, a general purpose heuristic to extract the mean-
ingful content from a web page is unlikely to find “what the
snake says” without some more specialized guidance. In-
stead, the “What the snake says” channel was implemented
using a custom regular expression.

PROTOTYPE DESIGN GOALS
In our interviews, our participants identified a rich set of in-
formation sources that they accessed or would care to ac-
cess on a routine basis. These information sources helped to
guide the design of this interface by providing insight into
the sorts of customizations users might wish to make. For
example, eight of our twelve participants indicated that they
desired to see interesting pictures from their photo collec-
tions, others’ collections, or both. As such, one of the goals
was to make sure that it was possible to create such a photo
gallery using the customization capabilities of the system.

A further goal was to, wherever possible, use general pur-
pose methods for gathering content and for presenting it. By
using these general purpose methods, the particular infor-
mation channels could more readily be extended to handle
different kinds of data or presentation methods without re-



sorting to writing specialized code. Nonetheless, there is
an ease-of-use tradeoff between general purpose and spe-
cialized methods. Consider, for example, extracting images
from the Flickr photo sharing web site. A general purpose
approach might be to use a web crawler to extract the largest
image from each page. But tuning that process to show only
photos tagged with “Firenze”, for example, requires config-
uring the web crawler in certain precise ways that are un-
likely to be intuitive to most end users.

An alternative approach is to provide a specialized data gath-
ering mechanism, or harvester, that lets the user configure
task-relevant properties (in this case, photo tags) and handles
the underlying extraction details behind the scenes. Such a
specialized approach benefits by being able to provide the
user with meaningful configuration options, using language
and terminology from Flickr, which he or she is more likely
to understand. However, by virtue of being specialized to the
particular task they solve, these methods are inherently lim-
ited. They can only handle the particular data for which they
were designed. As a result, they cannot be adapted to han-
dle another sort of data or a different presentation style. In
the preceding example, it would be impossible to configure
the tool to use a different photo sharing service or to extract
different data from Flickr without modifying the specialized
components of the tool itself.

We have attempted to balance these tradeoffs in Cocoa Buzz
by providing a combination of general purpose and special-
ized tools. Thus, in the preceding example, a user could
configure a web crawler to gather all of the images from a
particular set of web pages on the Flickr web site, or the
user could specify a combination of tags, users, or groups
(in Flickr’s terminology) from which to gather photos. The
next section demonstrates some of this behavior.

USING COCOA BUZZ
Whether Cocoa Buzz is running on an extra display on the
desktop or on a large, public display, the machine’s owner
can browse the running channels using the interface shown
in Figure 6. In the center of the screen, Cocoa Buzz displays
a list of all of the channels the user has subscribed to. On the
right are details about the selected channel: a preview of the
last collage shown, its name, and a brief description. Click-
ing the share button allows the user quickly to publish the
channel for other users. Clicking the blue Available Chan-
nels button on the left of the screen allows the user to browse
channels shared by other users of the software. In this way,
users can navigate shared channels in the same way they
navigate their own. We integrated this sharing mechanism
directly into the interface because of the widely documented
sharing behavior of users of customizable systems [14, 16].
We hope that by making sharing and browsing channels a
basic operation in the interface, we can encourage the for-
mation of a sharing culture.

To further encourage tinkering, users may double-click on a
channel to view its configuration and can copy channels to
easily create derivative behaviors. Figure 7 shows the chan-
nel configuration interface. Across the top of the screen are

Figure 7. Configuring the data gathering properties of a channel.

Figure 8. Customizing the layout of a channel.

three tabs controlling what data to show, how to show the
data, and meta-information about the channel itself (such as
its name or description). The first tab (shown in Figure 7) al-
lows the user to select a data gathering method. In this case,
an RSS feed of BBC world news headlines is used. A user
can create a new RSS-driven channel simply by dragging an
RSS feed onto the Cocoa Buzz display from, for example, a
web browser, email client, or a feed reader.

In this particular example, the user could simply drag the
RSS feed over from a web browser, press the OK button on
the bottom of the screen, and a new channel would be cre-
ated from the data in the RSS feed. The BBC, however, pro-
vides a rich RSS feed with well-written titles and descrip-
tions of all stories, but does not include any images in the
feed. As such, the resulting channel would be relatively text
heavy and image bare. The collages generated by Cocoa
Buzz are much more appealing and do a better job of con-
veying the information, however, when augmented with ap-
propriate graphics. As a result, we have added an additional
heuristic that proves useful for many such feeds: gathering
all of the images found on the web page linked in each RSS
entry. Thus, while an entry might not directly provide any



images, it is likely to link to a web page of the full content
which often does contain supplementary graphics. As such,
a user may change the image gathering method in the inter-
face from “All images in RSS entry” to “All images in RSS
entry link,” as shown in the Figure.

Clicking on the Presentation tab at the top of the window
will bring up a layout template, shown in Figure 8. The top
portion of the screen provides basic configuration options for
the title and footer for the collage (which may be automati-
cally provided from the underlying data source) and for the
frequency with which each collage should be shown. The
main portion of the screen allows the user to create and drag
around various content regions. Each region represents a
place on the screen where some particular piece of data will
be drawn. The default template places five regions on the
screen in a collage-like layout: four in each of the standard
Cartesian quadrants with a fifth centered above the others.
Figure 8 shows the user customizing a template by dragging
a region into place.

By default, each region is bound to a random data entry pro-
vided by the data harvester. This default is appropriate for
most data collections, where each entity is essentially a dif-
ferent instance of the same class (such as a news article or a
photograph). Users can override these bindings by double-
clicking on a region and associating the region with a dif-
ferent piece of the already-gathered data. This approach is
more commonly used with heterogeneous data whose enti-
ties tend to remain the same but whose values themselves
change. For example, the Georgia Navigator traffic website
publishes the same set of maps, cameras, and sensors, but the
values of those entities changes frequently (see Figure 9).

This template approach allows users to “paint” their own col-
lages, brushing their data onto the screen. A user simply
drags the various regions into the configuration he or she de-
sires and associates each region with a piece of data. When
it comes time to display the collage, the system inspects the
data to identify its type and automatically determines an ap-
propriate rendering method to depict it to the screen (the user
can override this mechanism if she so desires). Thus, if the
data to be drawn is numeric in nature, then a visualizer ap-
propriate for depicting numeric data may be used. If the data
has a title, images, and a description, then the system may
use an RSS entry visualizer.

By using this approach, the various data harvesters can out-
put multiple representations of the data they gather, allowing
multiple visualization approaches to be used to depict them.
For example, when the built-in weather harvester outputs the
probability of precipitation, it outputs both an image ranging
from clear to monsoon and a numeric percentage. Thus, a
visualizer could use the appropriate stored value for its rep-
resentation.

CUSTOMIZING DATA
The design of the data harvesting capabilities of Cocoa Buzz
uses a multi-layer approach to data harvesting. Many users
need not worry about the lower layers, however. The top

layer, the harvester, focuses on getting data from the pub-
lisher. Existing harvesters include general purpose methods
(such as a web crawler) and more specialized methods (such
as a Flickr harvester built using the Flickr web service API).
These harvesters can then delegate the content extraction to
lower layer methods. This is the approach used by the RSS
harvester in the earlier BBC World news example in which
image gathering was delegated to a lower-level component,
called a scraper, that extracts images from a web page.

We have taken great care in selecting the various scrapers
available when customizing the data harvesters for a chan-
nel. The scrapers embody various heuristics that we have
found are useful in creating collages for a variety of different
web-based data formats. We could add many more heuristics
or richer ways of creating complex, interconnecting compo-
nents, as in Yahoo Pipes or Marmite. Doing so, however,
would create additional complexity in the interface that we
are trying to avoid2. Instead, the system provides a list of
basic heuristics and a small handful of more complex ones,
as follows:

All images with(out) captions on web page Extracts
the URLs for all images in HTML <img> tags in a doc-
ument, with or without their corresponding alt attributes.

Largest image with(out) caption on web page Extracts
the URL for the largest image on a web page.

Image at web address Extracts a specified URL. This can
be useful for content at fixed URLs, the contents of which
are periodically updated.

All images in RSS entry Extracts the URLs for all images
specified in an RSS entry.

All images in RSS entry link Extracts the URLs for all im-
ages embedded in the web page specified by an RSS en-
try’s link.

From RSS entry link A mechanism that allows the appli-
cation of another heuristic to the URL specified in the RSS
entry’s link. The “All images in RSS entry link” is a short-
cut for this heuristic combined with “All images on web
page”

From image search using RSS entry title Performs a key-
word extraction on the title of an RSS entry and uses these
keywords on a [Yahoo] image search.

Using a pattern matcher Applies a regular expression to
return whatever text, if any, matches.

Most of these data extraction heuristics perform relatively
straight-forward operations. There are, however, two meth-
ods that provide for some additional complexity. The “From
RSS entry link” scraper allows an arbitrary scraper to be
2Cocoa Buzz does, however, expose a plugin architecture whereby
programmers can extend the available harvesters, scrapers, and vi-
sualizers. Thus, if a programmer had code to identify “blueish”
pictures, she could add a new “blueish pictures scraper” with rela-
tively little effort.



Figure 9. The layout template (left) for the Traffic channel (right).

used on the URL of an RSS entry (in fact, the “All im-
ages in RSS entry link” scraper is essentially syntactic sugar
combining this scraper with the “All images on web page”
scraper). In this way, some complex chaining of operations
is possible, but within a highly constrained context. Our goal
is to remove complexity that might overburden the user by
constraining the choices possible. Thus, while the user can
couple multiple methods together, he or she can only do so
within a structured framework.

The other complex scraper uses a pattern matcher to find
content. Although patterns are difficult to learn and to write,
we provide a pattern matching mechanism within a relatively
fine-grained context. Much in the same way that spread-
sheets allow users to enter complex formulae within the rigid
context of their document [19], Cocoa Buzz users enter pat-
terns only within a narrow context. In this way, users do
not need to write complex programs in code or using a vi-
sual programming interface. Instead, they supply a pattern
within an isolated context. We hope that narrowing the con-
text in this way might enable users to create these complex
customizations without becoming overburdened.

Fortunately, writing patterns is an exceptional case intended
only for when the other methods are insufficient. To aid the
user in writing these patterns when they do become neces-
sary, we provide a pattern editor interface, shown in Fig-
ure 10. The top region of the editor shows (an instance of)
the underlying HTML to which the pattern will be applied.
The bottom region is where the user composes his or her
pattern. As the user enters the pattern, the display updates to
show all matches to the pattern in the document. Addition-
ally, any errors in the pattern expression are shown in grey
in the space directly beneath the pattern. In this way, the
user can get immediate feedback as he or she composes the
pattern, helping to reduce the likelihood of errors.

Content Extraction Heuristics
The heuristics embodied in the various scrapers are tailored
specifically towards the sorts of data sources that our users

identified in our interviews. In practice, they seem to work
well for these tasks and for others that our users did not
specifically request. Nonetheless, there are still many data
sources for which these heuristics are insufficient or too com-
plex. In particular, those data sources for which there is not
a standard markup for their textual content. In order to han-
dle these data sources, the user must either ignore any tex-
tual content, extracting just images from the underlying data,
or she must write a complex pattern matching expression to
define an extraction template. Such pattern expressions are
useful when they are needed, but those cases should be min-
imized as much as is feasible.

There are, however, several viable alternatives to using reg-
ular expressions. The first is to consider ways to simplify
the pattern expression language to something better suited
to the specific task of extracting content from HTML and
XML formatted documents. For example, all of the exist-
ing patterns that have been used in creating Cocoa Buzz
channels extract selected elements or attributes within the
source document. A simplified expression syntax, such as
XPath queries [9], could help reduce the complexity users
face when composing such patterns. Nonetheless, patterns
will continue to remain complex.

Sifter [12] and Dapper [1] provide a method by which a user
creates an extraction template from rendered web pages. In
Sifter, the user selects the rendered desired entities of a web
page, and the system infers the underlying HTML corre-
sponding to the graphical elements the user selected. In this
way, the user can create a data extraction template from ren-
dered output. Dapper uses a similar approach but attempts
to make the templates more robust by requiring multiple in-
stances of the underlying data for its inferencing mechanism.
Dontcheva’s summaries framework [10] extends these ap-
proaches to allow the user to define extraction patterns, rela-
tionships between the extracted data, and to manage them.

If, however, no semantic understanding of the underlying
data is required, and it is feasible to simply extract the rele-



Figure 10. Editing a pattern in Cocoa Buzz to extract the source URL for a story on Digg.

vant data and present it to the user as-is, the approach from
Greenberg and Boyle’s Notification Engine [11] could pro-
vide a useful alternative. The Notification Engine operates
on the surface representation of the data rather than the un-
derlying data themselves. Instead of inferring the underlying
HTML corresponding to rendered output on the screen, the
system extracts the rendered pixels. To monitor for changes,
the system uses a landmark-based visual differencing engine
to identify regions of web pages that have changed. If a
change is detected in a monitored portion of a web page,
that change is output as a graphical notification. This ap-
proach works particularly well in many cases and allows a
certain degree of data format independence, but it is frag-
ile to certain kinds of web page presentation styles and does
not provide any semantically useful data. For example, it is
difficult to compute derived data or to rewrap extracted text.

Regardless of the individual limitations of each of these ap-
proaches, they all offer beneficial heuristics for content ex-
traction. By combining these approaches, a system such as
Cocoa Buzz could handle many data sources and presenta-
tions with a relatively low user complexity.

DEPLOYMENT
To test how well these interfaces support users at creating
these custom information awareness channels, we have per-
formed a pilot deployment of the software within our orga-
nization. Six users, some of whom participated in the earlier
interviews, ran the software on their primary work comput-
ers for about two months. Of the six users, all performed at
least basic customizations to the system such as subscribing
to or unsubscribing from channels. Additionally, five of the
six users created derivative channels by modifying the con-
figurations of existing channels. Most of these configuration
changes involved editing basic channel properties, such as
the tags used in a Flickr query or the URL of an RSS feed.
Two users, however, created more complex customizations.
For example, one user created a new channel from scratch
using the web crawler to traverse his personal website and
to create a collage of his wedding photos. Additionally, one
user created a channel for his family vacation photos and
shared it with other users of the system.

The system is also running on a large public display in a busy
hallway. People walking by can glance at the screen and
glean whatever happens to be showing at the time. The sys-
tem focuses on community-relevant content, including con-
tent submitted by users. One channel, for example, shows
photos with a particular tag (4thebuzz) on Flickr. Anyone
can add their photos to the display simply by adding this
tag to their photos. Using this mechanism, several members
of the community have uploaded their conference pictures,
photos of group meetings, and even user interface glitches.

So far, we have focused on whether users are able to un-
derstand and take advantage of the customization interfaces
provided. Preliminary observations suggest that our techni-
cal users are at least able to make some use of the interfaces,
but more data is needed to make concrete claims.

CONCLUSIONS AND FUTURE WORK
We have demonstrated a publisher-to-presentation informa-
tion awareness application that offers promise at enabling
end users to richly tailor their awareness environment. By
focusing our attention on the space between basic customiz-
ation and advanced visual programming, we aim to provide a
stepping stone to help end users create novel behaviors with-
out becoming overburdened by programming oriented con-
cepts. Toward that end, we provide an abstraction of the data
gathering process that affords such tailorability, and we have
promising preliminary evidence to suggest that users may be
able to take advantage of these capabilities.

More work, however, needs to done to examine more closely
how effectively this approach supports users in performing
real tasks. We plan to further refine the various heuristics
embodied within the Cocoa Buzz interface and to conduct
task-oriented usability studies to examine the efficacy of the
interface. Additionally, we want to perform a richer anal-
ysis of real-world usage of the customization system. Are
there particular triggers that encourage users to customize
their interface and which we should more directly support?
What barriers discourage such customizations and are there
technological solutions to reduce those barriers? Finally, we
would like to examine whether these triggers and barriers
differ from those identified in other contexts [15].



REFERENCES
1. Dapper. Retrieved June 13, 2007 from

http://dappit.com.

2. Google gadgets. Retrieved August 6, 2007 from
http://www.google.com/apis/gadgets/.

3. Yahoo! Konfabulator. Retrieved June 13, 2007 from
http://widgets.yahoo.com.

4. Yahoo! Pipes. Retrieved June 13, 2007 from
http://pipes.yahoo.com/.

5. Apple, Inc. Automator, 2005. Retrieved June 13, 2007
from http:
//www.apple.com/macosx/features/automator/.

6. Apple, Inc. Developing dashboard widgets. Retrieved
June 13, 2007 from http:
//developer.apple.com/macosx/dashboard.html.

7. Brian P. Bailey, Joseph A. Konstan, and John V. Carlis.
The effects of interruptions on task performance,
annoyance, and anxiety in the user interface. In
Proceedings of INTERACT 2001, 2001.

8. J. J. Cadiz, Gina Venolia, Gavin Jancke, and Anoop
Gupta. Designing and deploying an information
awareness interface. In Proceedings of the 2002 ACM
conference on Computer supported cooperative work,
pages 314–323. ACM Press, 2002.

9. James Clark and Steven DeRose. XPath (XML Path
Language). W3C Recommendation, World Wide Web
Consortium (W3C), November 1999. Retrieved June
13, 2007 from http://www.w3.org/TR/xpath.

10. Mira Dontcheva, Steven M. Drucker, David Salesin,
and Michael F. Cohen. Relations, cards, and search
templates: user-guided web data integration and layout.
In UIST ’07: Proceedings of the 20th annual ACM
symposium on User interface software and technology,
pages 61–70, New York, NY, USA, 2007. ACM.

11. Saul Greenberg and Michael Boyle. Generating custom
notification histories by tracking visual differences
between web page visits. In GI ’06: Proceedings of the
2006 conference on Graphics interface, pages
227–234, Toronto, Ont., Canada, Canada, 2006.
Canadian Information Processing Society.

12. David F. Huynh, Robert C. Miller, and David R.
Karger. Enabling web browsers to augment web sites’
filtering and sorting functionalities. In UIST ’06:
Proceedings of the 19th annual ACM symposium on
User interface software and technology, pages
125–134, New York, NY, USA, 2006. ACM Press.

13. Melanie Kellar, Carolyn Watters, and Kori M. Inkpen.
An exploration of web-based monitoring: implications
for design. In CHI ’07: Proceedings of the SIGCHI
conference on Human factors in computing systems,
pages 377–386, New York, NY, USA, 2007. ACM
Press.

14. Wendy E. Mackay. Patterns of sharing customizable
software. In Proceedings of the 1990 ACM conference
on Computer-supported cooperative work, pages
209–221, New York, NY, USA, 1990. ACM Press.

15. Wendy E. Mackay. Triggers and barriers to customizing
software. In CHI ’91: Proceedings of the SIGCHI
conference on Human factors in computing systems,
pages 153–160. ACM Press, 1991.

16. Allan MacLean, Kathleen Carter, Lennart Lövstrand,
and Thomas Moran. User-tailorable systems: pressing
the issues with buttons. In CHI ’90: Proceedings of the
SIGCHI conference on Human factors in computing
systems, pages 175–182, New York, NY, USA, 1990.
ACM Press.

17. Microsoft. Vista Sidebar, 2007. Retrieved August 30,
2007 from http://www.microsoft.com/windows/
products/windowsvista/features/details/
sidebargadgets.mspx.

18. Brad A. Myers, David Canfield Smith, and Bruce Horn.
Report of the “End-User Programming” working
group. Languages for Developing User Interfaces,
pages 343–366, 1992.

19. Bonnie A. Nardi. A small matter of programming:
perspectives on end user computing. MIT Press, 1993.

20. Zachary Pousman and John Stasko. A taxonomy of
ambient information systems: four patterns of design.
In AVI ’06: Proceedings of the working conference on
Advanced visual interfaces, pages 67–74, New York,
NY, USA, 2006. ACM Press.

21. Paul Rademacher. Housing maps, 2005. Retrieved
March 27, 2007 from
http://www.housingmaps.com/.

22. George G. Robertson, Jr. D. Austin Henderson, and
Stuart K. Card. Buttons as first class objects on an X
desktop. In Proceedings of the 4th annual ACM
symposium on User interface software and technology,
pages 35–44, New York, NY, USA, 1991. ACM Press.

23. John Stasko, Todd Miller, Zachary Pousman,
Christopher Plaue, and Osman Ullah. Personalized
peripheral information awareness through Information
Art. In Proceedings of UbiComp ’04, pages 18–35,
Nottingham, U.K., September 2004.

24. Jeffrey Wong and Jason I. Hong. Making mashups with
Marmite: towards end-user programming for the web.
In CHI ’07: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages
1435–1444, New York, NY, USA, 2007. ACM Press.

25. Q. Alex Zhao and John Stasko. What’s Happening?:
Promoting community awareness through
opportunistic, peripheral interfaces. In Proceedings of
the Advanced Visual Interfaces Conference, pages
69–74, Trento, Italy, May 2002.


