
Efficient TDM-based Arbitration for
Mixed-Criticality Systems on Multi-Cores
Florian Brandner1

with Farouk Hebbache,2 Mathieu Jan,2 Laurent Pautet1

1LTCI, Télécom ParisTech, Université Paris-Saclay
2CEA List, L3S



Real-Time Systems

• Traditionally consist of
• A set of tasks τ1, . . . , τn
• Perform computations within a given time budget

(Worst-Case Execution Time aka. WCET)
• Need to respect deadlines
• Often need to execute periodically

• Observation:

Tasks rarely use their full time budget
=⇒ Resources (CPU, memory, . . . ) are under-utilized

2/32



Mixed-Criticality Systems

• Basic idea:
• Divide tasks into critical and non-critical tasks
• Strict timing guarantees only for critical tasks

Improve resource utilization by executing non-critical
tasks as long as critical tasks meet their deadlines

• Issues:
• Only consider CPU-time at the granularity of tasks
• Complex interaction among critical & non-critical tasks

3/32



Mixed-Criticality Systems

• Basic idea:
• Divide tasks into critical and non-critical tasks
• Strict timing guarantees only for critical tasks

Improve resource utilization by executing non-critical
tasks as long as critical tasks meet their deadlines

• Issues:
• Only consider CPU-time at the granularity of tasks
• Complex interaction among critical & non-critical tasks

3/32



Motivation

Improve resource utilization at a finer level of granularity
while providing guarantees on the tasks’ interactions.

Here: accesses to shared memory in multi-core architectures

4/32



System Model

Somewhat simplified model (for now):

• Assume a multi-core architecture
with shared memory

• Each core executes a single task
(critical or non-critical)

=⇒ No task scheduling needed
=⇒ Cores are critical/non-critical
=⇒ Cores emit critical/non-critical

memory requests

• Memory arbitration
• Time-Division Multiplexing (TDM)
• Dedicated slot for critical cores
• No slots for non-critical cores

CPU0 CPU1 . . . CPUn

MemoryArbitration

One critical/non-critical task each

5/32



Example: Strict Time-Division Multiplexing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T1 T1 T1 T1 T1 T1 T1 T1T2 T2 T2 T2 T2 T2 T2 T2

T1c
0 T1c

1 T1c
2

T2c
0 T2c

1

t3nc
0 t3nc

1 t3nc
2 t3nc

3

t4nc
0 t4nc

1

Critical tasks T1 and T2 with TDM slots A and B respectively
as well as non-critical tasks t3 and t4.

6/32



Example: Strict Time-Division Multiplexing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T1 T1 T1 T1 T1 T1 T1 T1T2 T2 T2 T2 T2 T2 T2 T2

T1c
0 T1c

1 T1c
2

T2c
0 T2c

1

t3nc
0 t3nc

1 t3nc
2 t3nc

3

t4nc
0 t4nc

1

T1

T2

t3

t4

Critical tasks T1 and T2 with TDM slots A and B respectively
as well as non-critical tasks t3 and t4.

Rows: different tasks as they execute

6/32



Example: Strict Time-Division Multiplexing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T1 T1 T1 T1 T1 T1 T1 T1T2 T2 T2 T2 T2 T2 T2 T2

T1c
0 T1c

1 T1c
2

T2c
0 T2c

1

t3nc
0 t3nc

1 t3nc
2 t3nc

3

t4nc
0 t4nc

1

Critical tasks T1 and T2 with TDM slots A and B respectively
as well as non-critical tasks t3 and t4.

Green bars: requests being processed by the memory
(only a single active request at a time)

6/32



Example: Strict Time-Division Multiplexing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T1 T1 T1 T1 T1 T1 T1 T1T2 T2 T2 T2 T2 T2 T2 T2

T1c
0 T1c

1 T1c
2

T2c
0 T2c

1

t3nc
0 t3nc

1 t3nc
2 t3nc

3

t4nc
0 t4nc

1

Critical tasks T1 and T2 with TDM slots A and B respectively
as well as non-critical tasks t3 and t4.

Requests always complete at the end of a TDM slot

6/32



Example: Strict Time-Division Multiplexing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T1 T1 T1 T1 T1 T1 T1 T1T2 T2 T2 T2 T2 T2 T2 T2

T1c
0 T1c

1 T1c
2

T2c
0 T2c

1

t3nc
0 t3nc

1 t3nc
2 t3nc

3

t4nc
0 t4nc

1

Critical tasks T1 and T2 with TDM slots A and B respectively
as well as non-critical tasks t3 and t4.

Arcs: memory wait time
(from issuing to start of processing)

6/32



Example: Strict Time-Division Multiplexing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T1 T1 T1 T1 T1 T1 T1 T1T2 T2 T2 T2 T2 T2 T2 T2

T1c
0 T1c

1 T1c
2

T2c
0 T2c

1

t3nc
0 t3nc

1 t3nc
2 t3nc

3

t4nc
0 t4nc

1

2 0 0

42 9

9 15 12 2

41 11

Critical tasks T1 and T2 with TDM slots A and B respectively
as well as non-critical tasks t3 and t4.

Gaps: computation time between requests
(independent from arbitration)

6/32



Example: Strict Time-Division Multiplexing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T1 T1 T1 T1 T1 T1 T1 T1T2 T2 T2 T2 T2 T2 T2 T2

T1c
0 T1c

1 T1c
2

T2c
0 T2c

1

t3nc
0 t3nc

1 t3nc
2 t3nc

3

t4nc
0 t4nc

1

Critical tasks T1 and T2 with TDM slots A and B respectively
as well as non-critical tasks t3 and t4.

Non-critical requests can only reclaim unused TDM slots.
Still, the approach is non-workconserving.

6/32



x
Issues with TDM



Unused TDM Slots

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T1 T1 T1 T1 T1 T1 T1 T1T2 T2 T2 T2 T2 T2 T2 T2

T1c
0 T1c

1 T1c
2

T2c
0 T2c

1

t3nc
0 t3nc

1 t3nc
2 t3nc

3

t4nc
0 t4nc

1

Unused TDM slots — why is the memory idle?

8/32



Issue Delay

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T1 T1 T1 T1 T1 T1 T1 T1T2 T2 T2 T2 T2 T2 T2 T2

T1c
0 T1c

1 T1c
2

T2c
0 T2c

1

t3nc
0 t3nc

1 t3nc
2 t3nc

3

t4nc
0 t4nc

1

Issue Delay: Number of cycles during which the memory is
idle, despite pending requests at the arbiter.

9/32



Release Delay

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T1 T1 T1 T1 T1 T1 T1 T1T2 T2 T2 T2 T2 T2 T2 T2

T1c
0 T1c

1 T1c
2

T2c
0 T2c

1

t3nc
0 t3nc

1 t3nc
2 t3nc

3

t4nc
0 t4nc

1

Release Delay: Number of cycles that memory requests finish
earlier than the TDM slot length.

10/32



Total Memory Idling

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T1 T1 T1 T1 T1 T1 T1 T1T2 T2 T2 T2 T2 T2 T2 T2

T1c
0 T1c

1 T1c
2

T2c
0 T2c

1

t3nc
0 t3nc

1 t3nc
2 t3nc

3

t4nc
0 t4nc

1

Total Memory Idling: Number of cycles where the memory is
not doing anything useful.

11/32



x
Dynamic TDM-based Arbitration



Basic Insight: Deadlines

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T1 T1 T1 T1 T1 T1 T1 T1T2 T2 T2 T2 T2 T2 T2 T2

T1c
0 T1c

1 T1c
2

T2c
0 T2c

1

t3nc
0 t3nc

1 t3nc
2 t3nc

3

t4nc
0 t4nc

1

Interpret the completion date of critical requests
under strict TDM as a deadlines.

Orange brackets: deadlines of critical requests

13/32



Dynamic TDM-based Arbitration

Extend TDM arbiter such that
• Each critical request is associated with a deadline

• Computed when a new request is issued
• Deadline is at end of a TDM slot of the request owner
• Scheduled using Earliest-Deadline-First strategy (EDF)

• Best-effort for non-critical requests
• Can profit from the memory’s idle time and are . . .
• . . . prioritized over critical requests whose deadlines are far
• Scheduled using First-In First-Out strategy (FIFO)

(other alternatives possible, e.g., fixed priorities)

• Schedule request at any moment
• Requests handled independently from TDM slots
• Track slack when critical requests complete before deadline

14/32



Example: Dynamic TDM

1 2 3 4 5 6 7 8 9 10 11 12
T1 T1 T1 T1 T1 T1T2 T2 T2 T2 T2 T2

T1c,0∆
0 T1c,11∆

1 T1c,12∆
2

T2c,0∆
0 T2c,6∆

1

t3nc
0 t3nc

1 t3nc
2 t3nc

3

t4nc
0 t4nc

1

Same task set using dynamic TDM-based arbitration (TDMer).

15/32



Strict TDM vs. TDMer

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T1 T1 T1 T1 T1 T1 T1 T1T2 T2 T2 T2 T2 T2 T2 T2

T1c
0 T1c

1 T1c
2

T2c
0 T2c

1

t3nc
0 t3nc

1 t3nc
2 t3nc

3

t4nc
0 t4nc

1

1 2 3 4 5 6 7 8 9 10 11 12
T1 T1 T1 T1 T1 T1T2 T2 T2 T2 T2 T2

T1c,0∆
0 T1c,11∆

1 T1c,12∆
2

T2c,0∆
0 T2c,6∆

1

t3nc
0 t3nc

1 t3nc
2 t3nc

3

t4nc
0 t4nc

1

Critical requests complete earlier than under strict TDM. Yay!

16/32



Slack Counters

1 2 3 4 5 6 7 8 9 10 11 12
T1 T1 T1 T1 T1 T1T2 T2 T2 T2 T2 T2

T1c,0∆
0 T1c,11∆

1 T1c,12∆
2

T2c,0∆
0 T2c,6∆

1

t3nc
0 t3nc

1 t3nc
2 t3nc

3

t4nc
0 t4nc

1

T10∆
1

11∆

T111∆
2

Critical tasks accumulate slack whenever a request finishes
before its deadline (i.e., earlier than strict TDM).

17/32



Deadlines

1 2 3 4 5 6 7 8 9 10 11 12
T1 T1 T1 T1 T1 T1T2 T2 T2 T2 T2 T2

T1c,0∆
0 T1c,11∆

1 T1c,12∆
2

T2c,0∆
0 T2c,6∆

1

t3nc
0 t3nc

1 t3nc
2 t3nc

3

t4nc
0 t4nc

1

T111∆
2

11∆

Deadlines are derived by finding the next TDM slot after the
delayed issue date (now + slack).

18/32



Independence from TDM Slots (1)

1 2 3 4 5 6 7 8 9 10 11 12
T1 T1 T1 T1 T1 T1T2 T2 T2 T2 T2 T2

T1c,0∆
0 T1c,11∆

1 T1c,12∆
2

T2c,0∆
0 T2c,6∆

1

t3nc
0 t3nc

1 t3nc
2 t3nc

3

t4nc
0 t4nc

1

t31

11∆

Requests are processed any time, independent from TDM
slots, iff critical tasks have enough slack (here T1).

19/32



Independence from TDM Slots (2)

1 2 3 4 5 6 7 8 9 10 11 12
T1 T1 T1 T1 T1 T1T2 T2 T2 T2 T2 T2

T1c,0∆
0 T1c,11∆

1 T1c,12∆
2

T2c,0∆
0 T2c,6∆

1

t3nc
0 t3nc

1 t3nc
2 t3nc

3

t4nc
0 t4nc

1

T2

T21

Critical requests may also be processed when the upcoming
slot belongs to the request owner.

20/32



x
What did we win?



Issue Delay

1 2 3 4 5 6 7 8 9 10 11 12
T1 T1 T1 T1 T1 T1T2 T2 T2 T2 T2 T2

T1c,0∆
0 T1c,11∆

1 T1c,12∆
2

T2c,0∆
0 T2c,6∆

1

t3nc
0 t3nc

1 t3nc
2 t3nc

3

t4nc
0 t4nc

1

Somme issue delays remain (for now) —
all release delays transformed into issue delays.

22/32



Total Memory Idling

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T1 T1 T1 T1 T1 T1 T1 T1T2 T2 T2 T2 T2 T2 T2 T2

T1c
0 T1c

1 T1c
2

T2c
0 T2c

1

t3nc
0 t3nc

1 t3nc
2 t3nc

3

t4nc
0 t4nc

1

1 2 3 4 5 6 7 8 9 10 11 12
T1 T1 T1 T1 T1 T1T2 T2 T2 T2 T2 T2

T1c,0∆
0 T1c,11∆

1 T1c,12∆
2

T2c,0∆
0 T2c,6∆

1

t3nc
0 t3nc

1 t3nc
2 t3nc

3

t4nc
0 t4nc

1

The total memory idling is considerably improved —
but not (yet) work-conserving . . .

23/32



Providing Initial Slack (TDMeri)

1 2 3 4 5 6 7 8 9 10 11 12
T1 T1 T1 T1 T1 T1T2 T2 T2 T2 T2 T2

T1c,8∆
0T1c,18∆

1 T1c,28∆
2

T2c,8∆
0 T2c,12∆

1

t3nc
0 t3nc

1 t3nc
2 t3nc

3

t4nc
0 t4nc

1

Providing initial slack of a single TDM slot (8∆) eliminates
(almost) all release delays . . .

24/32



x
Experiments



Hardware Setup

• Multiple Patmos cores (http://patmos.compute.dtu.dk)

• 256 B stack cache for stack data
• 32 KB method cache for code (LRU)
• 32 KB data cache (2-way set-asso., LRU, write-through)

• Shared main memory
• Random access latencies between [21,40] cycles

=⇒ TDM slot length of 40 cycles
• Arbitration various variants of based on TDM

(TDMfs, TDMds, TDMes, TDMer, and TDMeri)

26/32

http://patmos.compute.dtu.dk


Task Set Simulation

Randomly generated task sets:
• Vary utilization in steps of 10% in range [10%,100%]

• 25%/75% or 50%/50% critical/non-critical tasks
• 4, 8, 12, 16, 20, 24 cores/tasks
• Overall 4320 simulation runs

• Based on randomized memory traces
(calibrated from actual traces of MiBench on Patmos)

• Objective:
• Average-case impact on memory utilization

(issue & release delays, memory idling)
• How work-conserving can we get?

27/32



Results: Baseline

(a) Strict TDM
(TDMfs)

(b) Dynamic TDM respecting slots
(TDMds)

Dynamic TDM arbitration largely eliminates issue delays.

28/32



Results: Dynamic TDM

(a) Fully dynamic TDM
(TDMer)

(b) Dynamic TDM respecting slots
(TDMds)

Fully dynamic TDM arbitration noticeably better under high load
– but little change in total memory idling . . .

29/32



Results: Initial Slack

(a) Fully dynamic TDM
(TDMer)

(b) Fully dynamic with Initial Slack
(TDMeri)

Initial slack (40 cycles) results in work-conserving arbitration —
total memory idling improves considerably under high load

30/32



Conclusion

• Dynamic TDM-based arbitration
• Preserves TDM’s guarantees
• Simple analysis of critical tasks
• Essentially work-conserving – Yay!

• What else?
• Multiple tasks on a single core =⇒ preemption (WiP)

• Large slack counter values may delay task preemption
• How can we control this delay?

• Hardware implementation
• Efficiently checking for the smallest deadline?
• How to scale to large multi-/many-cores?

31/32



Accumulating Slack:
Subtract actual comple-
tion time from deadline.

1 2 3 4 5 6 7 8 9 10 11 12
T1 T1 T1 T1 T1 T1T2 T2 T2 T2 T2 T2

T1c,0∆
0 T1c,11∆

1 T1c,12∆
2

T2c,0∆
0 T2c,6∆

1

t3nc
0 t3nc

1 t3nc
2 t3nc

3

t4nc
0 t4nc

1

T10∆
1

11∆

T111∆
2

Slot Independence:
Check slack (deadline)
of owner of upcoming
TDM slot.

1 2 3 4 5 6 7 8 9 10 11 12
T1 T1 T1 T1 T1 T1T2 T2 T2 T2 T2 T2

T1c,0∆
0 T1c,11∆

1 T1c,12∆
2

T2c,0∆
0 T2c,6∆

1

t3nc
0 t3nc

1 t3nc
2 t3nc

3

t4nc
0 t4nc

1

t31

11∆

32/32


