
From the Standards to Silicon:
Formally Proved Memory Controllers ⋆ .

Felipe Lisboa Malaquias (�)1[0000−0002−0292−3437], Mihail
Asavoae2[0000−0001−5291−8567], and Florian Brandner1[0000−0002−2493−7864]

1 LTCI, Télécom Paris, Institut Polytechnique de Paris, France
{flisboa,florian.brandner}@telecom-paris.fr

2 Université Paris Saclay, CEA List, France
mihail.asavoae@cea.fr

Abstract. Recent research in both academia and industry has success-
fully used deductive verification to design hardware and prove its cor-
rectness. While tools and languages to write formally proved hardware
have been proposed, applications and use cases are often overlooked.
In this work, we focus on Dynamic Random Access Memories (DRAM)
controllers and the DRAM itself – which has its expected temporal and
functional behaviours described in the standards written by the Joint
Electron Device Engineering Council (JEDEC). Concretely, we associate
an existing Coq DRAM controller framework – which can be used to
write DRAM scheduling algorithms that comply with a variety of cor-
rectness criteria – to a back-end system that generates proved logically
equivalent hardware. This makes it possible to simultaneously enjoy the
trustworthiness provided by the Coq framework and use the generated
synthesizable hardware in real systems. We validate the approach by
using the generated code as a plug-in replacement in an existing DDR4
controller implementation, which includes a host interface (AXI), a phys-
ical layer (PHY) from Xilinx, and a model of a memory part Micron
MT40A1G8WE-075E:D. We simulate and synthesise the full system.

Keywords: Coq · DRAM · Hardware Design · Code Generation

1 Introduction

The limitations of approaches such as model checking and satisfiability solving –
widely adopted in industrial hardware (HW) verification – are well-known [6]: 1)
Verification effort is focused on (relatively) small components of full systems; 2)
Relatively weak properties are proved, with considerable abstraction gaps from
the natural correctness criteria described in the specifications; and 3) The state-
space-explosion problem. Conversely, proof assistants (i.e., deductive verifiers, or

⋆ This research was supported by Labex DigiCosme (project ANR11L-
ABEX0045DIGICOSME) operated by ANR as part of the program “Investissement
d’Avenir” Idex ParisSaclay (ANR11IDEX000302)

2 F. Lisboa Malaquias et al.

theorem provers) rely on the functional paradigm and on rich expressive high-
order logic specification languages to describe systems at a high abstraction level
– allowing programmers to implement systems and state correctness theorems
naturally, without scalability constraints. The most significant caveats are ar-
guably a higher entry bar, given the complexity of specification languages and
proof scripts, and the lack of automation. Proof assistants, like Coq, also allow
users to extract proved programs, which can then be compiled and executed.

In this work, we use Coq to propose a trustworthy design workflow for Dy-
namic Random Access Memory (DRAM) controllers – whose timing and func-
tional correctness is essential for a variety of computing systems (e.g., critical
real-time systems, our main focus, but also parallel and distributed systems).
The correct behaviour of DRAM modules, and thus that of DRAM controllers,
is described in standards [10] written by the Joint Electron Device Engineering
Council (JEDEC). Furthermore, given that the standards use textual natural
language (English) to describe correctness criteria along with timing diagrams,
choosing Coq to model such systems is highly convenient – given the expressivity
provided by its functional high-order logic specification language.

Precisely, we connect an existing Coq framework used to develop correct
DRAM scheduling algorithms [13] – which in this work will be referred to as
CoqDRAM for brevity – to a back-end that generates logically equivalent Regis-
ter Transfer Level (RTL) representations in SystemVerilog. The back-end, which
will be referred to as CavaDRAM, is developed in Cava,1 a Domain Specific Lan-
guage (DSL) written in Coq for designing and proving properties about circuits.

The connection between CoqDRAM and CavaDRAM plays a vital role in
the design workflow proposed in this work – presented below as a list of steps:

1. Describe a DRAM scheduling algorithm in CoqDRAM and prove its correct-
ness against the JEDEC standards;

2. Describe the controller circuit in Cava;
3. Prove bisimilarity between the two representations;
4. Extract a SystemVerilog circuit from the Cava controller (automatically),

which can then be used as a plug-in replacement in existing hardware designs.

On the one hand, CoqDRAM – written in plain Coq – has been conceived to
design, explore, model, and finally prove the correctness of DRAM arbitration
algorithms, abstracting from actual HW implementations. It has little to no
size constraints, a fact that allows users to use powerful abstractions to prove
strong properties. On the other hand, CavaDRAM derives real memory con-
troller HW implementations. This means that HW limitations become relevant,
e.g., CoqDRAM uses queues that can grow to arbitrary sizes to store incoming
requests, which is evidently not possible in a HW model. Therefore, a logical
equivalence proof will require the queue to be limited in size. This duality is
formalised through a series of assumptions – which are presented further – that
allow us to limit the scope of CoqDRAM algorithms.

1 https://github.com/project-oak/silveroak

From the Standards to Silicon: Formally Proved Memory Controllers 3

In summary, this work proposes the following contributions:

– A design workflow to design correct-by-construction DRAM controllers, go-
ing from correctness criteria described in the JEDEC standards to RTL code;

– A proved proof-of-concept controller implementation, corresponding to one
of the controllers originally proposed in CoqDRAM;

– A methodology to validate the generated RTL code in an existing design,
and consequently, validate both the CoqDRAM and CavaDRAM models;

– An extension of the CoqDRAM to include REFRESH commands and its
underlying correctness criteria.

The remainder of the paper is organised as follows: Section 2 gives a con-
cise background on the two building blocks of our work: CoqDRAM and Cava;
besides presenting some fundamental concepts about DRAM systems; Section 3
introduces our novel contributions with an architectural overview of the system
and presents how memory controllers (and transition systems, more generally)
that are logically equivalent to CoqDRAM implementations can be written in
Cava; Section 4 elaborates on our use of the term “logical equivalence”, which
is de facto a bisimilarity relationship. Moreover, it presents the theorem and
key insights of the proof procedure; Section 5 details the RTL generation phase,
explains how the generated code is plugged into the existing DDR4 controller
implementation (written in SystemVerilog), and presents the setup and the re-
sults regarding both simulation and synthesis; Section 6 reviews and compares
the state-of-the-art with our work; and Section 7 concludes by revisiting our
contributions and giving pointers for future research directions.

2 Background

2.1 DRAM Basics

DRAM controllers are responsible for servicing memory requests by issuing com-
mands to the DRAM module (among other tasks, such as translating addresses
into DRAM bank groups, banks, rows, and columns; and applying some schedul-
ing algorithm to service requests). Moreover, each bank in a DRAM module has
a row-sized buffer (the row-buffer) that serves as a “cache” for the bank, stor-
ing chunks of data that can be accessed with lower latency. Although several
types of commands exist, the main ones used to directly service requests are:
ACT (Activate), used to transfer one row of a bank into the row-buffer; PRE
(Precharge), used to re-write the content of the row-buffer back into the matrix
of memory cells; and CAS (Column Address Strobe), used to access one of the
columns from the row-buffer (a CAS can be either a RD or a WR). Addition-
ally, the controller has to issue REF (Refresh) commands periodically to restore
the charge of cell capacitors.

2.2 CoqDRAM

CoqDRAM [13] models DRAM devices as command traces. Correctness criteria
coming from the JEDEC standards [10] are modelled as proof obligations (POs)

4 F. Lisboa Malaquias et al.

over traces and cover both functional and timing properties. Listing 1 shows
such modelling: Trace_t is a record (much like structures in C), with constructor
mkTrace. The trace itself is the member Commands (of type Commands_t). It is
implemented as a standard Coq list type, where elements of the list are of type
Command_t, the type of DRAM commands (not shown here).

Record Trace_t := mkTrace {
Commands : Commands_t;
Time : nat;
(* PO: Ensures that the time between an ACT and a CAS commands to the

same bank respects T_RCD *)

Cmds_T_RCD_ok : forall a b, a \in Commands → b \in Commands →
isACT a → isCAS b → Same_Bank a b → Before a b

→ a.(CDate) + T_RCD <= b.(CDate); }

Listing 1. Command trace.

The record member Time is the trace length, and Cmds_T_RCD_ok is one of
many POs: it states that for any two commands a and b members of the list, if
a is an ACT command, b is a CAS command, they both target the same DRAM
bank, a is issued before b, then the proposition a.(CDate) + T_RCD <= b.(CDate)

must hold, where T_RCD is a constraint defined in the JEDEC standards. In other
words, T_RCD is a lower bound between the issue dates of a and b. Besides JEDEC
properties, essential characteristics of real-time systems are also modelled, such
as non-starvation and controller semantics (e.g., memory consistency models).

Listing 2 shows CoqDRAM’s definition of a memory controller. It is made of a
function (Arbitrate) that, for a given request arrival model (Arrival_function_t),
produces a trace of DRAM commands (Trace_t) of length defined by a nat pa-
rameter (the number of clock cycles). The class member Requests_handled is a
proof obligation: it states that any request that has arrived will eventually have
a corresponding CAS command in the trace (i.e., requests cannot starve).2

Class Controller_t {AF : Arrival_function_t} := mkController {
Arbitrate : nat → Trace_t;

Requests_handled : forall ta req, req \in (Arrival_at ta)
→ exists tc, (CAS_of_req req tc) \in (Arbitrate tc).(Commands); }.

Listing 2. Memory controller definition.

Class Implementation_t := mkImplementation {
(* Init takes a set of incoming requests and produces a state *)

Init : Requests_t → State_t;
(* Next takes a set of incoming requests, a state, and produces a new

state, a command and the request currrently being serviced *)

Next : Requests_t → State_t → State_t ∗ (Command_kind_t ∗ Request_t); }.

Listing 3. Implementation interface for memory controllers.

2 CAS commands tell the memory to start the data transfer – its issue date is consid-
ered to be the completion date of the corresponding request.

From the Standards to Silicon: Formally Proved Memory Controllers 5

Concretely, memory controllers are implemented as transition systems (TS).
The user of CoqDRAM has to implement the type class Implementation_t (shown
in Listing 3), made of functions Init and Next. The Next function, for instance,
takes a set of arriving requests (Requests_t) at an arbitrary clock cycle, an ar-
biter state (State_t), and produces a new state and an output pair made of
a DRAM command (Command_kind_t) and the request currently being serviced
(Request_t). These functions together define a canvas, in some sense, for imple-
menting controllers as transition systems.

Furthermore, it is typical of high-level abstraction models of memory con-
trollers to ignore REF commands and its impact on timing. This is however not
possible in a HW implementation. Hence, we extend CoqDRAM to model REF
commands, including POs that guarantee timing and functional correctness.

2.3 Cava

Cava is a DSL written in Coq designed to specify, implement and prove circuits,
greatly inspired by Lava [2]. It was developed by researchers at Google as part of
the Silver Oak project, which focuses on the verification of high assurance com-
ponents of the OpenTitan3 silicon root of trust, i.e., a set of inherently trusted
functions within a platform. Cava, much like other recent Coq DSLs for hardware
design (e.g., Kami [6] and Kôika [4]), follows the highly automated proof and
design style proposed by Adam Chlipala in his book Certified Programming with
Dependent Types [5]. We choose Cava over other Coq DSLs for a few reasons: 1)
Cava circuit simulations generate a list of values, where each element represents
the value of a wire at a given clock cycle – this emulates time, a key element of
command traces in CoqDRAM; 2) Cava is relatively simpler and faster to get
acquainted to; and 3) Cava designs resemble classic RTL design style in some
sense, whereas other DSLs take an approach closer to the rule-based design of
Bluespec SystemVerilog [15].

Cava combines shallow and deep embedding techniques to describe combi-
national and sequential circuits, respectively. In other words, sequential circuits
are implemented as inductive types (which includes a wrapper to combinational
circuits). Thanks to its inductive nature, circuits can be interpreted in differ-
ent ways [2], a feature that allows Cava users to prove correctness, simulate,
and generate a netlist from a single circuit definition. Furthermore, sequential
circuits in Cava are transition systems, much like controllers in CoqDRAM.

While we lack the space to formally present Cava’s syntax and semantics, we
will try to give the reader an intuitive understanding of how sequential circuits –
and transition systems, more generally – can be designed with the DSL. Listing 4
is a sequential circuit definition in Cava. Circuit Foo takes an input i of type
inputType and produces an outout o of type outputType. Possible signal types in
Cava are: Void, an empty type; Bit, which is interpreted in Coq as a boolean; Vec,
which takes another Cava signal type and the vector’s size; and ExternalType,
which is non-interpreted type. Moreover, circuit Foo has an internal state of

3 https://opentitan.org/

6 F. Lisboa Malaquias et al.

type stateType, a register with initial value s_init. The loop body f is a combi-
national function with type (stateType,inputType)→ (stateType,outputType). In
other words, although the internal state s (a given name) is not visible from out-
side Foo, the loop body f takes a pair of type (stateType ∗ inputType) as input
and produces another pair of type (stateType,outputType). Lastly, Cava loops
can be nested in order to form circuits that have multiple internal state signals.

Definition Foo : Circuit
(i : inputType) (o : outputType) :=
LoopInit (s_init : stateType) (
Comb (f)
(* f : (stateType * inputType) →
(stateType,outputType) *)

).

Listing 4. Sequential circuit in Cava.

Fig. 1. Sequential circuit diagram.

3 Coupling CoqDRAM and CavaDRAM

Figure 2 illustrates the coupling between CoqDRAM and CavaDRAM. The de-
sign path starts at the JEDEC standards, modelled by Trace_t in CoqDRAM
(c.f Listing 1). Specifically, the CoqDRAM specification covers the DDR3 and
DDR4 JEDEC standards. Next, for scheduling algorithms implemented in Coq-
DRAM, we introduce provably equivalent controllers in CavaDRAM (equivalence
is defined in Section 4). The RTL code produced from a controller implementa-
tion (using Cava’s code extraction) can be used in existing designs. In our case,
it is used as a plug-in replacement in an existing DDR4 controller implementa-
tion [20]. From a framework point of view, the additional workload introduced
by the back-end coupling consists solely of writing the equivalent controllers in
Cava and the equivalence proof with the representation in CoqDRAM.

5 Figure 2 omits several components and does not represent a complete architecture,
as its goals are to ease comprehension and provide an overview of the system.

Fig. 2. System architecture.5

CoqDRAM classes, Introduced workload, DDR4 hardware simulation setup.

From the Standards to Silicon: Formally Proved Memory Controllers 7

3.1 Controller Implementation Constraints

Hardware controller implementations impose constraints that are not captured
by CoqDRAM. The setup we use for simulation and synthesis, for instance, is
equipped with an AXI bus interface, which expects an interface to communicate
with the memory controller. As a consequence, CavaDRAM controllers have to
implement an interface containing the following input and output signals: a) the
arrival of a new request is signalled by a 1-bit pending_i input signal; b) a single
request_i is provided as a bit vector input; and c) the circuit has to produce
a 1-bit ack_o signal as output. The pending_i/ack_o signals allow to perform a
handshake (used in many bus implementations besides AXI).

This interface is less generic than the CoqDRAM implementation. An equiv-
alence proof thus can only succeed by introducing two additional assumptions
that constrain the arrival model of CoqDRAM:

Assumption 1. The arrival function needs to be constrained to a single incom-
ing request per cycle. In Coq, we model this constraint with a PO that limits the
number of requests in the incoming arrival list; the PO is denoted by HW_single

in Listing 5. For one, this models the limitation of the AXI bus mentioned in the
interface above. In addition, this reflects a fundamental limitation on memories,
which are typically used to implement queues in hardware: the implementation
cost of memories increases drastically with the number of read/write ports. In
our case (Distributed/BRAM of FPGAs), it is limited to a single read/write
port each. Bear in mind that the proofs in CoqDRAM are valid for all possible
arrival functions without any limitations, including HW_Arrival_function.

Class HW_Arrival_function_t {AF : Arrival_function_t} := mkHW_AF {
HW_single : forall t, size (Arrival_at t) <= 1; (* Assumption 1 *)

(* Assumption 2 consisting of two POs *)

pending_i : nat → signal Bit; (* pending input for controller circuit *)

request_i : nat → signal request_t; (* request as input *)

HW_arrived : forall t, size (Arrival_at t) = 1 ↔ (ack_o t) ∧ (pending_i t);
HW_request : forall t, size (Arrival_at t) = 1 →

EqReq (Arrival_at t) (request_i t);
}.

Listing 5. Assumption reflecting hardware-level implementation constraints.

Assumption 2. Note that Assumption 1 does not constrain the number of
outstanding requests from the requestors, it is just a constraint on the bus inter-
facing with requestors and memories of queues. The interface described before
also comprises a handshake protocol, which allows a controller to accept (or not)
newly in-coming requests. CoqDRAM only considers requests that are accepted
by the controller, i.e., from the moment that the request is processed by the
controller. Consequently, arrival functions have to be constrained to take the
handshake protocol into account: a request arrives when the request is provided
on the request input port and both the pending and ack_o signals are asserted.
The two POs HW_arrived and HW_request from Listing 5 establish this relation.

8 F. Lisboa Malaquias et al.

3.2 From CoqDRAM to CavaDRAM Implementation

As a Proof-of-Concept, we implement a controller based on the First-In-First-
Out (FIFO) scheduling policy, as originally proposed in CoqDRAM. The con-
troller serves an arbitrary number of requestors. Requests are served in arrival
order, without distinction between requestors. Each request is processed in a slot
large enough to fit every necessary DRAM command while respecting all tim-
ing constraints. The controller issues DRAM commands following a closed-page
policy, i.e., it always issues the same sequence of commands: PRE-ACT-CAS.

Representing States. Listing 6 shows CoqDRAM’s FIFO state definition, an
inductive type with three possible values: IDLE, RUNNING, and REFRESHING. Addi-
tionally, each value carries a series of arguments that extends the set of states:
Cnt_t is a counter used to count clock cycles within a FIFO slot; Cnt_ref_t is an-
other counter used to manage memory REFRESH operations, i.e., keep track of
clock cycles until a REF command is needed; and Reqs_t is the infinite sequence
of requests in the queue, i.e., waiting to be serviced. Note also that the RUNNING

state carries an additional value of type Req_t, used to remember the request
currently being processed by the controller. The counters are implemented in
Coq as bounded integers (which carry a proof stating that the counter value is
always strictly smaller than its bound) and the queue is a standard Coq list (of
arbitrary size). Reqs_t being an unbounded list is obviously not possible in a HW
model. Assumptions 1 and 2 (presented in Section 3.1) mitigate this problem,
as they make it impossible for Reqs_t to grow arbitrarily. In connection with
Listing 3, FIFO_state_t is a valid instance of State_t.

Inductive FIFO_state_t :=
| IDLE : Cnt_t → Cnt_ref_t → Reqs_t → FIFO_state_t

| RUNNING : Cnt_t → Cnt_ref_t → Reqs_t → Req_t → FIFO_state_t

| REFRESHING : Cnt_ref_t → Reqs_t → FIFO_state_t.

Listing 6. CoqDRAM FIFO state.

Cava Implementation. A simplified version of the FIFO CavaDRAM imple-
mentation can be seen in Listing 7.6 Figure 3 is a diagram of the resulting
circuit.7 A few points are worth emphasising:

Definition FIFO : Circuit (pending ∗ request) (ack ∗ request ∗ command) :=
Loop (Loop (Loop ((* one loop for each resigster *)

ReadLogic >==>Queue >==>NextCR >==>CmdGen >==>Update)))

Listing 7. Simplified version of the FIFO implementation in CavaDRAM.

1. We use nested Loop constructors to manipulate multiple internal state
signals, allowing us to mimic CoqDRAM states. A correspondence can be es-
tablished between elements of Listing 7/Figure 3 and CoqDRAM’s FIFO state

6 In the listing, the notation >==> stands for circuit composition.
7 Initial register values are omitted from the figure.

From the Standards to Silicon: Formally Proved Memory Controllers 9

Fig. 3. FIFO circuit implementation in Cava.

definition (Listing 6): the register state corresponds to the state identifier (IDLE
/RUNNING/REFRESHING); register cnt corresponds to the counter Cnt_t, and has
as many bits as necessary to count up to the counter’s bound; similarly, regis-
ter cref corresponds to Cnt_ref_t. The request queue in CoqDRAM (Reqs_t)
corresponds to Queue. Lastly, Req_t in RUNNING is a register of circuit NextCR.

2. Queue is implemented as a dual-ported memory (one port for reads and one
for writes, recall Assumption 1), with additional combinational logic to deter-
mine whether the queue is full or empty using internal write and read pointers.

3. The signals pending_i and request_i (highlighted in in green on the left
hand side of Figure 3) are the circuit’s inputs: both signals are fed directly to
the queue. The pop_i signal, however, comes from the Read Logic module, which
is based on the register values and on the state of the queue itself, will produce
a read enable signal. The queue produces three outputs: empty_o, used in the
following modules; data_o, the request at the head of the queue; and ack_o, a
signal used to complete the handshake with the bus arbiter and possibly stall
the arrival of incoming requests (recall Assumption 2).

4. Besides ack_o, the circuit produces two output signals: a) request_o is
the request currently being serviced by the controller and is eventually fed to
the DRAM address bus, it contains the target bank, row, and column; and b)
command_o, generated by CmdGen. These output signals are similar to those pro-
duced by CoqDRAM algorithms (see Listing 3). They are generated by circuits
NextCR and CmdGen, respectively, and take as input the register values, i.e., the
current state, as well as the signals empty_o and data_o from Queue.

5. Update implements the transition function: it is made of three separate
combinational functions that calculate the next value of each register and thus
determine the next state.

10 F. Lisboa Malaquias et al.

4 The Equivalence Proof

We used the word equivalence between transition systems throughout the paper.
Here, we define equivalence, which is de facto a bisimilarity relation. Bisimilarity
was introduced (formulated by Park [16], refining ideas from Milner [14]) as the
notion of behavioural equality for processes [17].

Definition 1 (Bisimulation and Bisimilarity [18]). Given an LTS (S,Λ,→),
where S is a set of states, Λ is a set of labels, and →⊆ (S×Λ×S) is a transition

relation, written P
µ→ Q for ⟨P, µ,Q⟩ ∈→. A binary relation R on the states of

the LTS is a bisimulation if whenever P RQ:

1. for all P ′, with P
µ→ P ′, there is Q′ such that Q → Q′ and P ′ RQ′;

2. the converse, on the transitions emanating from Q: for all Q′, with Q → Q′,
there is P ′ such that P → P ′ and P ′ RQ′;

Bisimilarity, written ∼, is the union of all bisimulations; thus P ∼ Q holds if
there is a bisimulation R with P RQ.

Remark [18]. Note that although bisimulation and bisimilarity are defined on a

single LTS, it is also a valid definition for distinct LTS with the same alphabet
of actions; as the union of two LTSs is again an LTS.

Intuitively, two bisimilar systems match each other’s moves, i.e., if we assume
that two agents were playing a game according to some rules, the agents could
not be distinguished from the other by an observer.

In Coq, we start by giving meaning to the R binary relation of Definition 1.
Listing 8 shows the definition of State_Eq, a predicate that defines the equal-
ity between CoqDRAM and CavaDRAM states for the FIFO controller. In the
listing, fs is the state coming from CoqDRAM (defined as shown in Listing 6),
and cs is the Cava FIFO state (of type State_t). The identifiers with prefix cs_

come from get_ functions applied to cs (as in Line 2). These functions retrieve
individual signals/registers from cs, which contains every other internal signal.

1 Definition State_Eq (fs : FIFO_state_t) (cs : State_t) : bool :=
2 let cs_state := get_state cs in ... (* every cs_ variable comes from cs *)

3 match fs with

4 | IDLE cnt cref P ⇒ (cs_state =? STATE_IDLE_VEC) && (cs_cnt =? cnt2Bv cnt)
5 && (cs_cref =? cref2Bv cref) && (EqMem P cs_mem) && (EqQueue P wra rda)
6 | RUNNING cnt cref P r ⇒ ... (* similar *)

7 | REFRESHING cref P ⇒ ... (* similar *)

8 end.

Listing 8. Predicate for state equality.

Note the pattern matching on fs in Line 3. If, for instance, the fs state is
an IDLE state, has a Cnt_t denoted by cnt, Cref_t denoted by cref, and Reqs_t

denoted by P, then, the predicate should evaluate to true only if a series of
conjunctions are satisfied: cs_state – the register carrying the information if the
circuit is either IDLE, RUNNING, or REFRESHING – has to evaluate to STATE_IDLE_VEC,

From the Standards to Silicon: Formally Proved Memory Controllers 11

a literal representing the idle state; cs_cnt has to be numerically equivalent to
cnt, cs_cref has to be numerically equivalent to cref, et cetera.

The predicates EqMem and EqQueue are recursive functions that establish a
connection between both representations of the request queue. A simplified def-
inition of EqMem is shown in Listing 9. The predicate states that each element
in CoqDRAM_Q has a logical correspondence in CavaDRAM_Q. The correspondence is
defined by the predicate EqReq, which takes as arguments a CoqDRAM request and
a CavaDRAM request and outputs true if they are equal. Note that x, the element
at the head of CoqDRAM_Q, maps to nth rda CavaDRAM_Q, the element of CavaDRAM_Q
at index rda, the read address, where nth is a function used to access indexed
list elements. The following element maps to index rda + 1, and so on. We omit
the definition of EqQueue and nth for brevity.

1 Fixpoint EqMem_ {W} CoqDRAM_Q CavaDRAM_Q (rda : Bvector W) :=
2 match CoqDRAM_Q with

3 | [::] ⇒ true

4 | x :: x0 ⇒ (EqReq x (nth rda CavaDRAM_Q)) && (EqMem_ x0 (rda + 1) CavaDRAM_Q)
5 end.

Listing 9. Equality of memories/request queues.

Listing 10 shows the Coq version of Definition 1 applied to our problem.
Consider an arbitrary Cava FIFO state (c_state) and an arbitrary CoqDRAM
FIFO state (f_state) – obtained through t calls to HW_Default_arbitrate. The
reason for having t – the number of clock cycles (i.e., the trace length) – explicit
is to access the incoming request at time t, denoted by R := Arrival_at t and
c_req := request_i for CoqDRAM and CavaDRAM respectively.

1 Theorem TS_Bisimulation : forall c_state (t : nat),
2 let f_state := (HW_Default_arbitrate t).(Implementation_State) in
3 let R := Arrival_at t in let c_req := request_i t in

4 State_Eq f_state c_state →
5 let f_nextstate := fst (Next_state R f_state) in
6 exists c_nextstate,
7 (c_nextstate = fst (step FIFOSM c_state (pending_i t,c_req))) ∧
8 State_Eq f_nextstate c_nextstate.
9 Proof. ... (* Proof script not shown *) Qed.

Listing 10. The bisumulation theorem.

The rest of the theorem is equivalent to clause (1) of Definition 1, it reads:
if whenever State_Eq f_state c_state, then, for all derivative states of f_state,
denoted by f_nextstate, there exists a derivative state of c_state, denoted by
c_nextstate, such that State_Eq f_nextstate c_nextstate holds. Note that the
universal quantifier of Definition 1 is encoded into f_nextstate itself. Further-
more, f_nextstate and c_nextstate are respectively obtained through calls to
Next_state – an implementation of Next (c.f. Listing 3) – and step, a Cava func-
tion that produces a new circuit state given the previous state and inputs. The
converse theorem, corresponding to clause (2) of Definition 1, i.e., a challenge of

12 F. Lisboa Malaquias et al.

c_state (with universally quantified transitions) against f_state, is also true (we
omit the converse lemma for brevity). We recall that from Definition 1, proving
that a bisimulation exists proves that the two transition systems are bisimilar.

The main strategy used to drive the proof is case analysis on CoqDRAM
state definitions (such as the one in Listing 6). Moreover, the step function in
Listing 10 is unfolded and applied to every sub-circuit in a composite circuit. As
a consequence, the proof of TS_Bisimulation is structured with lemmas stating
the equivalence of individual circuits, such as in Listing 11. It states that the
step function applied to the CmdGen circuit with an input containing a cref value
equal to CNT_REF_PREA, a literal containing the counter value that dictates when
the controller should issue a PREA command,8 will indeed output a PREA.

Lemma CmdGen_equiv_idle_to_ref (c : circuit_state CmdGen) cnt cref:
(cref =? CNT_REF_PREA) = true → (* when cref reaches CNT_REF_PREA *)

snd (step CmdGen c (STATE_IDLE_VEC,true,cnt,cref,REQUEST_NIL)) = PREA_VEC.
Proof. ... (* Proof script not shown *) Qed.

Listing 11. A lemma part of the proof tree: Equivalence of CmdGen.

We use Coq’s Ltac language extensively in order to build automated proof
procedures and thus facilitate the proofs for future implementations. The method-
ology for writing and proving different memory controller implementations is
similar and/or follow a very specific pattern; hence, the implementation pro-
vided here, although simple, can be effectively used as a template.

Lastly, for the FIFO controller, the proof of Theorem TS_Bisimulation has a
total of 3117 lines of code, and checking the proof takes an average of 22.54 min-
utes on a system with the following specifications: Intel(R) Core(TM) i5-10210U
CPU @ 1.60GHz, 8GB RAM, and Ubuntu 22.04. The memory usage during
proof checking peaks at 5.83GB, measured with time. The high computational
load required to check proofs about Cava circuits comes from design choices of
Cava itself – Cava circuit states are large tuples that result in lengthy terms in
the goals, therefore reducing the performance of reduction and rewriting tactics.

5 Simulation & Synthesis

With the goal validating our methodology in a “real world” setup, we start by
(certifiably) extracting the CavaDRAM code to Haskell, using standard Coq ex-
traction. Then, an additional Haskell script, part of the Cava tool-chain, analyses
the circuit AST to generate a gate-level netlist in SystemVerilog. Next, as a host
“hardware environment” for the generated code, we choose a DDR4 controller
implementation for Transprecision Computing [20], which is publicly available9

and will be referred to as DDR4cntrl for brevity.
Figure 4 illustrates the DDR4cntrl architecture, with our modifications high-

lighted. In summary, we replace a module called rank machine with the CavaDRAM

8 PREA commands are PRE commands sent to every bank at once.
9 https://github.com/oprecomp/DDR4 controller

From the Standards to Silicon: Formally Proved Memory Controllers 13

Fig. 4. An illustration of DDR4cntrl [20] with our modifications highlighted.

controller. Originally, rank machine was responsible for scheduling requests, gen-
erating and issuing DRAM commands, as well as managing REF commands; the
same tasks performed by the CavaDRAM controller.

Every other functionality is kept unchanged: the AXI logic and its interface
to the controller, the logic to control the read and write data buffers, the PHY,
and the memory model. The PHY, a Xilinx IP in this case, generates the signal
timing and sequencing required to interface to the memory device, e.g. phase
alignment between DQ and DQs signals, logic for initialising the DRAM after
power-up, and conversion of slow clock to fast clock.10

Simulation. We validate the approach with the two testbenches provided in
DDR4cntrl . The simulation is filled with SVA, which trigger if timing constraints
are not respected, invalid commands are issued, or transactions do not complete.
The simulation goes through with no assertions triggered.

We emphasise that achieving good performance is not the goal of this work,
but rather present the methodology and provide a proof-of-concept. Considering
that, although RTL code generated from Cava performs as well as standard Sys-
temVerilog designs,11 both simulation time and controller bandwidth worsen, for
two straightforward reasons: 1) The CavaDRAM controller was not designed to
exploit the ratio between the different clock domains of the system and the mem-
ory; therefore, it only operates at 1/4 of the available bandwidth in DDR4cntrl.
2) The FIFO algorithm does not offer competitive bandwidth compared to state-
of-the-art memory controllers.

Synthesis. Using a testbench, which is part of the DDR4cntrl source code,
we synthesise the FIFO CavaDRAM controller. A comparison of synthesis util-

10 Inasmuch as the PHY runs at the system clock frequency (1/4 of the DRAM clock
frequency), it expects four command/address per system clock and issues them seri-
ally on consecutive DRAM clock cycles on the DRAM bus. This means that the PHY
interface provides four command slots: 0,1,2, and 3, which it accepts each system
clock. To cope with the different clock domains, we insert CavaDRAM commands al-
ways in the first slot. The proofs in CoqDRAM do not lose validity, as lower-bounds
still hold. The only proofs that need adapting are REF related proofs, as they are
upper bounds on the spacing between REF commands. We write modified version
of such constraints considering the different clock domains.

11 https://silm-seminar.gitlabpages.inria.fr/season2/episode5/singh.pdf

14 F. Lisboa Malaquias et al.

isation metrics between the original DDR4cntrl and the modified CavaDRAM
version can be seen in Table 1. The results were obtained with a Xilinx Virtex
UltraScale 095FFVB2104-2 board, considering a request queue in CavaDRAM
that can store up to 256 requests.

Table 1. Key metrics from the synthesis report showing the resource utilisation on a
Xilinx Virtex UltraScale 095FFVB2104-2.

LUTs Flip-Flops bram fifo 52x4

DDR4cntrl
rank_machine 8195 4644 16
Full Design 9263 6129 16

CavaDRAM
CavaDRAM 5312 8605 0
Full Design 6344 9832 0

Unsurprisingly, the CavaDRAM version uses fewer LUTs, since the FIFO
scheduling logic is simpler than what had been originally proposed in DDR4cntrl.
The total number of Flip-Flops (FFs) in the design augments, since the Vivado
synthesizer chooses to represent Cava queues with FFs rather than native FPGA
FIFOs (accessible through the bram fifo 52x4 macro). Note also that DDR4cntrl
took 88,46% and 75,77% of the total amount of LUTs and FFs in the design,
respectively. For CavaDRAM, these percentages are 83,73% and 87,52%, respec-
tively. These results show that the generated code introduces only a negligible
imbalance w.r.t resource utilisation, compared to the replaced module.

6 Related Work

DRAM & Formal Methods. The idea of applying formal methods to verify
that DRAM controllers comply to the standards was first introduced by Datta
et al. [7]. The authors perform a manual translation of the DDR2 standards
into SystemVerilog Assertions (SVA). Kayed et al. [11] improves this idea by
automatically deriving SVA from timing diagrams in the standards. More re-
cently, Steiner et al. [19] go further by proposing automatic generation of SVA
from DRAMml scripts, a DSL that models the functional and timing properties
from JEDEC standards as Petri nets. While these approaches have incrementally
succeeded at automatically capturing and formally verifying JEDEC properties,
they cannot be used to verify broader aspects, such as latency bounds, controller
semantics, and security properties.

Li et al. [12] use the Uppaal model checker [1] to analyse memory controller
models described as Timed Automata (TA). However, in order to keep the state-
space manageable, they assume that each requestor has at most one outstanding
request, i.e., they constrain how requests arrive in the system. Moreover, there is
a large abstraction gap from the standards to the TA models, as they are complex
and written by hand [13]. Moreover, Hassan et al. [9] use Linear Temporal Logic
(LTL) formulas to specify the correctness of DRAM controllers. However, the
specification is not used to prove the actual implementation correct. Instead,

From the Standards to Silicon: Formally Proved Memory Controllers 15

counterexamples are obtained from models by bounded model checking, which
are then used to build a test bench for the validation of the implementation.
This latter approach can be seen as complimentary.

Hardware & Deductive Verification. The idea of describing circuits us-
ing functional programming languages was first introduced by Bjesse et al. in
Lava [2], a DSL written in Haskell. The verification part of Lava, however, was
limited, since logical formulas extracted from circuit definitions were exported
to automatic theorem provers (ATPs), and therefore limited to decidable prop-
erties. Cava implements the key concepts of Lava in Coq, allowing its user to
prove circuit properties directly from its definitions. Cava’s most notable use
case is an Advanced Encryption Standard (AES) implementation proven correct
against the AES NIST standard [8].

Other DSLs for hardware design in Coq are Kami [6] and Kôika [4]. The
former has been used to verify a RISC-V implementation against simple ISA
semantics [3]. In short, the latter extends Kami by providing mechanisms to en-
hance per-cycle performance of designs. In this work, we use Cava – which, like
the other DSLs, is built to describe circuits at a low level – to bridge the gap from
a high-level framework (CoqDRAM, written in plain Coq) to actual synthesiz-
able RTL. CoqDRAM captures correctness criteria directly from the standards
in their most natural form and is mainly used to prove algorithms, using general
Coq abstractions and ignoring HW limitations. Conversely, proving the prop-
erties captured by CoqDRAM directly from a Cava or Kami circuit definition
would be certainly more difficult. In our approach, by doing a single equivalence
proof, the properties ensured by CoqDRAM are inherited by the CavaDRAM
HW implementations (under some assumptions modelling HW limitations).

7 Conclusion

We developed a framework for designing correct-by-design, standard-compliant
DRAM controllers. The feasibility of the methodology is demonstrated by one
proof-of-concept implementation. We use the generated RTL as a plug-in re-
placement in an existing hardware design – the simulation and synthesis results
provide confidence in the correctness of the Coq models. In the future, we plan
to implement state-of-the-art bus arbiters and memory controllers using this
methodology. Another research path would be to develop a DSL tailored to the
needs of DRAM controller algorithms (handling of queues and DRAM request-
s/commands) that allows an automatic translation to Cava, while maintaining
the versatility of plain Coq used in the current version of CoqDRAM.

Acknowledgement. We acknowledge and are grateful for the contributions of
Sumantha Chaudhuri, who provided help setting up the simulation environment;
Chirag Sudarshan, who made himself available for discussing the implementation
of DDR4cntrl ; and Lirida Naviner for insightful discussions. This work is sup-
ported by the European Union’s Horizon 2020 research and innovation program
under grant agreement No. 101070627 (REWIRE).

16 F. Lisboa Malaquias et al.

References

1. Behrmann, G., David, A., Larsen, K.G., H̊akansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: Uppaal 4.0 (2006)

2. Bjesse, P., Claessen, K., Sheeran, M., Singh, S.: Lava: hardware design in haskell.
ACM SIGPLAN Notices 34(1), 174–184 (1998)

3. Bourgeat, T., Clester, I., Erbsen, A., Gruetter, S., Wright, A., Chlipala, A.: A
multipurpose formal risc-v specification. arXiv preprint arXiv:2104.00762 (2021)

4. Bourgeat, T., Pit-Claudel, C., Chlipala, A.: The essence of bluespec: a core lan-
guage for rule-based hardware design. In: 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation. pp. 243–257 (2020)

5. Chlipala, A.: Certified programming with dependent types: a pragmatic introduc-
tion to the Coq proof assistant. MIT Press (2022)

6. Choi, J., Vijayaraghavan, M., Sherman, B., Chlipala, A., et al.: Kami: a platform
for high-level parametric hardware specification and its modular verification (2017)

7. Datta, A., Singhal, V.: Formal verification of a public-domain DDR2 controller de-
sign. In: 21st International Conference on VLSI Design. pp. 475–480. IEEE (2008)

8. Dworkin, M.J., Barker, E.B., Nechvatal, J.R., Foti, J., Bassham, L.E., Roback, E.,
Dray Jr, J.F.: Advanced encryption standard (AES) (2001)

9. Hassan, M., Patel, H.: Mcxplore: Automating the validation process of dram mem-
ory controller designs. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 37(5), 1050–1063 (2017)

10. Joint Electron Device Engineering Council: DDR4 SDRAM standard (2021)
11. Kayed, M.O., Abdelsalam, M., Guindi, R.: A novel approach for SVA generation

of DDR memory protocols based on TDML. In: 2014 15th International Micropro-
cessor Test and Verification Workshop. pp. 61–66. IEEE (2014)

12. Li, Y., Akesson, B., Lampka, K., Goossens, K.: Modeling and verification of dy-
namic command scheduling for real-time memory controllers. In: Real-Time and
Embedded Technology and Applications Symposium (RTAS). pp. 1–12. IEEE
(2016)

13. Lisboa Malaquias, F., Asavoae, M., Brandner, F.: A Coq framework for more trust-
worthy DRAM controllers. In: Proceedings of the 30th International Conference
on Real-Time Networks and Systems. pp. 140–150. ACM (2022)

14. Milner, R.: A calculus of communicating systems. Springer (1980)
15. Nikhil, R.: Bluespec system verilog: efficient, correct RTL from high level specifi-

cations. In: Proceedings 2nd ACM and IEEE International Conference on Formal
Methods and Models for Co-Design. pp. 69–70. IEEE (2004)

16. Park, D.: A new equivalence notion for communicating systems. Bulletin EATCS
14, 78–80 (1981)

17. Pous, D., Sangiorgi, D.: Bisimulation and coinduction enhancements: A historical
perspective. Formal Aspects of Computing 31(6), 733–749 (2019)

18. Sangiorgi, D.: Introduction to bisimulation and coinduction. Cambridge University
Press (2011)

19. Steiner, L., Sudarshan, C., Jung, M., Stoffel, D., Wehn, N.: A framework for formal
verification of DRAM controllers. arXiv preprint arXiv:2209.14021 (2022)

20. Sudarshan, C., Lappas, J., Weis, C., Mathew, D.M., Jung, M., Wehn, N.: A lean,
low power, low latency DRAM memory controller for transprecision computing. In:
International Conference on Embedded Computer Systems. pp. 429–441. Springer
(2019)

