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Music representations

Musical score
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Music representations

Spectrogram of "Au clair de la lune"

Musical score
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Low-rank approximations
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High Resolution (HR) spectral analysis

t

s(t)



Page 4 / 37 C4DM Seminar Roland Badeau

Wednesday, February 13, 2013

High Resolution (HR) spectral analysis

s(0)

. . .

s(1)

s(2)

s(1) s(2)

. ..

. ..

t

s(t)



Page 4 / 37 C4DM Seminar Roland Badeau

Wednesday, February 13, 2013

High Resolution (HR) spectral analysis

t

s(t)

×

×

=

s(0)

. . .

s(1)

s(2)

s(1) s(2)

. ..

. ..



Page 5 / 37 C4DM Seminar Roland Badeau

Wednesday, February 13, 2013

Nonnegative Matrix Factorization (NMF)

Musical score

Spectrogram
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Nonnegative Matrix Factorization (NMF)

Musical score

0 2 4 6 8 10
0

20
40

Time (s)

0 2 4 6 8 10
0

20
40

0 2 4 6 8 10
0

20
40

Temporal activations

0

2000

4000

6000

8000

10000

0 0.5 1

F
re

qu
en

cy
 (

H
z)

0

2000

4000

6000

8000

10000

0 0.5 1
0

2000

4000

6000

8000

10000

0 0.5 1

Spectral atoms Spectrogram



Page 6 / 37 C4DM Seminar Roland Badeau

Wednesday, February 13, 2013

Applications

Applications of High Resolution methods
Spectral analysis (modal analysis, spectroscopy)
Array processing (beamforming, direction of arrival (DOA)
estimation)
Digital communications (channel identification)

Applications of NMF
Image analysis (face recognition)
Text mining, spectroscopy, finance, etc.

Applications to audio signal processing
Source separation, audio coding
Pitch and tempo estimation, automatic transcription
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Part I

High Resolution spectral analysis



Page 8 / 37 C4DM Seminar Roland Badeau

Wednesday, February 13, 2013

Exponential Sinusoidal Model (ESM)

Real-valued model: s(t) =
∑r

k=1 ak e−δk t cos(2πνk t + φk )

ak ∈ R
∗
+ and φk ∈]− π, π] are the amplitude and phase

δk ∈ R and νk ∈]−
1
2 ,

1
2 ] are the damping factor and frequency

Complex-valued model: s(t) =
∑r

k=1 αk zk
t

αk = ak eiφk ∈ C
∗ is a complex amplitude

zk = e−δk+i2πνk ∈ C
∗ is a complex pole

Noisy model: x(t) = s(t) + b(t) (b(t) is a white Gaussian noise)
Model estimation

Data vector: s(t) = [s(t), . . . , s(t + n − 1)]T with n > r
Fourier analysis: spectral resolution of the order of 1

n
Subspace analysis: high spectral resolution
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Subspace analysis

z t
1

z t
2

Signal subspace

of dimension r = 2

Data vector
of dimension n

s(t)
s(t) = α1z t

1 + α2z t
2

s(t)
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Subspace analysis

z t
1

z t
2

Signal subspace

of dimension r = 2

Data vector
of dimension n

s(t + 1)
s(t) = α1z t

1 + α2z t
2

s(t + 1)
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Subspace analysis

z t
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Model estimation

Choose a window (γτ )τ∈N (exponential, rectangular, hybrid)

Compute a "correlation" matrix

Cxx(t) =
∑t

τ=0 γτ x(t − τ) x(t − τ)H

Estimate the model parameters
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Compute a "correlation" matrix

Cxx(t) =
∑t

τ=0 γτ x(t − τ) x(t − τ)H

Estimate the model parameters

Cxx (t) ẑk (t) α̂k (t)
Computation of

complex amplitudes

Ordinary

squares
least

Estimation
of order r

AIC, MDL...

criteria

r
Computation of
complex poles

Subspace
analysis
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Subspace analysis
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Time-frequency analysis

x(t) W r (t) Φr (t) ẑk (t) α̂k (t)
Tracking of the

signal subspace
Tracking of the
spectral matrix

Tracking of the
complex poles

Tracking of the
complex amplitudes

SWASVD [3]
FAPI [2]

YAST [4]

Adaptive

squares
least [7]

ESPRIT [5]
Adaptive

HRHATRAC [6]

Estimation
of order r

ESTER
criterion [1]

r

[1] Roland Badeau, Bertrand David, and Gaël Richard. "A new perturbation analysis for signal enumeration in rotational invariance
techniques". IEEE Transactions on Signal Processing, 54(2): 450–458, February 2006.
[2] Roland Badeau, Bertrand David, and Gaël Richard. "Fast Approximated Power Iteration Subspace Tracking". IEEE Transactions
on Signal Processing, 53(8): 2931-2941, August 2005.
[3] Roland Badeau, Gaël Richard, and Bertrand David. "Sliding window adaptive SVD algorithms". IEEE Transactions on Signal
Processing, 52(1): 1-10, January 2004.
[4] Roland Badeau, Gaël Richard, and Bertrand David. "Fast and stable YAST algorithm for principal and minor subspace tracking".
IEEE Transactions on Signal Processing, 56(8): 3437-3446, August 2008.
[5] Roland Badeau, Gaël Richard, and Bertrand David. "Fast adaptive ESPRIT algorithm". In Proc. of IEEE Workshop on Statistical
Signal Processing (SSP), Bordeaux, France, July 2005.
[6] Bertrand David, Roland Badeau, and Gaël Richard. "HRHATRAC Algorithm for Spectral Line Tracking of Musical Signals". In
Proc. of IEEE ICASSP, volume 3, pages 45-48, Toulouse, France, May 2006.
[7] Bertrand David and Roland Badeau. "Fast sequential LS estimation for sinusoidal modeling and decomposition of audio
signals". In Proc. of IEEE WASPAA, pages 211-214, New Paltz, New York, USA, October 2007.
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Power iteration method

Power iteration method (recursive computation of W r (t))
1) Cxy (t) = CxxW r (t − 1) (compression of Cxx )
2) W r (t)R(t) = Cxy (t) (orthonormalisation of Cxy (t))

Span(W r (t)) exponentially converges to the signal subspace
If 2) is an orthogonal-triangular (QR) decomposition, W r (t)
converges to the r principal eigenvectors of Cxx

Signal subspace tracking if Cxx(t) is time-varying

Fast algorithm [Strobach, 1996] (complexity of nr2 instead of n2r )
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Subspace tracking

Signal subspace

of dimension r = 2

Data vector
of dimension n

s(t)
s(t) = α1z t

1 + α2z t
2

w1(t)

w2(t)

s(t)
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Subspace tracking

Signal subspace

of dimension r = 2

Data vector
of dimension n

s(t + 3)
s(t) = α1z′ t

1 + α2z′ t
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s(t + 3)w2(t)
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Natural power method

Natural power method
1) Cxy (t) = Cxx(t)W r (t − 1) (compression of Cxx )

2) W r (t) = Cxy (t)
(

Cxy (t)HCxy (t)
)−

1
2 (orthonormalisation of Cxy (t))

FAPI algorithm [1] (complexity of 3nr instead of nr2)
reaches the complexity lower bound (3nr )
converges faster than PAST and its variants
guarantees the orthonormality of W r (t) and the numerical stability

[1] Roland Badeau, Bertrand David, and Gaël Richard. "Fast Approximated Power Iteration Subspace Tracking". IEEE Transactions
on Signal Processing, 53(8): 2931-2941, August 2005.
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2) W r (t) = Cxy (t)
(

Cxy (t)HCxy (t)
)−

1
2 (orthonormalisation of Cxy (t))

FAPI algorithm [1] (complexity of 3nr instead of nr2)
reaches the complexity lower bound (3nr )
converges faster than PAST and its variants
guarantees the orthonormality of W r (t) and the numerical stability

[1] Roland Badeau, Bertrand David, and Gaël Richard. "Fast Approximated Power Iteration Subspace Tracking". IEEE Transactions
on Signal Processing, 53(8): 2931-2941, August 2005.
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Applications of High Resolution analysis

Analysis / Synthesis
High resolution time-frequency representation
Analysis of the sympathetic string modes in a concert harp
Audio coding

Automatic transcription
Pitch estimation of piano notes
Musical tempo estimation

Other applications
Channel estimation in digital communications
Adaptive multilinear SVD for structured tensors
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Decomposition of a piano sound
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[1] Roland Badeau and Bertrand David. "Adaptive subspace methods for high resolution analysis of music signals". In Acous-
tics’08, Paris, France, July 2008.
[2] Bertrand David, Gaël Richard, and Roland Badeau. "An EDS modelling tool for tracking and modifying musical signals". In
Proc. of Stockholm Music Acoustics Conference (SMAC), volume 2, pages 715-718, Stockholm, Sweden, August 2003.
[3] Roland Badeau, Rémy Boyer, and Bertrand David. "EDS parametric modeling and tracking of audio signals". In Proc. of the
5th International Conference on Digital Audio Effects (DAFx), pages 139-144, Hamburg, Germany, September 2002.
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Decomposition of a violin sound
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[1] Roland Badeau and Bertrand David. "Adaptive subspace methods for high resolution analysis of music signals". In Acous-
tics’08, Paris, France, July 2008.
[2] Bertrand David, Gaël Richard, and Roland Badeau. "An EDS modelling tool for tracking and modifying musical signals". In
Proc. of Stockholm Music Acoustics Conference (SMAC), volume 2, pages 715-718, Stockholm, Sweden, August 2003.
[3] Roland Badeau, Rémy Boyer, and Bertrand David. "EDS parametric modeling and tracking of audio signals". In Proc. of the
5th International Conference on Digital Audio Effects (DAFx), pages 139-144, Hamburg, Germany, September 2002.
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Sinusoids and noise separation

Principle: projection onto the signal or the noise subspace [1,2]

Instrument Original Sinusoids Noise

Piano

Guitar

Violin

Flute

Saxophone

Bell

[1] Roland Badeau, Rémy Boyer, and Bertrand David. "EDS parametric modeling and tracking of audio signals". In Proc. of the
5th International Conference on Digital Audio Effects (DAFx), pp. 139-144, Hamburg, Germany, September 2002.
[2] Bertrand David, Gaël Richard, and Roland Badeau. "An EDS modelling tool for tracking and modifying musical signals". In
Proc. of Stockholm Music Acoustics Conference (SMAC), volume 2, pp. 715-718, Stockholm, Sweden, August 2003.
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Drum separation and beat estimation

Drum source separation [1]

Original (Aerosmith):

Separated drums:

Remix - more drums:

Remix - less drums:

Beat tracking [2]

Pink Floyd:

Brad Mehldau:

[1] Olivier Gillet and Gaël Richard. Transcription and separation of drum signals from polyphonic music. IEEE Transactions on
Audio, Speech, and Language Processing, 16(3): 529-540, March 2008.
[2] Miguel Alonso Arevalo, Roland Badeau, Bertrand David, and Gaël Richard. "Musical tempo estimation using noise subspace
projections". In Proc. of IEEE WASPAA, pages 95-98, New Paltz, New York, USA, October 2003.



Page 21 / 37 C4DM Seminar Roland Badeau

Wednesday, February 13, 2013

Drum separation and beat estimation

Drum source separation [1]

Original (Aerosmith):

Separated drums:

Remix - more drums:

Remix - less drums:

Beat tracking [2]

Pink Floyd:

Brad Mehldau:

[1] Olivier Gillet and Gaël Richard. Transcription and separation of drum signals from polyphonic music. IEEE Transactions on
Audio, Speech, and Language Processing, 16(3): 529-540, March 2008.
[2] Miguel Alonso Arevalo, Roland Badeau, Bertrand David, and Gaël Richard. "Musical tempo estimation using noise subspace
projections". In Proc. of IEEE WASPAA, pages 95-98, New Paltz, New York, USA, October 2003.



Page 22 / 37 C4DM Seminar Roland Badeau

Wednesday, February 13, 2013

Sympathetic string modes in a concert harp

Modelling sympathetic string modes in a concert harp [1]

Experimental protocol Physical model

[1] Jean-Loïc Le Carrou, François Gautier, and Roland Badeau. "Sympathetic string modes in the concert harp". Acta Acustica
united with Acustica, 95(4): 744-752, July/August 2009.
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Audio coding

Parametric coder based on the ESM model [1]
→ exponential modulations

Subband TemporalInput
Quantisation

ESM model

Subband

signal decomposition
parameters

segmentation

Attack
detection

estimation

Entropy
coding

Joint scalar quantisation with entropy constraint [2,3]

[1] Olivier Derrien, Gaël Richard, and Roland Badeau. "Damped sinusoids and subspace based approach for lossy audio coding".
In Acoustics’08, Paris, France, July 2008.
[2] Olivier Derrien, Roland Badeau, and Gaël Richard. "Entropy-constrained quantization of exponentially damped sinusoids
parameters". In Proc. of IEEE ICASSP, Prague, Czech Republic, May 2011.
[3] Olivier Derrien, Roland Badeau, and Gaël Richard. "Calculation of an entropy-constrained quantizer for exponentially damped
sinudoids parameters". Technical report, Laboratoire de Mécanique et d’Acoustique, Marseille, France, June 2010.
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Audio coding

Original sound:
MDCT ESM

9 bits/spl 8.9 bits/spl

8 bits/spl

7 bits/spl 6.8 bits/spl

6 bits/spl 6.4 bits/spl

5 bits/spl 4.7 bits/spl

4 bits/spl 4.4 bits/spl

3 bits/spl 3.2 bits/spl

2 bits/spl 2.1 bits/spl
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Part II

Nonnegative decompositions
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Nonnegative Matrix Factorization (NMF)

Musical score

Spectrogram V
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Nonnegative Matrix Factorization (NMF)
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β-divergence and multiplicative rules

Minimisation of the criterion D(V |WH) =
∑N

n=1
∑F

f=1 d (vfn |v̂fn )

β-divergence [Eguchi and Kano, 2001]:

dβ(a|b) = 1
β(β−1)

(

aβ + (β − 1)bβ − βabβ−1
)

β = 2 corresponds to Euclidean distance (EUC),
β = 1 corresponds to Kullback-Leibler divergence (KL),
β = 0 corresponds to Itakura-Saito divergence (IS),
dβ(a|b) is convex w.r.t b if and only if β ∈ [1,2],

Multiplicative update rules [Kompass, 2007]:






W ← W ⊗ (V⊗(WH)β−2)HT

(WH)β−1HT

H ← H ⊗ W T (V⊗(WH)β−2)

W T (WH)β−1

D(V |WH) is non-increasing if and only if β ∈ [1,2].
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Stability of multiplicative update rules

Introduction of an exponentiation step η into NMF multiplicative
update rules designed for minimizing the β-divergence [1]:

W ← W ⊗
(

(V⊗(WH)β−2)HT

(WH)β−1HT

)η

(1)

H ← H ⊗
(

W T (V⊗(WH)β−2)

W T (WH)β−1

)η

(2)

Monotonic decrease of the criterion if β ∈ [1, 2] and η ∈]0, 1]

Exponential or asymptotic stability of both rules (1) and (2) if
η ∈]0, η∗[, where ∀β ∈ R, η⋆ ∈ ]0, 2] and if β ∈ [1, 2], η⋆ = 2

Instability if η /∈ [0, 2] ∀β ∈ R

Step η permits to control the convergence rate

[1] Roland Badeau, Nancy Bertin, and Emmanuel Vincent. "Stability analysis of multiplicative update algorithms and application to
nonnegative matrix factorization". IEEE Transactions on Neural Networks, vol.21, no. 12, pp. 1869-1881, December 2010.
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Avoiding local minima

The three divergences EUC, KL, and IS have local minima [1]

D(V |WH)

(W , H)

[1] Nancy Bertin and Roland Badeau. "Initialization, distances and local minima in audio applications of the nonnegative matrix
factorization". In Acoustics’08, Paris, France, July 2008.
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Avoiding local minima

Strategies for initialising the algorithm [1]
Failure of algorithms from automatic classification

"Simulated cooling" algorithm for IS-NMF [2]
Parameter β becomes a function of the iteration index p:

The best transcription is not obtained by finding the lowest minimum
of the criterion, but rather by constraining the decomposition

[1] Nancy Bertin and Roland Badeau. "Initialization, distances and local minima in audio applications of the nonnegative matrix
factorization". In Acoustics’08, Paris, France, July 2008.
[2] Nancy Bertin, Cédric Févotte, and Roland Badeau. "A tempering approach for Itakura-Saito nonnegative matrix factorization.
With application to music transcription". In Proc. of IEEE ICASSP, pages 1545–1548, Taipei, Taiwan, April 2009.
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1
2 convexity area of dβ
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Harmonicity and spectral smoothness

Model [1]: v̂fn =
∑K

k=1 wfk (θ)hkn where wfk (θ) =
∑M

m=1 emkPkm(f )

f
f

f

Pk1(f ) PkM (f )

wfk

. . .

+

×eMk×e1k

Pkm(f ) is a predefined harmonic spectral pattern

emk and hkn are estimated by means of a multiplicative algorithm

[1] Emmanuel Vincent, Nancy Bertin, and Roland Badeau. "Adaptive harmonic spectral decomposition for multiple pitch estima-
tion". IEEE Transactions on Audio, Speech, and Language Processing, 18(3): 528- 537, March 2010.
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Temporal smoothness

MAP estimator: C(Θ) = L(Θ) + log(p(Θ)) où Θ = {emk , hkn}

Markov chain structured a priori distribution:

p(H) =
K
∏

k=1
p(hk1)

N
∏

n=2
p(hkn|hk(n−1))

where p(hkn|hk(n−1)) follows an inverse-Gamma distribution

SAGE algorithm [1] and multiplicative update rules [2] with η = 0.5

[1] Nancy Bertin, Roland Badeau, and Emmanuel Vincent. "Enforcing Harmonicity and Smoothness in Bayesian Nonnegative
Matrix Factorization Applied to Polyphonic Music Transcription". IEEE Transactions on Audio, Speech, and Language Processing,
18(3): 538-549, March 2010.
[2] Nancy Bertin, Roland Badeau, and Emmanuel Vincent. "Fast Bayesian NMF algorithms enforcing harmonicity and temporal
continuity in polyphonic music transcription". In Proc. of IEEE WASPAA, pages 29-32, New York, USA, October 2009.
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Temporal smoothness

MAP estimator: C(Θ) = L(Θ) + log(p(Θ)) où Θ = {emk , hkn}

Markov chain structured a priori distribution:

hk1 hk2 hkN. . .

p(H) =
K
∏

k=1
p(hk1)

N
∏

n=2
p(hkn|hk(n−1))

where p(hkn|hk(n−1)) follows an inverse-Gamma distribution

SAGE algorithm [1] and multiplicative update rules [2] with η = 0.5

[1] Nancy Bertin, Roland Badeau, and Emmanuel Vincent. "Enforcing Harmonicity and Smoothness in Bayesian Nonnegative
Matrix Factorization Applied to Polyphonic Music Transcription". IEEE Transactions on Audio, Speech, and Language Processing,
18(3): 538-549, March 2010.
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NMF-based automatic transcription

Algorithm [1,2]

Time-frequency NonnegativeInput MIDI
signal representation

Transcription
filedecomposition

Estimation of
MIDI pitch

Detection of the attacks
and ends of notes

W

H

Demo

Original signal (Liszt):

Transcribed signal:

[1] Nancy Bertin, Roland Badeau, and Gaël Richard. "Blind signal decompositions for automatic transcription of polyphonic music:
NMF and K-SVD on the benchmark". In Proc. of IEEE ICASSP, volume 1, pages 65-68, Honolulu, Hawaii, USA, April 2007.
[2] Nancy Bertin, Roland Badeau, and Emmanuel Vincent. "Enforcing Harmonicity and Smoothness in Bayesian Nonnegative
Matrix Factorization Applied to Polyphonic Music Transcription". IEEE Transactions on Audio, Speech, and Language Processing,
18(3): 538-549, March 2010.
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Time-frequency activations

Model [1]: v̂fn =
∑K

k=1 wfkhkn(f ) where hkn(f ) = σ2
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[1] Romain Hennequin, Roland Badeau, and Bertrand David. "NMF with time-frequency activations to model non-stationary audio
events". IEEE Transactions on Audio, Speech, and Language Processing, vol. 19, no. 4, pp. 744-753, May 2011.
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Fundamental frequencies variations

Model [1]: v̂fn =
K
∑

k=1
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[1] Romain Hennequin, Roland Badeau, and Bertrand David. "Time-dependent parametric and harmonic templates in nonnegative
matrix factorization". In Proc. of DAFx, Graz, Austria, September 2010.
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Score-based informed source separation

Algorithm [1]

Round Midnight (Thelonious Monk):

[1] Romain Hennequin, Bertrand David, and Roland Badeau. "Score informed audio source separation using a parametric model
of non-negative spectrogram". In Proc. of IEEE ICASSP, Prague, Czech Republic, May 2011.
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Conclusions

Nonstationary signal modelling
Adaptive high resolution methods
Nonnegative decompositions enforcing harmonicity and
smoothness

Applications to audio and music signals
Source separation, audio coding,
Pitch and tempo estimation, automatic transcription

Outlooks
Is it possible to merge HR methods and NMF in some way?
.. to be continued in an upcoming seminar (March 6)
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