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Introduction

NMF applied to time-frequency distributions:
is a powerful tool for modelling music signals
has many applications in audio signal processing

Most probabilistic models for NMF:
+ permit to exploit some a priori knowledge
- do not take phase into account
- assume that all time-frequency bins are independent

The proposed HR-NMF model:
takes phases and local correlations into account
achieves high spectral resolution
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Non-negative Matrix Factorization (NMF)

Musical score
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Non-negative Matrix Factorization (NMF)
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Non-negative Matrix Factorization (NMF)

Factorization of a matrix V ∈ R
F×T
+ as a product V ≈ W H

Rank reduction: W ∈ R
F×K
+ and H ∈ R

K×T
+ where K < min(F ,T )

Usual applications:
Image analysis, data mining, spectroscopy, finance, etc.
Audio signal processing:

– Multi-pitch estimation, onset detection
– Automatic music transcription
– Musical instrument recognition
– Source separation
– Audio inpainting
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NMF probabilistic models

Mixture models with (hidden) latent variables
+ can exploit a priori knowledge
+ can use well-known statistical inference techniques

Probabilistic models of time-frequency distributions:
Additive Gaussian noise [Schmidt 2008],
Probabilistic Latent Component Analysis [Smaragdis 2006],
Mixture of Poisson components [Virtanen 2008],
Mixture of Gaussian components [Févotte 2009],

+ Only model taking the existence of phase into account, and justifying
the use of Wiener filtering for separating the components
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Gaussian model (IS-NMF) [Févotte 2009]
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A priori knowledge in probabilistic models

Various kinds of a priori knowledge:
Harmonicity [Virtanen 2008, Vincent 2008. . . ]
Smoothness of spectral envelopes [Schmidt 2008, Vincent 2008. . . ]
Smoothness of temporal activations [Virtanen 2008, Févotte 2009. . . ]
Spectral or temporal sparsity [Schmidt 2008, Smaragdis 2009. . . ]

Standard approaches:
Parametrisation of W and / or H
Use of a predefined dictionary W (parametric or non-parametric,
learned beforehand)
Bayesian methods (a priori distribution of the parameters)



Page 8 / 30 C4DM Seminar Roland Badeau

A priori knowledge in probabilistic models

Various kinds of a priori knowledge:
Harmonicity [Virtanen 2008, Vincent 2008. . . ]
Smoothness of spectral envelopes [Schmidt 2008, Vincent 2008. . . ]
Smoothness of temporal activations [Virtanen 2008, Févotte 2009. . . ]
Spectral or temporal sparsity [Schmidt 2008, Smaragdis 2009. . . ]

Standard approaches:
Parametrisation of W and / or H
Use of a predefined dictionary W (parametric or non-parametric,
learned beforehand)
Bayesian methods (a priori distribution of the parameters)



Page 9 / 30 C4DM Seminar Roland Badeau

Analysis levels

Time-frequency

distribution

Probabilistic model

of time-frequency

distribution

A priori

knowledge

Low-level model High-level modelTransformation
of the data

The low-level model raises several issues:
Phase is not (or insufficiently) taken into account
Sinusoids are not modelled as such (they cannot be properly
separated by Wiener filtering)
All time-frequency bins are assumed independent
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Solution of (PW) + (PR)

Critically sampled paraunitary filter banks: R(z) = Ẽ(z)
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−→ DFT (complex Gaussian processes)
−→ MDCT (real Gaussian processes)

"Decorrelating" effect onto a stationary process
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Graphical model of IS-NMF ( X ∼ N (0,WH))
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Autoregressive filtering of the channels
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Graphical model of HR-NMF (AR1)
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Graphical model of HR-NMF (AR2)
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HR-NMF model

Frequency bands are independent and non-stationary
Particular cases:

IS-NMF model
Autoregressive process

Exponential Sinusoidal Model (ESM)
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Maximum likelihood estimation

Expectation-Maximization (EM) algorithm:
E-step:

– Kalman filtering with smoothing (forward-backward)
– Complexity: O(FTK 3P3)

M-step:
– Iterative algorithm which switches between (W , a) and H
– Complexity: O(FTKP2)

Processing realistic data requires faster algorithms:
Improve the convergence speed
Reduce the computational complexity

[1] Roland Badeau. "Gaussian modelling of mixtures of non-stationary signals in the time-frequency domain (HR-NMF)". In IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New York, USA, October 2011.
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EM as Minorize-Maximize (MM) method

L(θ)

θ0 θ

L(θ) = ln(p(x ; θ))
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EM as Minorize-Maximize (MM) method

L(θ)

θ0

M(θ, θ0)

θ

Q(θ, θ0) =
∫

ln(p(x , c; θ))p(c|x ; θ0)dc
M(θ, θ0) = L(θ0) + Q(θ, θ0)− Q(θ0, θ0)
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EM as Minorize-Maximize (MM) method
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Computing the gradient of L

L(θ)

θ0

M(θ, θ0)

θ

Q(θ, θ0) =
∫

ln(p(x , c; θ))p(c|x ; θ0)dc
M(θ, θ0) = L(θ0) + Q(θ, θ0)− Q(θ0, θ0)
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Computing the gradient of L

L(θ)

θ0

M(θ, θ0)

θ

∇L(θ0) = ∇Q(θ0, θ0)

Q(θ, θ0) =
∫
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Multiplicative update rules

Purpose: improve the convergence rate of EM

Observation: the E-step permits to efficiently compute the
gradient of the log-likelihood function

Principle: replace the M-step by any gradient-based optimizer

New update rules parametrized by ε ≥ 0, which generalize both
IS-NMF multiplicative updates (ε = 0) and EM (ε = 1)

Enhanced convergence speed obtained with a "simulated cooling"
strategy (make ε decrease over iterations)

[1] Roland Badeau, Alexey Ozerov. "Multiplicative update rules for modelling mixtures of non-stationary signals in the time-
frequency domain (HR-NMF)". Submitted to EUSIPCO, Marrakech, Morocco, September 2013.
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Variational Bayesian EM algorithm

Prior distribution of latent variables in band f (P = 1, K = 2)
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Variational Bayesian EM algorithm

Joint distribution of complete data in band f (P = 1, K = 2)
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Variational Bayesian EM algorithm

Posterior distribution of latent variables in band f (P = 1, K = 2)
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Variational Bayesian EM algorithm

Structured mean field approximation in band f (P = 1, K = 2)
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Variational Bayesian EM algorithm

Mean field approximation in band f (P = 1, K = 2)
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Variational Bayesian EM algorithm

Purpose: reduce the computational complexity of EM

Principle: the posterior distribution of the latent variables is
approximated by a factorized distribution
Complexity reduction:

Exact E-step: O(FTK 3(1 + P)3)
Structured mean field (no dependency over k) : O(FTK (1 + P)3)
Mean field (no dependency over k and t) : O(FTK (1 + P))

Performance loss:
The increase of log-likelihood function is no longer guaranteed
In practice, no perceptual difference

[1] Roland Badeau, Angélique Drémeau. "Variational Bayesian EM algorithm for modelling mixtures of non-stationary signals in
the time-frequency domain (HR-NMF)". To appear in IEEE ICASSP, Vancouver, Canada, May 2013.
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Principle: the posterior distribution of the latent variables is
approximated by a factorized distribution
Complexity reduction:

Exact E-step: O(FTK 3(1 + P)3)
Structured mean field (no dependency over k) : O(FTK (1 + P)3)
Mean field (no dependency over k and t) : O(FTK (1 + P))

Performance loss:
The increase of log-likelihood function is no longer guaranteed
In practice, no perceptual difference

[1] Roland Badeau, Angélique Drémeau. "Variational Bayesian EM algorithm for modelling mixtures of non-stationary signals in
the time-frequency domain (HR-NMF)". To appear in IEEE ICASSP, Vancouver, Canada, May 2013.
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Outline

Advantages and drawbacks of NMF probabilistic models

Choosing an appropriate TF representation
Modelling phases and correlations in the TF domain

HR-NMF model
Algorithms

Preliminary results
Audio source separation
Audio inpainting

Conclusions
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Application to piano tones
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Source separation
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(a) First component (C4)
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Separation of two sinusoidal components
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Audio inpainting
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Audio inpainting
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Audio inpainting
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Contributions

Critically sampled paraunitary filter banks satisfy both PW and PR
HR-NMF time-frequency model:

models phases and local correlations in each frequency band
generalizes IS-NMF, mixtures of AR processes, and ESM models

Algorithms:
EM algorithm: too computationally demanding
Multiplicative update rules: improved convergence speed
Variational Bayesian EM algorithm: lower computational complexity

Preliminary results:
Separation of overlapping sinusoids without perceptible artefacts
Restoration of missing observations without perceptible artefacts
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Outlooks

Design consistent TF representation and TF probabilistic model
Extensions of HR-NMF:

Extension to multichannel signals (e.g. stereo)
Correlations between frequency bands (→ attacks, vibratos, chirps)
Correlations between components (→ sympathetic modes)
Replace NMF by other parametric models, or priors enforcing
harmonicity, sparsity, smoothness...

Algorithms:
Variational Bayesian methods
Markov Chain Monte Carlo (MCMC)
Belief propagation methods (message passing algorithm)

Applications:
Source coding, source separation, audio inpainting...
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