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ABSTRACT 
Taking into account the carrier dynamics in the wetting layer, excited state and the ground state, the intensity modulation 
properties of an injection-locked quantum dot laser are studied theoretically through a semi-analytical approach. It is 
demonstrated that both high carrier capture and relaxation rates enhance the modulation bandwidth as well as the 
resonance-peak amplitude. Moreover, the pre-resonance dip arising under positive detuning can be eliminated as well, 
which is beneficial for further bandwidth enhancement. It is also found that a large capture time reduces both the 
resonance frequency and the damping factor while both are increased by a large relaxation time.  
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1. INTRODUCTION 
Optical injection locking is an attractive technique for improving the performance of directly-modulated semiconductor 
laser, such as bandwidth enhancement [1], [2], reduction of relative intensity noise (RIN) and frequency chirp [3]-[6]. 
Although most relevant work has been conducted on quantum well (QW) lasers, the inclusion of quantum dots (QD) in 
the laser active media are more promising because of the 3-D confinement of carriers. The latter can substantially 
improve the laser properties so as to obtain a lower threshold current, a stronger temperature insensitivity and a reduced 
linewidth enhancement factor (LEF) [7]-[10]. In contrast to their QW counterparts, QD lasers have a more complex 
carrier dynamics due to the existence of wetting layer (WL) and excited states (ES). It is known that carrier lifetimes 
have significant influences on the dynamics of free-running QD lasers [11], [12]. In our previous work, it has been 
demonstrated that finite carrier capture time from the WL to the ES associated with the finite carrier relaxation time from 
the ES to the ground state (GS) as well as the Pauli blocking lead to the limitation of the modulation bandwidth [11]. 
Recently, Lingnau et al studied the impacts of the effective charge carrier scattering lifetimes on relaxation oscillation 
frequency and damping factor. Three dynamical regimes are identified, which are characterized by the level of 
synchronization between carrier dynamics in QDs and the WL [12].  Regarding optical injection-locked QD lasers, 
Naderi et al experimentally investigated the microwave properties based on a novel modulation transfer function 
incorporating the gain compression effect [1]. Theoretically, considering the carrier dynamics between the WL and the 
QDs, Pausch et al proposed an injection-locked QD laser model with which the bifurcation scenarios and the turn-on 
dynamics are studied numerically, and the influences of the nonlinear carrier lifetimes are analyzed [13]. Moreover, self-
pulsation and excitability in optically injected QD lasers have been investigated accounting for excited states both 
theoretically and experimentally by Olejniczak et al [14]. In this paper, taking into account the carrier dynamics of WL, 
ES and GS [15]-[18], the impacts of carrier capture and relaxation rates on the intensity modulation (IM) properties of an 
injection-locked QD laser are studied theoretically through a semi-analytical approach. It is found that both large capture 
and relaxation rates enhance the 3-dB bandwidth. Moreover, the resonance peak amplitude is enlarged as well. 
Particularly, under positive detuning small capture and (or) relaxation times can eliminate the appearance of pre-
resonance dip, which is the main source of limitations on the modulation bandwidth. It is also proved that large capture 
time reduces both the resonance frequency and the damping factor while those are increased by large relaxation time.  
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2. RATE EQUATION MODEL DESCRIPTION 
Figure 1 illustrates the typical scheme of an injection-locked QD laser. In the numerical model, the QD system is 
assumed to be in excitonic energy states, namely the electrons and holes are treated as electron-hole (e-h) pairs. The QD 
ensemble includes two energy levels: a two-fold degenerate GS and a four-fold degenerate ES. Figure 1 also shows the 
carrier dynamics in the QD laser. Carriers are supposed to be directly injected from contacts into the WL. Then they are 
captured into the ES within a capture time of WL

ESW , followed by the relaxation into the GS within a relaxation time of ES
GSW . 

On the other hand, carriers can also escape from the GS ( GS
ESW ) and ES ( ES

WLW ), which is governed by the Fermi 
distribution assumption as follows [19]: 
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where BN is the QD number, QDS  is the total QD surface area. WLU is the effective density of state in the WL. XE  is the 
energy with X  denoting WL, ES and GS. Besides, some carriers recombine spontaneously with a spontaneous time of 

spon
XW . Stimulated emission occurs from the GS, and that from the ES is not taken into account in the model. 
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Figure 1. Schematic of injection-locked QD laser, and the carrier dynamics in the slave laser.  

Following the sketch of figure 1, the rate equations for the injection-locked QD lasers can be written as: 
WL ES WL WL

ESES WL spon
WL ES WL

dN N N NI f
dt q W W W

 � � �                                                                      (3)    

ES WL GS ES ES ES
ES ES GSWL GS ES ES spon

ES ES WL GS ES

dN N N N N N
f f f

dt W W W W W
 � � � �                                           (4)      

GS ES GS GS
GS ES p g GS GSES GS spon

GS ES GS

dN N N N
f f v g S

dt W W W
 � � �*                                                (5) 

1( ) 2 cosGS GS
p g GS GS p SP c inj GSspon

P GS

dS N
v g S k S S

dt
E I

W W
 * � � * �                             (6)             

1( ) sin
2

injH
p g GS inj c

p GS

Sd v g k
dt S

DI Z I
W

 * � � ' �                                               (7) 

where XN  is carrier number, GSS  is photon number from the GS, and I  is the phase difference between the slave and 
master lasers defined as slave masterI I I � . The GS gain is given by  

� � /GS GS B QDg a N N V �                                                                    (8) 

with GSa  the differential gain and QDV  the total volume of QDs. The Pauli blocking factors are given by 
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Finally ck  denotes the coupling coefficient which is calculated by 
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with gQ  the group velocity, L the cavity length  and  R  the facet reflectivity. The detuning frequency is defined 
by  inj master slaveZ Z Z'  � . injS  is the injected photon number and the injection ratio is inj=S /Sinj FER , where SFE  is the 
photon number of the free-running laser . The LEF is denoted by HD , pW  is the photon lifetime, p*  is the optical 
confinement factor and spE  is the spontaneous emission factor. 

In order to obtain the laser’s small-signal response to a sinusoidal current modulation 1
j tI e Z  around the bias current biasI , 

let us assume solutions of the following form 
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Following the standard approach of deriving the differential rate equations [20], the modulation transfer function can be 
extracted as follows: 
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where 1z  is the unique zero, and the poles 1p ~ 5p , which are also eigenvalues, are obtained from the determinant of the 
coefficient matrix in the differential rate equation. Let us note that these eigenvalues are important for the stability 
analysis of the bifurcation diagrams as well as for the extraction of the resonance frequency and the damping factor. As 
discussed in the following sections, the knowledge of the poles and zeros are also useful for analyzing the modulation 
response behaviours with respect to the Bode plot.  

Table 1. Material and laser parameters (after [15]-[18], [21]) 

Symbols Parameters Values Symbols Parameters Values 
 EWL WL energy 0.97 eV  nr Refractive index 3.27 
 EES ES energy 0.87 eV  L Active region length 0.05 cm 
 EGS GS energy 0.82 eV  W Active region width 4×10-4 cm 

WL
ESW  Capture time from WL to 

ES 12.6  ps  N Number of QD layers 5 
ES
GSW  Relaxation time from ES to 

GS 3.5 ps  ND QD density 1×1011 cm-2 
spon
WLW  Spontaneous time of WL 500 ps p*  Optical confinement 

factor 0.06 
spon
ESW  Spontaneous time of ES 500 ps SPE Spontaneous emission 

factor: 1×10-4 
spon
GSW  Spontaneous time of GS 1200 ps iD  Internal modal loss 6 cm-1 

aGS Differential gain of GS 5×10-15 cm2  R1=R2 Mirror reflectivity 0.32 
HD  LEF 1.3    

 

3. RESULTS AND DESCUSSIONS 
All the parameters used in the simulations are listed in table 1 unless stated otherwise. Firstly, we studied the steady-state 
properties of the QD laser as depicted in figure 2. The calculated current threshold for the free-running laser is Ith=54 mA. 
Above threshold simulations show that under optical injection operation with Rinj=0.5 at zero detuning condition, the 

Proc. of SPIE Vol. 8619  861908-3



 

 

photon number is enhanced while carrier numbers in the GS and the ES are both reduced, nevertheless, the carrier 
number in the WL is little changed. In the following sections, the bias current of the slave laser and the injection level 
are set at Ibias=1.1 Ith and Rinj=0.5, respectively. 
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Figure 2. Steady state results versus pump current at zero detuning: (a) photon numbers of GS; (b) carrier numbers of 
GS, ES and WL under various injection ratios. 
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Figure 3. Injection-locking diagrams as functions of injection ratio Rinj and detuning frequency  injf'  with LEF=1.3. 
The saddle-node (SN, solid) and Hopf bifurcations (dash) are calculated with the continuation software Matcont. 
The stable locking regime is bounded by the supercritical bifurcations (thick line). The thin lines indicate 
subcritical bifurcations. Injection ratio in (a) is from 0.01 to 5.0; and in (b) is from 10-5 to 0.02. 

In order to obtain the stable injection-locking regime we investigated the local bifurcations of the QD laser, namely 
saddle-node and Hopf bifurcations [22], [23]. The bifurcations can be obtained by an eigenvalue analysis of the fixed 
point, that is, if a single, real eigenvalue passes through the imaginary axis in the complex plane, one typically finds a 
saddle-node bifurcation while a pair of complex conjugate eigenvalues passing through the imaginary axis corresponds 
to a Hopf bifurcation. The bifurcations can be calculated by the so-called numerical continuation which is a powerful 
method for bifurcation analysis, and it is implemented by the continuation package Matcont in our work. The saddle-
node (SN, solid line) and Hopf (dashed line) bifurcations are illustrated in figure 3 with LEF of 1.3. The stable locking 
regime is bounded by the supercritical bifurcations (thick lines) [24]. The regime is enlarged under high injection level. 
In figure 3(b), it is noted that intersections of the Hopf and SN curves produce a codimension-two point G1 where the 
bifurcations changes from supercritical (subcritical) to subcritical (supercritical) along both the Hopf and SN curves. It is 
worth noting that the laser is known to generate complicated dynamics around this codimension-two point in its vicinity 
[24]. Besides, it is stressed that the subcritical bifurcation cannot be detected in experiments; nevertheless, it is needed 
for understanding the global dynamical bifurcations [25]. 
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Figure 4 shows the modulation response under various detuning conditions. It is well known that the injection-locked 
lasers are identified by three regimes: under negative detuning (-5 GHz), the laser exhibits a linear response since it is 
over-damped, while hile under zero detuning, the laser is characterized by a broadband and flat response, whose 3-dB 
bandwidth (12.3 GHz) is about 5.9 fold improved compared to that of the free-running case (2.1 GHz). For the positive 
frequency detuning (5 GHz), the modulation response exhibits a higher resonance frequency associated with a sharp 
peak and a large pre-resonance frequency dip. It is proposed that the mechanism for the enhanced resonance frequency in 
the injection locked semiconductor lasers originates from the interference between the locked field and the shifted 
cavity-resonance field, while the relaxation oscillation results from the interaction between carriers and photons in the 
free-running case [26]-[28].  
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Figure 4. Modulation response under various frequency detuning conditions at -5 GHz (solid line), 0 GHz (dashed line) 
and 5 GHz (dash-dot line). 
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Figure 5. Modulation response under zero detuning. (a) various capture times (2.5 ps, 7.5 ps, 12.6 ps, 17.6 ps and 22.6 
ps) at a fixed relaxation time of 3.5 ps; (b) various relaxation times (1.2 ps, 3.5ps, 5.8 ps, 8.1 ps and 10.4 ps) at a 
fixed capture time of 7.5 ps. 

Figure 5 presents the modulation response under zero detuning with various carrier capture times (a) as well as various 
carrier relaxation times (b). Both large capture and relaxation rates enhance the modulation bandwidth. The calculated 
bandwidth increases from 10.4 GHz with a capture time of 22.6 ps to 14.8 GHz with a capture time of 2.5 ps. In contrast, 
for relaxation times of 10.4 ps and 1.2 ps, the calculated 3-dB bandwidths are 9.2 GHz and 14.2 GHz, respectively. 
Besides, calculations show that the resonance peak is increased as well. Similar effect occurs for the negative detuning (-
5 GHz) case as is shown in figure 6. 
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Figure 6. Modulation response under negative detuning at -5 GHz. (a) various capture times (2.5 ps, 7.5 ps, 12.6 ps, 
17.6 ps and 22.6 ps) at a fixed relaxation time of 3.5 ps; (b) various relxation times (1.2 ps, 3.5ps, 5.8 ps, 8.1 ps 
and 10.4 ps) at a fixed capture time of 7.5 ps. 
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Figure 7. Impacts of carrier capture time at a fixed relaxation time of 3.5 ps under positive detuning (5 GHz). 

Table 2. poles and zeros (GHz) for various capture times in figure 7 

t (ps) p1 p2 p3 p4 p5 z1 f3dB 
2.5 -5.82±j73.70 -34.48 -292.00 -335.94 -72.75 15.4 

12.6 -5.13±j70.04 -31.44 -61.54 -331.30 -71.38 13.3 
22.6 -4.01±j65.21 -26.83 -36.87 -330.03 -68.40 11.8 

For the positive detuning case, figure 7 shows the IM response with various carrier capture times assuming a fixed 
relaxation time of 3.5 ps. The modulation bandwidth is enhanced with a faster carrier capture rate. Besides, simulations 
also point out that a shorter capture time is beneficial to reduce the frequency dip amplitude, which can even be 
eliminated like the 2.5 ps case. According to the Bode plot, this effect is attributed to the increased pole value 4p , 

which becomes larger than the zero value 1z  (see table 2). However, this frequency dip reduction is accompanied with 
an increase of the peak amplitude, which can be controlled by the injection strength as shown in figure 6. So increasing 
the carrier capture rate combined with a high injection ratio can be beneficial to the enhancement of the modulation 
response. The damping factor * and the resonance frequency Rf can be extracted from the complex poles 1,2p  according 
to the definition 1,2 / 2 2 Rp j fS �* r  [2]. In table 2, it is proved that both the resonance frequency and the damping 
factor increase with the decreased capture time. Figure 8 illustrates the IM response with various carrier relaxation times 
assuming a fixed capture time of 7.5 ps. In contrast to the case with various capture times, the 3-dB bandwidth is found 
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nearly unchanged. However, due to the smaller value of 1 3z p�  (see table 3), an almost complete suppression of the 
pre-resonance dip is also predicted, meanwhile a larger resonance peak amplitude is observed. Inversely to the trend with 
various capture times, both the resonance frequency and the damping factor are reduced with decreased relaxation time. 
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Figure 8. Impacts of carrier relaxation time at a fixed capture time of 7.5 ps under positive detuning (5 GHz). 

Table 3. poles and zeros (GHz) for various relaxation times in figure 8 

t (ps) p1 p2 p3 p4 p5 z1 f3dB 
3.5 -5.44±j71.75 -32.99 -100.15 -332.07 -71.88 14.2 
5.8 -8.43±j74.20 -29.81 -99.58 -200.43 -71.76 14.2 

10.4 -10.21±j79.00 -24.03 -97.18 -116.68 -71.21 14.0 

4. CONCLUSION  
Based on a semi-analytical approach, the modulation response of an optical injection-locked QD laser is modelled taking 
into account the carrier dynamics in the WL, ES and GS. The influences of carrier capture and relaxation rates on the 
modulation response are investigated. Large capture and relaxation rates are favourable to enhance both the modulation 
bandwidth and the resonance peak. Furthermore, it is helpful to suppress or even eliminate the pre-resonance dip in the 
modulation response under positive detuning, which is desirable for further enhancing the modulation bandwidth. 
Besides, large capture time reduces both the resonance frequency and the damping factor while relaxation time 
contributes inversely. Since both the carrier rates can be manipulated via band engineering, these results can be 
leveraged to our benefits to engineer QD lasers with enhanced dynamical properties under optical injection for radio-
over-fibre and cable-access TV applications. 
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