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Abstract—This paper reports on the tolerance of low-
dimensional InAs/InP quantum-dash- and quantum-dot-based
semiconductor lasers to optical feedback in the 1.55 µm window.
For this purpose, the onset of coherence collapse (CC) is experi-
mentally determined and systematically investigated as a function
of different laser parameters, such as the injection current, differ-
ential gain, temperature, and photon lifetime. It is in particular
found that for both material systems the onset of CC increases
with the injection current in a similar way to bulk or quantum-
well-based devices. Of most importance, we experimentally show
that the differential gain plays a key role in the optical feedback
tolerance. It is indeed shown to determine not only the range of
the onset of CC but also the dependence of this threshold both on
the temperature and laser cavity length. Increasing the operating
temperature from 25 ◦C to 85 ◦C leads to a decrease of the onset
of CC by a factor of only ∼3 dB, well accounted for by the vari-
ation of the differential gain in this temperature range. We find
no difference in the tolerance to external reflections of a truly 3-D
confined quantum-dot-based laser and a quantum dash device of
the same cavity length, which have similar differential gains. A ten-
tative analysis of our data is finally carried out, based on existing
models.

Index Terms—Coherence collapse, optical feedback, quantum
dash, quantum dot, semiconductor laser.
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I. INTRODUCTION

T IME-DELAYED feedback can lead to very complex be-
havior in various areas, and many examples of problems

induced by the feedback can be found in a large variety of sys-
tems: physics, economy, climatology, electricity, etc. In optical
systems, controlled feedback of light can have many applica-
tions: It can be used, for instance, to reduce the linewidth of the
emitted light or for other applications such as encryption based
on chaos, frequency tuning, or velocity measurements. How-
ever, external optical feedback in lasers may be induced from
unintentional and uncontrollable back-reflections and is thus
difficult to avoid. Now, it was experimentally shown by Tkach
and Chraplyvy that a semiconductor laser may be subject to
instabilities when submitted to optical feedback and that it may
operate in five distinct regimes [1]. The most critical one is the
fourth regime, known as “coherence collapse” (CC) [2], since
in this regime the lasing mode is unstable and is characterized
by a drastic broadening of the laser linewidth due to undamped
relaxation oscillations, the appearance of external cavity peaks
in the electrical and optical spectra, and a sudden large increase
of the relative intensity noise (RIN). To our knowledge, the first
observation of this phenomenon has been reported in [3]. This
regime is not desirable for data transmission in fiber optic tele-
com applications, which indeed require stable laser operation.
Expensive optical isolators are hence usually used in order to
avoid this kind of instabilities. One way to avoid these elements
and consequently reduce the cost of the transmitter module
would be to design and fabricate lasers insensitive to optical
feedback.

Intensive work both theoretical and experimental has been
carried out to understand which laser parameters may have an
impact on the sensitivity to optical feedback. It was proposed
in [1] and [4] that the onset of CC, i.e., the feedback strength
for which the transition to CC occurs, takes place when the
feedback rate becomes comparable to the relaxation frequency.
However, it was later numerically shown in [5] that the onset of
CC also depends in an explicit form on the linewidth enhance-
ment factor (LEF or the so-called Henry factor αH ). This model
has extensively been referred to since some important parame-
ters for optical feedback tolerance of semiconductor lasers have
theoretically been identified. Especially, an analytical formula
was derived in [6] to predict the onset of CC. Of most impor-
tance, this formula predicts that a lower LEF should lead to a
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higher onset of CC and thus to a lower sensitivity of semicon-
ductor lasers to optical feedback. Based on these conclusions
and the fact that a lower LEF also leads to a lower chirp and thus
to improved data transmission quality, a great effort has been
dedicated to achieve lower LEFs in semiconductor lasers.

This constitutes one of the main drivers of the intense inves-
tigations carried out for the last decade or so on quantum-dot-
based lasers. Quantum dots are nanostructures that allow 3-D
confinement of the carriers and are expected to achieve higher
laser performances than those of bulk and quantum-well-based
ones. Unique properties are indeed predicted, some of which
have readily been demonstrated such as low threshold current
densities and high characteristic temperatures. Of particular im-
portance for low chirp and low sensitivity to optical feedback,
small even near-zero LEFs are predicted [7]. This is the case for
injection current below threshold [8], but αH increases above
threshold reaching values similar to those of quantum-well-
based lasers [9].

For lasers emitting at 1.55 µm, one of the first experimental
reports on optical feedback deals with a 1.55-µm bulk laser [1].
The different regimes under optical feedback are clearly iden-
tified, and it is briefly mentioned there that the onset of CC
increases with the emitted power, that is, with injection cur-
rent. Other experimental investigations have often been per-
formed on transmitter modules including an isolator as in [10]
in which an optical return loss tolerance (defined in Section II-
G) of approximately −10 dB is reported for a distributed feed-
back (DFB) laser module under 2.5 Gb/s modulation. In [11],
300-µm-long bulk and compressively strained multiquantum-
well-based DFB lasers emitting at 1.5 µm are investigated. An
onset of CC of approximately −35 dB for the bulk laser and an
onset higher than −10 dB for an optimized multi-quantum-well
DFB laser are reported. However, it should be noted that the
criterion used in this paper to determine the CC is based on the
increase of the RIN at the base level of the RF noise spectra
peaks, which is misleading in the evaluation of the onset of
CC [12].

Most of the reports on the tolerance to optical feedback
of lasers emitting in the 1.3-µm telecom window were made
for InAs/GaAs quantum-dot-based devices. A record approxi-
mately −8 dB onset is given in [13], [14] for a 1500-µm-long
Fabry–Perot laser. The authors attribute this behavior to the high
damping of the relaxation oscillations believed to occur in these
devices, although a damping rate of only ∼6 GHz was measured
in similar devices [15]. In [16], a DFB quantum-dot-based laser
has been shown to be highly robust to external optical feedback
since the onset of CC is estimated at a −14 dB level, mainly
attributed to the very low LEF measured below threshold (αH

∼ 0.1). In the dynamic regime, however, the eye diagram and
the SNR under 2.5 Gb/s direct modulation have been shown to
degrade from a approximately −30 dB feedback level. The laser
is furthermore high reflectivity coated on both facets, and only
a very weak fraction of the fed-back light enters the laser cavity.

To briefly summarize the state of the art in the field of semi-
conductor lasers under optical feedback, the influence of the
injection current on the optical feedback tolerance has only
been reported in [1] and [14], to our knowledge, and further-

more, no systematic experimental work could be found in the
literature about the influence of the laser parameters on the
optical feedback sensitivity. The aim of this paper is to investi-
gate low-dimensional InAs/InP quantum dot and the so-called
quantum-dash-based lasers emitting at 1.55 µm under optical
feedback in a detailed and systematic way. We, in particular,
investigate the onset of CC as a function of the injection current
but also, for quantum-dash-based lasers, as a function of the
temperature, laser cavity length, and dynamic parameters that
have been assessed for each investigated structure. A systematic
comparison with existing models has hence been made possible.

II. INVESTIGATION OF INP QUANTUM-DASH-BASED LASERS

Growth using molecular beam epitaxy on 100 oriented InP
substrates leads to the formation of quantum dots [17] or quan-
tum dashes [18]–[20], which are elongated dots, emitting at
1.55 µm. One of the advantages of quantum-dash-based lasers
is the higher modal gain compared to that of quantum dots [21].

Our approach has first consisted in designing and fabricat-
ing single-transverse mode Fabry–Perot lasers based on dif-
ferent quantum dash structures. The dynamic parameters such
as the LEF, relaxation frequency, and the damping rate have
been systematically measured. The onset of CC has then been
investigated.

A. Experimental Setup and Measurement Procedures

The experimental bench used to determine the optical feed-
back sensitivity is fully described in [12] and is similar to that
used in [16]. The external cavity length is ∼18 m. The laser
is temperature controlled by means of a Peltier cooler. The op-
tical feedback is generated thanks to a reference reflector, and
its level is controlled with a variable attenuator. The effect of
the optical feedback is analyzed with a 10-pm resolution optical
spectrum analyzer or a combined electrical spectrum/RIN an-
alyzer. A polarization controller is used to match the feedback
light polarization to the emitted TE-polarized light in order to
maximize the feedback effect. The onset of CC is reflected
by both a broadening of the optical lineshape with undamped
relaxation oscillations (Fig. 1) and a sudden increase of the
RIN [1], [5], [12], [22]. Hence, these two criteria can be used in
static operation to determine the onset of CC, especially since
it has been shown within our previous work that both criteria
lead to similar values of the onset of CC (Fig. 2) [12]. As for
devices investigated in dynamic operation (Section II-F), the
onset of CC has been considered to be reached when a bit error
rate (BER) penalty increase of ∼1 dB is induced by the optical
feedback [12].

B. Structures and Devices

Quantum dash structures were grown by gas source molecular
beam epitaxy (MBE) on (1 0 0) InP substrates using the self-
organized Stransky–Krastanov growth mode [20]. The typical
dashes height and width are, respectively, ∼2 nm and ∼15–
20 nm. Their length ranges from 40 to 300 nm, depending
on the growth conditions, and their surface density is between
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Fig. 1. Optical spectrum: (1) without optical feedback; (2) with optical feed-
back and onset of CC Reprinted with permission from [12].

Fig. 2. Onset of CC, determined both from the optical spectrum and the RIN,
of a 205-µm- long DFB quantum-dash-based laser versus the injection current.
Reprinted with permission from [12].

1 × 1010 and 4 × 1010 cm−2 [20]. Three types of structures were
investigated: dashes in a barrier (DBAR), dashes in a well
(DWELL), and tunnel injection (TI). Dashes-in-a-well struc-
tures consist of quantum dashes, embedded within an InGaAsP
quantum well, and separated by InGaAsP barriers, whereas in
dashes-in-a-barrier structures the nanostructures are directly en-
closed in the barriers [20]. Tunnel-injection structures consist
of dashes in the barriers coupled with a quantum well carrier
injector. The optical confinement is provided by two InGaAsP
separate confinement heterostructure layers. Laser structures
have been processed into either ridge waveguide or buried ridge
stripe lasers.

C. Impact of the Current and Differential Gain

All the devices investigated here are Fabry–Perot lasers of the
same cavity length (600 µm) with as-cleaved facets. The mea-
surements were performed at 25 ◦C. The onset of CC has sys-
tematically been determined from the broadening of the optical
lineshape, as a function of injection current for lasers fabricated
from nine distinct structures. More details are given in [23]. For
all investigated lasers, the measured onsets of CC (in a linear
scale) are found to increase linearly with the current difference

Fig. 3. Onset of CC of several 600 µm-long Fabry–Perot quantum-dash-
based lasers as a function of the current difference. Reprinted with permission
from [23].

I − Ith , where I is the injection current and Ith is the threshold
current, as shown in Fig. 3. This means that the optical feed-
back tolerance is enhanced with increased injection current and
thus emitted power, whatever the designed structure. A detailed
analysis of Fig. 3 has evidenced that the variation of the onset of
CC with injection current ∂γc /∂I depends on both the type of
structure and other parameters linked to the fabrication process.
For all investigated designs (DBAR, DWELL, and TI), the onset
of CC and the slope of this latter one with current may be very
different from one structure to the other. The highest slope is
obtained for the structure with the highest differential gain.

Further analysis has consisted in exploiting the dynamic pa-
rameters, that is, LEF, relaxation frequency, damping rate, and
differential gain, to discuss the slope of these curves. For all
lasers, the LEF was evaluated above threshold as a function of
the injection current, using a high-frequency modulation tech-
nique [24]. It is found to steadily increase with current, with
typical values of ∼3.6 and ∼11 (measured at ∼10 mA above
threshold) for the lowest and highest values [23]. An analysis
of the results only based on the LEF has not led to an overall
consistent picture, since two laser structures may have almost
same slopes ∂γc /∂I , that is, same onset of CC, in spite of distinct
LEFs [23]. If we now consider the other dynamic parameters,
we show that the slopes of the onset of CC with injection current
are related to GnηI , where ηi is the internal differential quantum
efficiency and Gn is the effective differential gain defined by

Gn =
Γ
V

δg

δn
(1)

where Γ is the confinement factor in the active volume V and
δg/δn is the material differential gain. By plotting the slopes
of the fitted lines of Fig. 3 as a function of Gnηi and by fit-
ting the plotted points, it has clearly been shown that ∂γc /∂I is
proportional to (Gnηi)n with n ∼ 2 [23]. This result is consis-
tent with the conclusions of existing models, saying that higher
relaxation frequency, and thus higher differential gain, leads to
higher onset of CC. This implies that higher optical feedback
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Fig. 4. Light–current characteristic of a quantum-dash-based laser as a func-
tion of the temperature.

tolerance can be achieved by designing laser structures with
higher differential gain.

D. Impact of the Temperature

Isolatorless lasers are of particular importance for metropoli-
tan area network (MAN) and local area network (LAN) appli-
cations, and the robustness of lasers to optical feedback should
thus hold for the whole 25 ◦C–85 ◦C temperature range. We
have hence investigated the influence of the temperature on opti-
cal feedback sensitivity using a 600-µm-long Fabry–Perot laser
from a quantum-dash-in-a-barrier structure. The light–current
characteristic of the assessed laser is shown in Fig. 4. The on-
set of CC has been measured from 25 ◦C to 85 ◦C using the
optical spectrum broadening criterion (Fig. 5). As shown in
Fig. 5, the onset of CC is found to linearly increase with the
current difference I − Ith whatever the temperature. Moreover,
the slope ∂γc /∂I is found to slightly decrease with the temper-
ature, especially beyond 55 ◦C. Nonetheless, the onset of CC
is only decreased by a factor of ∼3 dB from 25 ◦C to 85 ◦C,
which is a rather interesting result. The decreased slope with the
temperature may simply be explained by the decrease of the dif-
ferential gain beyond ∼55 ◦C, as evidenced in Fig. 6. This figure
indeed shows that the slope ∂γc /∂I has the same dependence
on the temperature as the parameter Gnηi , which is related to
the differential gain [see (1)]. This study again emphasizes that
low sensitivity of the onset of CC to the temperature can be
achieved by designing lasers with an effective differential gain
that is temperature-insensitive, implying a temperature- insen-
sitive differential quantum efficiency.

E. Impact of the Laser Cavity Length

The effect of the laser cavity length on the tolerance to opti-
cal feedback has been investigated for three distinct structures:
S2 (DBAR), S6 (DWELL), and S8 (TI). For instance, Fig. 7
illustrates the measured onset of CC as a function of the current
difference for four lasers, with distinct cavity lengths, of the
same structure and fabrication process. It is confirmed in this
figure that the onset of CC linearly increases with current what-
ever the laser cavity length. An important feature shown in the
figure is that the onset of CC increases with L at a fixed current

Fig. 5. Measured onset of CC of a quantum-dash-based laser as a function of
the current difference and temperature.

Fig. 6. Parameter Gn ηi and slope ∂γc /∂I versus temperature.

difference. This is consistent with reports on quantum-dot-based
laser emitting at 1.3 µm [14]. This result has systematically been
found for the two other structures. Fig. 8 summarizes the results
for all three investigated structures by giving the slope ∂γc /∂I
as a function of L. It is clear that the slope ∂γc /∂I increases
with L whatever the structure. It is also evidenced that the de-
pendence of ∂γc /∂I on L is related to the laser structure. It
was indeed found that it is especially linked to the differential
gain. The highest (respectively lowest) variation of ∂γc∂I with
L is obtained for the laser with the highest (respectively lowest)
differential gain.

F. Assessment of a Directly Modulated DFB Laser

A buried ridge stripe index-coupled DFB laser has finally
been investigated under optical feedback when directly mod-
ulated at 10 Gb/s [12]. The 205 µm-long laser was fabricated
from a DWELL structure. The rear facet is high reflectivity
coated, whereas the front facet is as cleaved. The measured LEF
increases with the bias current from 3.6 near threshold current
to ∼4.3 at 25 mA. The measurements have consisted in directly
modulating the laser at 10 Gb/s with a 231 – 1 pseudorandom
bit sequence and in measuring the BER as a function of the
received power at an error detector. This was performed for
different feedback levels at the 30 mA operating point of the
10 Gb/s transmission experiment [25], at 25 ◦C and in a
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Fig. 7. Measured onset of CC of quantum-dash-based lasers of the same
structure and fabrication process as a function of the cavity length.

Fig. 8. Measured slopes of the onset of CC with injection current as a function
of the cavity length for three distinct structures.

back-to-back configuration (see Fig. 9). Increasing the optical
feedback degrades the BER and introduces a penalty as already
experimentally shown in [26]. In fact, the BER degrades from
−32 dB feedback level, and above –30 dB floor-free operation
is not possible [12]. A –32 dB onset of CC could hence be
extracted from these measurements.

A similar value of the onset of CC has been found when
assessing the same laser in static operation [12]. This is a rather
important finding as it implies that no systematic investigation in
dynamic operation is required for feedback-tolerant laser design.

G. Isolator-Free Lasers

External reflections in optical systems are usually quantified
by the optical return loss (ORL), defined as the optical feedback
at the end point of the coupling fiber. It is related to the optical
feedback at the laser facet by:

ORLcrit = γcrit − (2Cfiber) (2)

where Cfiber is the coupling losses between the coupling fiber
and the laser. ORL up to −21 dB is tolerated in the IEEE 802.3
standard for 10 Gb/s data transmission for 1.55 µm operating
wavelength (physical entity 10GBASE-E). Using (2), we obtain
that the onset of CC must be higher than −29 dB for 1.55 µm
wavelength if we consider coupling losses of approximately –4
dB. Fig. 10 is the same plot as Fig. 3, except that the onset

Fig. 9. BER versus received power for different feedback levels at 30 mA.
Reprinted with permission from [12].

Fig. 10. Onset of CC of 600-µm- long quantum-dash-based lasers (the dashed
line represents the minimum value required for isolator-free operation).

of CC is plotted in a logarithmic scale. For clarity, only re-
sults for some of the assessed structures are plotted. Five of the
nine investigated structures were found to achieve onsets of CC
higher than −29 dB (see Fig. 10). Hence, quantum-dash-based
lasers investigated here comply with the IEEE 802.3 standard
for isolator-free operation. Low-cost transmitter modules can
thus be achieved using quantum dash material. Furthermore,
in the same figure the onset of CC was plotted both at 25 ◦C
and 85 ◦C for structure S2 (DBAR) investigated in Section II-D.
It appears that onsets of CC higher than −29 dB can thus be
achieved up to 85 ◦C. Quantum-dash-based lasers can hence be
used as light emitters in optical modules without optical isolator
in the whole 25 ◦C–85 ◦C temperature range.

III. INVESTIGATION OF INP QUANTUM-DOT-BASED LASERS

To further assess the impact of reduced dimensionality on
laser tolerance to optical feedback, we have investigated Fabry–
Perot lasers based on truly 3D-confined quantum dots.

A. Structure and Devices

The structure was grown by gas-source MBE on a n-doped
(311) B InP substrate [27]. The active region is composed of
five InAs quantum dot layers. Ridge waveguide lasers were
fabricated using this InAs/InP quantum dot structure. The
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Fig. 11. Onset of CC as a function of the current difference for a 1100-µm-
long quantum-dot-based laser and for a 1200-µm-long quantum-dash-based
laser.

investigated device is a 1100-µm-long laser with uncoated
facets. Emission occurs at ∼1.52 µm, and the threshold current
is ∼43 mA at 25 ◦C. The measured LEF above threshold [28] is
almost constant with current (∼7).

B. Experimental Results

The onset of CC was determined from the optical lineshape
broadening as a function of the driving current at 25 ◦C (Fig. 11).
It is found to linearly increase with current, in a similar fashion
than that of quantum dash lasers (Section II). For comparison,
InAs/GaAs quantum-dot-based lasers emitting at 1.3 µm have
shown a very differing behavior. Indeed, instabilities rather than
real CC have been reported [14] and in [14], Fig. 2] it can
be seen that the onset of these instabilities first decreases with
current and then reaches a constant value above 1.2 times the
threshold current, in contrast with our observations on 1.55 µm
quantum dot lasers. This obviously requires more investigations
to elucidate the origin of these differences.

To elucidate whether the investigated 1.55 µm quantum-dot-
based lasers are more tolerant to optical feedback than quantum-
dash-based ones, we have also carried out a comparison of these
results with those of a quantum dash laser with almost the same
cavity length (∼1200 µm) and with comparable modulation effi-
ciency (0.36 and 0.47 GHz/mA1/2 , respectively, for the quantum
dot and quantum dash devices) and thus comparable differential
gain. Fig. 11 shows the measured onsets of CC for both devices.
The quantum dash laser shows a slightly higher onset of CC
than the quantum dot one, which can simply be explained by
the higher modulation efficiency. This study shows that at equal
differential gain InAs/InP quantum dot lasers lead to similar sen-
sitivity to optical feedback than InAs/InP quantum-dash-based
lasers.

IV. COMPARISON TO EXISTING MODELS

In this section, our experimental results are discussed in terms
of existing theoretical models on semiconductor lasers under
optical feedback, introduced in Section IV-A.

A. Existing Models on Optical Feedback

First theoretical modeling of time-delayed optical feedback
in semiconductor lasers has been carried out by Lang and
Kobayashi (LK) [29], who showed that optical feedback in-
duces instabilities in semiconductor lasers due to the fact that
the external mirror at which the optical feedback occurs forms
an external cavity characterized by its own oscillating frequen-
cies. Based on this statement, standard rate equations of the
semiconductor lasers have been modified to take into account
the optical feedback and new rate equations have hence been
derived [29]. By numerically solving these LK rate equations,
the CC regime is found to be characterized, as experimentally
observed, by fluctuations in the photon density, a broadened
optical lineshape, with undamped relaxations oscillations and
external cavity modes, and an increase of the RIN [5]. The im-
pact of laser parameters in this field has been further investigated
by Schunk and Petermann in [5], who have shown that the sta-
bility of the laser under optical feedback does depend on the
relaxation frequency as suggested in [1] and [4] but also on the
LEF. Furthermore, using the microwave modulation response,
Helms and Petermann derived an analytic formula to predict in
a simple way the onset of CC [6]. Under the assumption of a
long external cavity, i.e., for which the product of the relaxation
oscillation frequency and the external cavity round-trip time is
higher than unity, the authors showed that the onset of CC can
be written as [6]

γc = Γ2
d × 1 + α2

H

α4
H

× τ 2
in

16 × C2
ext

(3)

where Γd is the damping rate, τin is the round-trip time in the
laser cavity, and Cext is the feedback sensitivity factor [6], [30],
given for Fabry–Perot lasers by

Cext =
1 − |r|2

2 |r| (4)

where r is the reflectance of the facet submitted to the exter-
nal reflections), whereas in DFB lasers Cext depends on the
grating parameters and the facet reflectivities and phases [30].
Numerically solving LK rate equations has both qualitatively
and quantitatively confirmed the validity of the formula derived
by Helms and Petermann [6], which has been widely used in the
field of optical feedback.

Other works have also been carried out in this theoretical field.
Based on experimental observations, it was proposed in [31] by
Binder and Cormack that the CC occurs when the maximum
feedback-induced frequency shift exceeds the relaxation fre-
quency fr . In their approach, the critical feedback level is given
by

γcrit = (2π)2f 2
r × 1

1 + α2
H

× τ 2
in

4 × C2
ext

. (5)

We can note that (5) suggests that CC would not vanish in the
case of zero LEF, contrary to (3). Equation (5) is thus consistent
with conclusions of [32], where it is shown that the onset of
CC indeed increases when the LEF decreases but converges to
a finite value for zero LEF. Nonetheless, it should be noted that
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Fig. 12. Comparison of experimental data with predicted values for a
quantum-dash-based laser (structure S2).

(3) has empirically been derived from another expression of the
onset of CC [6], which initially also suggests that the onset of CC
would reach a finite value for zero LEF [6], Eq. (8)]. Moreover,
a formula similar to (5) except for a factor of 2 has analytically
been derived by Tromborg and Mork by analyzing the stability
of the oscillating modes [33]. In spite of these differences, (3)
and (5) nonetheless both predict that the onset of CC would
increase for devices with small LEF. Hence, this suggests that a
higher optical feedback tolerance could be achieved with lasers
exhibiting lower LEFs. This is one of the main reasons of the
huge interest of the scientific community in quantum-dot-based
lasers, since these materials have been expected to exhibit near-
zero LEFs.

B. Comparison to Helms and Petermann Model

Our experimental results were first compared to Helms and
Petermann model to check its validity for the values of the onset
of CC experimentally measured for quantum dash and quan-
tum dot lasers emitting at 1.55 µm [23]. Using (3), the onset
of CC has been calculated from the measured LEFs and ex-
tracted damping rates, as a function of the injection current,
for all assessed Fabry–Perot devices. This study may only be
relevant for Fabry–Perot lasers since the feedback sensitivity
factor Cext is independent of the facet phases and is simply
given by (4) (Cext is ∼0.6 for as-cleaved facets), contrary to
DFB lasers. First, the comparison has been performed for quan-
tum dash lasers investigated in Section II. Fig. 12 illustrates as
an example the comparison of the measured onsets of CC for a
600-µm-long quantum dash laser with the predicted ones. It can
be seen in this figure that the onset of CC predicted by Helms
and Petermann model has the same increasing tendency with
current, although with values ∼10 dB lower. This behavior has
systematically been observed for all investigated Fabry–Perot
quantum dash lasers. Predicted values indeed always show the
same trend versus current as measured values, although together
with a systematic ∼8–10 dB discrepancy [23].

The same comparison has also been performed for the
InAs/InP quantum-dot-based lasers investigated in Section III.
The predicted values using (3) again show the same increasing
behavior with the injection current as the experimental points,

Fig. 13. Comparison of experimental data with predicted values for a
quantum-dot-based laser.

nonetheless with a ∼12-dB discrepancy (see Fig. 13), similar to
the case of quantum-dash-based lasers. Hence, although Helms
and Petermann model predicts well the increase of the onset of
CC with injection current, it yields values for the onset of CC
lower by ∼10/12 dB than the measured ones, i.e., predicting a
lower optical feedback tolerance for the assessed devices than
the experimental one.

C. Comparison to Other Models

In a second step, we consider the Binder and Cormack crite-
rion (5) using the measured relaxation frequency and LEF for
each investigated laser. As shown in Fig. 12, the comparison of
our experimental data for quantum-dash-based lasers with the
values derived using (5) leads to a fair agreement, with a max-
imum discrepancy of ∼3 dB. The same comparison has been
made for the quantum-dot-based lasers with a similar conclu-
sion since again a good agreement between the experimental
data and predicted values is achieved (Fig. 13). Furthermore,
(5) does predict in an explicit way the linear dependence of the
onset of CC with current whereas (3) does not. Indeed, (5)
shows that the onset of CC is a function of f 2

r , implying that the
onset of CC should be a linear function of the current difference
I − Ith , which is confirmed by our experimental data. More-
over, although the term f 2

r in (5) would suggest that the onset
of CC may be a function of Gnηi , it should be reminded that
the LEF is also a (reciprocal) function of the differential gain
and thus of Gnηi , which could explain the fact that we could fit
the measured onsets of CC by a (Gnηi)2 dependence. Another
point is that (5) implies a linear dependence of the onset of CC
on the laser cavity L since the squared relaxation frequency
is a reciprocal function of L and the squared round-trip time
is proportional to L2 , which could explain our data plotted in
Fig. 8. Binder and Cormack model described by (5) is thus fairly
consistent with all our experimental observations and results.

V. CONCLUSION AND DISCUSSION

For the first time, 1.55 µm quantum-dash- and quantum-dot-
based lasers are assessed in terms of tolerance to optical feed-
back to check their potential for isolator-free operation but also
to identify the main parameters determining their sensitivity to
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optical feedback. A systematic investigation has been under-
taken to elucidate the impact of the laser parameters such as the
injection current, LEF, differential gain, temperature, and laser
cavity length. The onset of CC, which is a measure of the tol-
erance to optical feedback, has been shown to linearly increase
with injection current. Our study further suggests the differen-
tial gain as the main parameter that must be improved for an
increased tolerance to optical feedback in semiconductor lasers.
The dependence of the optical feedback tolerance on the tem-
perature is similar to that of the differential gain. Lasers should
hence be designed with a relatively temperature insensitive dif-
ferential gain. Then we have investigated the impact of the laser
cavity length, i.e., the photon lifetime. The onset of CC is shown
to increase with the laser cavity length, meaning that higher op-
tical feedback tolerance should be achieved with longer lasers.
However, it should be reminded that the modulation efficiency
is also related to the photon lifetime as a reciprocal function.
Thus, a tradeoff on the laser cavity length should be made to
achieve both good modulation efficiency and sufficient opti-
cal feedback tolerance. We have nevertheless shown that 600-
µm-long quantum-dash-based devices fully comply with the 10
Gb/s Ethernet standard for isolator-free operation in the temper-
ature range up to 85 ◦C. Investigation of 1.55 µm quantum-dot-
based lasers also shows that the onset of CC linearly increases
with the injection current. Furthermore, the important feature is
that quantum-dash- and quantum-dot-based lasers with similar
differential gain present similar tolerance to optical feedback.
This again emphasizes that the differential gain is the main pa-
rameter in optical feedback assessment. The final part of this
study has consisted in comparing the experimental results to
existing models that predict the onset of CC. The Helms and
Petermann model [6] yields a ∼10 dB (respectively ∼12 dB)
discrepancy when comparing the predicted values to the exper-
imental data obtained for quantum-dash (respectively quantum
dot) based lasers. All the experimental data are found to agree
fairly well with the expression for the onset of CC derived
by Binder and Cormack [31]. Further work, both experimental
and theoretical, is obviously needed to elucidate the discrep-
ancy of the experimental data with the Helms and Petermann
model.
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