

Ti	imeline of the quant	um dot technolog		
Year	Milestones	tones From		
1982	Reduced dimensionality	Univ. of Tokyo		
1994	1 st lasing (optical pumping)	loffe Institute		
1994	1st lasing (current injection)	TU Berlin & loffe Institute		
1996	Proposed QDs for light- emitting devices on silicon	Proposed QDs for light- emitting devices on silicon		
1999	Near zero $\alpha_{\rm H}$ -factor	Univ. of New-Mexico		
2000	Record-breaking $J_{\rm th}$ = 13 A/cm ²	Univ. of New-Mexico		
2002-2003	Superior temperature stability	Univ. Texas, Austin; loffe Institute; Univ. of Michigan		
1999- present	Hybrid QD lasers on silicon & Epitaxial QD lasers on silicon	Univ. of Michigan; UCL; UCSB, University of Tokyo		
Commercialization	2001 Zia Laser Inc., United S	201 Zia Laser Inc., United States		
	2003 Innolumne – GmbH, Ge	03 Innolumne – GmbH, Germany		
	2006 QD lasers Inc., Japan			
5	Frédéric Grillot	IEEE Distinguished Lectur		

Year					5	omaio	Material 7
	CD Composition	QD Tgrowrk	Epitauy method	CD layers	Jak	Try	
5594 (223)	In Asi	460-490 °C	MBE	1	1 kA/cm ²	300 K	Material 1
995 (91)	Inc.s Claus Aa	510 °C	MEE	1	0.8 kAlon ²	85 K	Platerial a
(en) here	Ing 3 Gep 3 Ast	515 10	MOL	1	1.2 kA/cre ²	300 K	
996 (92)	Ing a Galan As	500-550 °C	MRE	1	660 A/om ²	300 K	
996 (05)	he_Gap_As	485 ° C	MOE	3	62 Alom ²	300 K	
996 [74]	1sAs	485-565 °C	MOCVD	2	220 Alom ²	300 K	· · · · · · · · · · · · · · · · · · ·
998 (93)	InGoAs	512 °C	MBE	1	270 Alom ²	300 K	
[94] 666	ELAS.	2012/02	MBE	2	160 Alom ²	296 K	
998 (95)	15.46	1.000	MBE	7	82 Alcen ^T	286 K	maillifonn
999 [12]	InAs	490 °C	MBE	1	83 A/om ⁷	296 K	
999 [76]	InGuAs	500 °C	MOCYD	3	210 Alom ²	255 K	
(96) 000	in/a) ()	MBE	1	13 Alom ²	500 K	
000 (97)	InGeAs	490 °C	MBE	3	96 Alom ²	220 K	Stress relayation
000 [76]	InDeAs	490 ° C	MOCVD	3	110 Alom ²	300 K	art toa remandred
(88) 100	InAe	510 "C	MOL	6	375 A/om ²	300 K	la A - //- D. lattice and an atala 20/
1002 (78)	Insta Gasto Aa	405 °C	MOCVE		60 Alom ²	293 K	Inas/Inp: lattice mismatch ~3%

21

4	5

Substrate	Туре	Repetition rate (GHz)	Pulse duration (ps)	TBP [†]	3-dB optical bandwidth (THz)	Year
inP	QDash	92	0.312	0.457	1,472	2008 [264]
InP	QDash	101			1.2	2009 [265]
InP	QDash	48-346	0.8	0.46	1.00	2011 [266]
InP	QD	50	0.43	-	1.65	2020 [267]
InP	QDash	34.2		-	1.6	2021 [268]
GaAs	QD	7.2-51	6,4	1.7	-	2007 [261]
GaAs	QD	39-237	0.36	0.5	*	2009 [262]
GaAs	QD	40	0.7	0.5		2010 [255]
GaAs	QD	60	-	-	2.46	2022 [269]
GaAs	QD	100	0.466	0.472	0.78	2022 [270]
GaAs	QD	100	0.81	0.45	1.9	2022 [189]
SI	QD	102	(e.)		1.4	2018 [145]
SI	QD	20	5		1,14	2019 [257]
Si	QD	15.5	- /	-	2.1	2022 [271]

