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Abstract. We numerically investigate the complex nonlinear dynamics
for two independently coupled laser systems consisting of (i) mutually
delay-coupled edge emitting diode lasers and (ii) injection-locked quan-
tum nanostructures lasers. A comparative study in dependence on the
dynamical role of α parameter, which determine the phase-amplitude
coupling of the optical field, in both the cases is probed. The variation
of α lead to conspicuous changes in the dynamics of both the systems,
which are characterized and investigated as a function of optical injec-
tion strength η for the fixed coupled-cavity delay time τ . Our analysis
is based on the observation that the cross-correlation and bifurcation
measures unveil the signature of enhancement of amplitude-death is-
lands in which the coupled lasers mutually stay in stable phase-locked
states. In addition, we provide a qualitative understanding of the phys-
ical mechanisms underlying the observed dynamical behavior and its
dependence on α. The amplitude death and the existence of multiple
amplitude death islands could be implemented for applications includ-
ing diode lasers stabilization.

1 Introduction

The semiconductor diode lasers are known to be very sensitive to the external optical
perturbations such as, optical self-feedback, optoelectronic feedback, optical injection.
When the diode laser is subjected to optical injection by another diode laser then the
radiation emitted from mutually delay-coupled diode lasers is well behaving, well
understandable and well classifiable in terms of complex nonlinear dynamics [2]. On
the one hand these dynamical instabilities are undesired features and disturb the many
applications where one needs the constant stable power but on the other hand they
may allow new methods for the secure communications using chaos synchronization.
So the systematic study and control of these nonlinear dynamics provide fundamental
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Fig. 1. Schematic diagram of a Delay-coupled diode laser system. The details of the
schematic of this experimental setup are shown in [1].

insights into the underlying physics of the system [3]. On the basis of which one can
redesign the device [11] or improve the processing, or simply exploit the dynamical
performance of a system to ones advantage. Amplitude death [1] is one of the collective
fascinating phenomena [4], where coupled lasers drive each other to a fixed point
and stop the oscillatory dynamics. The coupling induced stabilization is known to
occur either by changing the stability of unstable fixed points which already exists
in the absence of coupling or the stationary state which can be created newly by the
coupling. Because of very diverse time scales involved in the dynamics, the routes by
which the two coupled lasers reach their stable states in the presence of finite-delayed
interaction remain poorly understood. In this sprit, we have addressed the question
whether these dynamical behaviors of a coupled diode lasers and particularly quantum
nanostructures based diode lasers can be controlled via amplitude death and the kind
of dynamics one encounter during the route to reach the ultimate stable state.

2 The model for the delay-coupled diode lasers system

For numerical simulations, the time evolutions of the complex electric field E1,2(t)
and the N1,2(t) are the effective carrier density (nth − n1,2) in the laser medium for
each delay-coupled diode lasers are modeled.

dE1
dt
= (1 + iα)N1(t)E1(t) + η e

−iω2τE2(t− τ), (1)

T
dN1
dt
= J1 −N1 − [2N1 + 1] |E1(t)|2 , (2)

dE2
dt
= (1 + iα)N2(t)E2(t) + η e

−iω1τE1(t− τ), (3)

T
dN2
dt
= J2 −N2 − [2N2 + 1]|E2(t)|2. (4)

In order to analyze the complex dynamical behaviour of two mutually delay-coupled
diode lasers system (as shown in Fig. 1), the LK equations can be written in a
standard normalized form [2]: where η is the effective coupling strength, i.e., the
fraction of light of one laser injected into the other laser and vice versa, J1,2’s are
the effective current densities (jth − j1,2), T is the ratio of the carrier lifetime to
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the photon lifetime, α [7] is the linewidth enhancement factor or phase-amplitude
coupling factor, and τ is the coupled cavity time taken by the light to cover the
distance between the two lasers system. ω1,2 are the optical angular frequencies of
the free running diode lasers 1 and 2. E1,2(t−τ) are the fields delayed by one coupling
time τ = L/c and ω1,2τ are the coupling phase detuning. For simplicity, we have taken
two similar diode lasers for which the frequency detuning between them is assumed to
be very small or nearly zero. In order to mimick the real experimental situation, we
have introduced some small noise in our model. We have done numerical integration
of the above equations by using Runge-Kutta fourth-order method with a step size
= τ/n, where n = 1000 is chosen based on the response time of photodiode in
experimental setup [2]. The dimensionless parameters are taken as J1,2 = 0.165, 0.175
and T = 1000 [2]. In order to scan and understand the different dynamical regimes,
we use equation 5 for correlation measurement [1]. We observe the route to amplitude
death of low frequency complex dynamics in the output power of a diode laser (slave)
when subjected to optical injection from another diode laser (master). In the context
of a system of two delay-coupled diode lasers and Quantum dot nanostructures lasers,
we emphasize the effect of α on the control of complex dynamical instabilities near
the phase flip transition regimes as a function of coupled-cavity time delay τ and the
optical injection strength η. Shifting of different phase-correlated dynamics, such as
phase-flip bifurcation [2] and strange bifurcation [1] was observed in our previous work
when η is varied for a particular τ . In this present work, we show that these phase flip
transitions does not occur abruptly at a particular value of η and α. Instead we find
a coupling strength region around the phase flip transition where the co-existence of
multi-attractors occurs as shown in Figure 2 and Figure 3. We show that the phase
flip bifurcation occurs from in-phase amplitude death to anti-phase amplitude death
and the strange bifurcation occur from anti-phase to in-phase transition regimes [10].
The existence of multiple attractors near the regime of strange bifurcation (as shown
in Fig. 2 and Fig. 4) has raised the issue of whether the α plays a crucial role or not.
We also study the effect of η along with the phase-amplitude coupling factor on the
dynamics in the amplitude death regime and extends the study for nanostructures
quantum dot lasers. One of the Key features of semi-conducteur lasers is their 3−dB
modulation bandwidth, which is limited due to the presence of strong relaxation
oscillation damping rates. This work also theoretically focuses on the impact of strong
injection in a quantum nanostructure semiconductor laser with large variation of the
phase-amplitude coupling factor through the non-linear dynamics and the modulation
response at zero-detuning. The combination of the strong injection, optimized phase-
amplitude coupling factor and the zero-detuning case shows the possibility to reach
the stable state, which is fully suitable for laser control applications.

3 Influence of α in delay-coupled edge-emitting diode lasers and
injection-locked quantum nanostructures lasers

The linewidth enhancement factor α describes the coupling between the real and
imaginary parts of the material refrective index of the gain medium, and is given by
the ratio of their derivatives with respect to the carrier density. Its value is known
to depend on the carrier concentration, photon wavelength, injection current and
temperature. For quantum nanostructures based diode lasers (quantum dot lasers),
the value of α can in fact be controlled by the desirable design of the device structure
or by the filtered optical feedback or injection techniques. Unlike the quantum dot
lasers, the α in bulk semiconductor lasers can be modified just by varying the specific
combination of control parameters in a particular range. In order to analyze the role
of α in the various dynamical regimes of mutually delay-coupled diode lasers, we use
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Fig. 2. Plot of the cross-correlation C(t) versus α for a fixed time delay τ = 14 (in units of
cavity photon lifetime).
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Fig. 3. Plot of the cross-correlation C(t) versus coupling strength, η for a fixed time delay
τ = 14 (in units of cavity photon lifetime).

a normalized cross-correlation function defined as

C(t) =
〈(P1(t)− 〈P1(t)〉)(P2(t)− 〈P2(t)〉)√
〈(P1(t)− 〈P1(t)〉)2〉〈(P2(t)− 〈P2(t)〉)2〉

. (5)

Note that the measured output powers of the lasers, P1,2 ≡ |E1,2|2 do not ex-
plicitly depend on the optical phases φ1,2 of the electric fields. We wish to probe
the role of phases of optical fields through α in the intensity cross-correlation near
the phase bifurcation or transitions of two mutually delay-coupled diode lasers. We
start by analyzing the modulation properties of the coupled laser system from the
rate equations (1–4). In Fig. 4, the symbol AD represents the signature of ultimate
death state while BS and MS represent the bistability and multistability between
in-phase amplitude-death island and anti-phase amplitude-death island respectively.
Recall that the phase-space plot of this ultimate death state is represented as AD in
Figure 5, and the multi-attaractors dynamics (MS) are shown in Fig 6. From
the cross-correlation measures, we have observed a unusual phase transitions from
anti-phase to inphase state (as shown in Fig. 3) via strange bifurcation as the
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Fig. 4. Bifurcation Plots of laser output powers P1 (open circles) and P2 (filled circles)
versus coupling strength η for a fixed time delay τ = 14 (in units of cavity photon lifetime).

Fig. 5. Plot of Amplitude death attractor of the AD state shown in figure 4 in the parameter
space of P (t), N(t), φ(t) for a fixed time delay τ = 14.

control parameter, α is varied for a particular value of η. So the phase-amplitude
coupling factor induced multistability has been observed in the system as shown in
Fig. 4. The amplitude death attractors is shown in Fig. 5 within the AD regimes of
Fig. 4. The three different attractors (MS regimes in Fig. 4), depending on the initial
conditions, are shown in Fig. 6 as the η scaned back and forth. Injection-locking of
semiconductor lasers is one of the most attractive research topics since this method
induces superior improvement in the high-speed characteristics of directly modulated
lasers such as increasing the modulation bandwidth, suppressing nonlinear distortion,
relative intensity noise [5], mode hopping and reducing chirp [6]. Previous work has
focused on realizing high modulation bandwidths and associated design strategies, an-
alyzed the modulation properties of the coupled system in the spectral domain, and
numerically investigated the modulation response of the injection-locked system [9].
In order to understand the limiting factors in an injection-locked system it is impor-
tant to investigate the governing theory that can be obtained by properly modeling
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Fig. 6. Phase space plots of the multi-attractors dynamics (MS state in
Fig. 4) between two stable locking states as the initial condition are varied for fixed
η, τ and initial transients of 105 data points are discarded.

the impact of characteristic parameters such as the so-called linewidth enhancement
factor (α-parameter). A dimensionless volume averaged normalized approach to the-
oretically evaluate the nonlinear dynamics as a function of the injected field ratio
and/or the detuning frequency for varied slave laser bias cases can be described as
follows [8]:

dY

dτ
= ZY + εY (Y 2 − P ) + η cos θ, (6)

dθ

dτ
= αZ − αε(Y 2 − P )− η

Y
sin θ −∆Ω, (7)

T
dZ

dτ
= P − Z − Y 2(1 + 2Z − 2εY 2 + 2εP ) + η cos θ, (8)

with Y , describing the normalized field magnitude and Z the normalized carrier
density. T -parameter is the ratio of the cavity decay rate to the spontaneous carrier
relaxation rate. Parameter P is proportional to the pumping current above threshold
while coefficient ε accounts for the nonlinear carrier contribution to relaxation rate.
The detuning and phase offset between the master and the slave are denoted by ∆Ω
and θ, respectively. The normalized injection strength is η = η0(P/γc)1/2 with γc
the cavity decay rate and η0 the maximum injection strength. In solving the coupled
normalized differential equations, the normalized field magnitude Y is not at steady
state, and is thus represented as a dependent term in the normalized field magnitude
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Fig. 7. Calculated bifurcations diagrams of a quantum dot laser with a variable linewidth
enhancement factor.

and phase rate equations. In what follows, this model is used for the stability analysis
of a quantum dot laser. The quantum dot laser under study is a ridge waveguide with
500 micrometer cleaved cavity length. The ground state (GS) emission wavelength is
at 1560 nm [6]. Because of the carrier filling in the lasing and non-lasing higher energy
levels, gain compression effects are much larger as compared to bulk or quantum well
materials [9]. Consequently, it has been shown that the α-factor in quantum dot lasers
cannot be considered as a constant parameter since it strongly varies from one laser to
another and also with optical output power. Figure 7 shows the bifurcation diagrams
calculated at a constant pump current but for different values of the α-parameter
ranging from 1 to 15(assuming ∆Ω = 0). The objective of the calculations is to show
the effects of a large α-factor on the lasers stability. Numerical results point out that
taking into account such variations reveals strong modifications in the bifurcation
diagram. On one hand, at low α (case (a)), the laser is always stable while for α = 3
(case (b)), period one oscillation starts occurring. On the other hand, for α > 3 (cases
(c), (d), (e) and (f)), the bifurcation diagram exhibits chaos (at low injection ratio)
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followed by a cascade of periodic regimes converging to a stability area (at very high
injection ratio). From a general point of view, simulations reveal that the smallest
α-parameter, the better dynamical instibility control. As far as the engineering point
of view is concerned, these results are very important for the optimization of the
microwave properties. Although the optical injection is used to purify the relaxation
frequency as well as the modulation bandwidth, these numerical results point out
that a large α-factor is detrimental for the lasers stability and can induce severe
degradations in the microwave properties. As a conclusion, in order to maintain a
wide stability area with optical injection associated to good microwave properties, a
low α-factor is mandatory in quantum dot lasers.

4 Conclusion

This new concept stabilizes the laser emission by directly controlling the nonlinear-
ity and, consequently, enhances the stability properties of the system. In general,
semiconductor lasers with a sufficiently low α would be most interesting for prac-
tical applications due to the possibility of chirpless operation, and the insensitivity
to delayed optical feedback or injection. The different dynamics and the strange bi-
furcation among them is investigated as a function of coupled-cavity time delay τ
and the optical injection strength η. The correlation measure gives the signature of
variation in amplitude death islands of complex dynamics of the delay-coupled lasers.
The shrinkage of in-phase death state and enlargement of out-of-phase death state are
observed (as shown in Fig. 2 and Fig. 3) and analyzed when α and η are varied. We
provide detailed information about the effect of the variation of α on the dynamics
of the system over wide ranges of experiment relevant parameters. In particular, we
provide and give numerical evidence that the stability of the system increases with
decreasing α. This last point is particularly predominant in semiconductor quantum
nanostructure lasers for which a large variation in alpha factor is usually observed.
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