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Lecture 9: What you need to know

 Pitch perception

• What is the difference between global and analytic pitch perception ?

• Explain pitch perception principles when some harmonics are missing

 Pitch estimation

• Explain what is an autocorrelation-based method for pitch estimation

• Explain what is the spectral sum. Why is it appropriate for pitch estimation ?

• What is the output of a typical deep neural network (CNN based) for pitch 

estimation (output of last layer, dimension,..) ?

 Multipitch estimation

• What is an iterative method for multi-pitch estimation ?

• What are the main difficulties of multipitch estimation ?
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What is pitch / musical height perception ? 

 Zwicker sees 4 "heights":

• (physics) frequency (Hz)

log -> harmonic height

• (subjective) height / tonie

log -> melodic height

 But the « subjective height » (or pitch) covers 4 aspects:

• « Global » height

• Tonal pitch

• Spectral pitch

• Virtual pitch

• A definition of pitch:

attribute of auditory sensation in terms of which sounds may be

ordered  on  a  scale  extending  from  low  to  high  (ANSI  1973)
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Global height

 It is the position of the sound on subjective scale « low-

high", independant of any musical sense.

 It is related to the concentration of energy on the frequency

axis:
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Tonal pitch

 Express the position of sound in a set of intervals  

 A serie of intervals = melody

 applicable to pure sounds and periodic sounds  
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Spectral pitch

 The different height that can be distinguished in a complex sound 

(analytic listening)  

 A set of spectral pitch heard simulatenously may be a chord.  

 Perception can be « global » or « analytic »  
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Virtual pitch

 It is the pitch (perceived height) with a global listening.  

 This perceived height may not correspond to a 

harmonic of the spectrum.  

 The ear can hear one or several heights even in non-

harmonic sounds .

 … and there is some sounds which have several virtual

pitches (for instance bells) 
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Towards the MEL scale

 Pitch of pure sounds

• Experiments: From a reference sound (sinusoid @ 1kHz), the « tonie » 
doubles if another sound is perceived twice as high, etc…  

• Results: Tonie is proportional to frequencies (in Hz) for low frequencies and 
logarithmic for higher frequencies

 More precisely, there are two 
scales

From 0 to 500 Hz where 1 Mel = 
1 Hz (linear)

 above 500 Hz where tonie is a 
logarithmic function of frequency
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Just Noticeable Differences (JND) of pitch  

 Pitch variation is often more important than absolute pitch  

• Warning function: Doppler effect gives us information on the speed of a sound

source 

• Pleasantness: « wowing» of vinyl records

 Measures of JND give (in laboratory) about 2Hz at 500Hz (500 to 502 Hz)
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Complex sounds

 Some definitions:

• Complex sounds are all sounds that are not pure sinusoids

• Partials: frequency component with energy

• Harmonics: are partials in harmonic relation (multiple of a fundamental

frequency)  

• Fundamental frequency: the first harmonic

 In most cases, the ear summarizes the perception of all partials to hear

one or several heights

• It is in fact the case of harmonic sounds.

 But

• Height perception is not imposed by the lowest partial

• Height is not imposed by the most energetic part of the spectrum

• Height is not really independent of « timbre »

Gaël RICHARD – UESI220 - Acous – Psychoacoustique -
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The missing fundamental

 In a complex sound, we usually perceive height even if there are no fundamental

frequencies.  

 Démo : We take out from the low frequency the n harmonics of a sound with a 

fundamental frequency of 200 Hz.  
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Octave ambiguity

 Three partials: 2000 + 2200 + 2400 Hz

• We hear a pitch of 200 Hz !

 If the level of the partial at 2000 Hz decreases progressively :

• … at some point the « spectral sight » of this partial becomes too weak 
and we rather hear a pitch of 400 Hz  

 At some point we hear the two simultaneously: there is an 
ambiguity of octaves.  
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Analytic vs global perception  

 Depending of the sound, the ear perceives differently the set of 

the sound components:

• Either as a set of distinctive components  

• Or, globally, as 1 or several heights and an associated timbre.  

 Perception depends :

• On stimulus,

• The listener will,

• On how the stimulus is played (order of arrival/stop of partials)  

 Demo: auditive illusion….

Circularity in pitch judgement
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Analytic vs global perception

Demo : analysis / synthesis by progressively adding the partials

Complex sound harmonic per harmonic

 Until when the analytic listening is possible ?  
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What is the absolute pitch ?

 It is the capacity to recognize and name the height of a musical sound

without a sound of reference

 A rare faculty …  (less than 1% of the population).

 Can be trainded to some extent… (but results are rarely as good as when

the faculty is natural, or acquired when very young…)  
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Fundamental frequency detection
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Content

 Introduction

• Quasi-periodic sounds

• Quasi-periodic model

 Time-domain methods

 Spectral domain methods

 Extension to mutipitch (e.g. multiple fundamental 

frequencies) estimation  
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A quasi-periodic sound

T0

F0=1/T0

How can we estimate the height 

(pitch) of a note 

or 

How to estimate the fundamental 

periode (T0) 

or frequency (F0) ?

A piano sound (C3)

Spectrum of a piano sound
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Signal Model

•

• normalised fundamental frequency

• H is the number of harmonics

• Amplitudes {Ak} are real numbers  > 0

• Phases {k} are independant r.v. uniform on [0, 2 [

• w is a centered white noise of variance 2, independent of phases  {
k
} 

• x(n) is a centered second order process with autocovariance 
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Time domain methods

 Autocovariance estimation (biased)
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Time domain methods

 Autocovariance estimation (unbiased)
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Time domain methods

 Autocorrelation
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Average square difference function 

(ASDF)
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Average square difference function 

(ASDF)

• The period T0 can be estimated in looking at teh minimum of the 

square difference between          and                 :
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Average magnitude difference function (AMDF)
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An efficient time-domain algorithm: Yin
(Thanks to V. Emiya for additionnal slides)

 H. Kawahara A. de Cheveigné, YIN, a fundamental frequency estimator 

for speech and music,, JASA, 111(4), 2002

 Initial method: Autocorrelation method (ACF)

 Successive improvements:

• Use of ASDF

• Normalisation

• Threshold

• Interpolation

• Local minimisation in time
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YIN (2)

 ASDF used:

 Links with autocorrelation

 Performance increase : ASDF is less sensitive to amplitude 

variations (e.g. ACF is sensitive to even harmonics 

accentuation)  
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YIN (3)

 Normalisation by the « cumulative mean »

 Performance increase: suppression of the main lobe at 0   
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YIN (4)

 Absolute threshold

• The smallest period below the threshold is chosen  

• If no period is below the threshold, the global minimum is chosen  
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YIN (4)

 Parabolic interpolation around the minimum  
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YIN (5)

 Local minimisation in time

• Minimisation around timeT:                                   with

 Performance increase in case of fluctuation (it is a kind of 

smoothing, a bit similar to median filtering)  
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YIN: Evaluation

• On four speech databases, automatically annotated by YIN  

(from the laryngograph signal) then manually checked
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PYIN: An extension of YIN

Threshold distribution

Pitch estimate by YIN

M. Mauch and S. Dixon, "PYIN: A fundamental frequency estimator using probabilistic threshold distributions," 2014 IEEE 

ICASSP, Florence, Italy, 2014, pp. 659-663, doi: 10.1109/ICASSP.2014.6853678.
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PYIN: An extension of YIN (2/2)

 Final results obtained by smoothing (using HMM) the set of pairs

 Some results

• Recall = proportion of actually voiced frames which the extractor recognises as 

voiced and tracks with the correct frequency

• Precision = proportion of correct pitch estimates in frames marked by the

extractor as voiced

• F-measure :
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Fundamental frequency estimation using a signal model:  

Maximum likelihood approach

• Signal model:

─a is a deterministic model of period T0

─w is a Gaussian white noise with variance 2

• Observation likelihood

• Log-likelihood

• Method : maximise iteratively L with respect to a, then 2 and then T0
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Maximum likelihood approach

• It can be shown that maximisation of L  with respect to                    is equivalent 

to maximise the spectral sum   
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Spectral product

• By analogy to spectral sum (often more robust)  
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Multiple fundamental frequencies 

detection
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Multiple fundamental frequencies detection

 Objective: to estimate all musical notes of a polyphonic 

recording  

 Problem: notes can be played in harmony (often the case in 

music …!!)

 Sometimes: necessity to take into account the non-

harmonicity of played notes  
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Multiple fundamental frequencies detection

• DMDF (Double Magnitude Difference Function)

 piano sound

 addition of two notes 
T1=0.0076s

T2=0.0057s
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Multiple fundamental frequencies detection

 Bi-dimensional correlation  

Measures the « similarity » 
between

•d(n) et 
•d(n+k1) + d(n+k2)-d(n+k1+k2)
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A filter bank approach

 R. Meddis and M. Hewitt, “Virtual pitch and phase sensitivity of a computer 
model of the auditory periphery—I: Pitch identification,” J. Acoust. Soc. 
Am., vol. 89, pp. 2866–2882, June 1991.
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A simpler approach (inspired by the previous method)

 T. Tolonen and M. Karjalainen, “A computationally efficient multipitch 

analysis model,” IEEE Trans. On Speech and Audio Processing, vol. 8, no. 

6, pp. 708–716, 2000.
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Enhanced Summary ACF

 Several steps:

• Half wave rectification

─ We only keep positive values

• Slowed down twice (or more) and deduced from rectified SACF 

─ allows to suppress double pics
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An iterative approach 

 Estimate each note one after the other …

• First, detect the most prominent note …
• Subtract this note from the polyphony
• Then, detect the next most prominent note  
• Subtract this note from the polyphony
• Etc… until all notes are found

Anssi P. Klapuri, Multiple Fundamental Frequency Estimation Based on Harmonicity and Spectral Smoothness, IEEE Trans. 
On Speech and Sig. Proc., 11(6), 2003

Anssi P. Klapuri “Multipitch Analysis of Polyphonic Music and Speech Signals Using an Auditory Model”, IEEE Trans. On 
ASLP, Feb. 2008
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Iterative multipitch estimation

Detect the most prominent note (in red)Chord of two synthetic notes  C – F#

Subtract the detected note Detect the next most prominent note

There is no more notes….chord C – F#  is recognized
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Iterative multipitch estimation

Spectral smoothing: towards subtracting only the current

note

• ah=min(ah, mh)

where mh is the mean on a spectral window (one octave wide) 
around the current harmonic

Anssi P. Klapuri, Multiple Fundamental Frequency Estimation Based on Harmonicity and Spectral Smoothness, IEEE Trans. 
On Speech and Sig. Proc., 11(6), 2003

Anssi P. Klapuri “Multipitch Analysis of Polyphonic Music and Speech Signals Using an Auditory Model”, IEEE Trans. On 
ASLP, Feb. 2008
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Improvement using a perceptual model  

 Anssi P. Klapuri “Multipitch Analysis of Polyphonic Music and Speech 

Signals Using an Auditory Model”, IEEE Trans. On ASLP, Feb. 2008
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Effect of compression and rectification 

 Result on a band centered at 2.7 kHz
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Multiple frequency estimation

 Many other approaches

• Bayesian methods

• Factorisation methods (NMF for example)

• Neural networks, Deep neural networks



Institut Mines Telecom

 Use of non-supervised decomposition methods (for example Non-

Negative Factorization methods or NMF)

 Principle of NMF : 

Non-Negative Factorization methods or NMF

Image from R. Hennequin
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Non-Negative Factorization methods or NMF

 Use in multipitch estimation:

• Important to introduce a priori (probabilist approach) or constraints 
(déterminist approach)

• Constraint examples (after Vincent & al, 2010):

─NMF classic:

─NMF with pitch dependant templates:

─… and template constraints 

─Ex. With “local” envelopes
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Use of a constant Q transform

D’après M. Mueller & al. « Signal Processing for Music Analysis, IEEE Trans. On Selected topics of 

Signal Processing, oct. 2011
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Utilisation en estimation multipitch

 On a constant Q transform

• A difference in pitch 

corresponds to a translation in 

frequency

• Towards  “Shift invariant 

PLCA (v. smaragdis2008 et 

Fuentes & al. 2011)
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A PLCA model example  

 The HALCA model  (Fuentes & al.)

B. Fuentes, R. Badeau, and G. Richard,   “Harmonic Adaptive Latent Component Analysis of Audio and Application to Music 
Transcription”   IEEE Trans. On ASLP, 2013.
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A PLCA model example 

 The HALCA model  (Fuentes & al.)
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Pitch and multipitch estimation using DNN

 Example of Pyin as state of the art extension of YIN

 For multipitch

• Cuesta (simple method targetted for homogeneous sources such as 

singing voices) H. Cuesta, B. McFee, and E. G´omez, “Multiple f0 

estimation in vocal ensembles using convolutional neural networks,” 

in Proc. ISMIR, 2020,

• pp. 302–309.
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CREPE: A deep learning model for monopitch estimation (1/2)

 Exploiting Machine learning (deep learning) for pitch estimation

 Output:

• 360 nodes (20 cents apart (1/5th of a semitone) from C1 ou B7)

• Pitch estimate is the weighted mean of the output:

• Trained with binary cross entropy loss

Kim, Jong Wook et al. “Crepe: A Convolutional Representation for Pitch Estimation.” 2018 IEEE International Conference 

on Acoustics, Speech and Signal Processing (ICASSP) (2018): 161-165.



Institut Mines Telecom

CREPE: A deep learning model for monopitch estimation (2/2)

 A few results

 Better performances for low frequencies*

*: some errors due small

Numbers of sound

exemples for some instruments
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Multipitch estimation using neural networks

 An early example by M. Marolt (2004) for piano sounds

Marolt, Matija. (2004). A Connectionist Approach to Automatic Transcription of Polyphonic Piano Music. 

Multimedia, IEEE Transactions on. 6. 439 - 449. 10.1109/TMM.2004.827507. 
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Multipitch estimation using neural networks

 Use of a specific input representation: the harmonic-CQT

 CNN architecture with Relu ; Last layer with sigmoid

 The predicted saliency map can be interpreted as a likelihood score of 

each time-frequency bin belonging to an f0 contour. 

Input H(1) output groundtruth

Bittner, Rachel & McFee, Brian & Salamon, Justin & Li, Peter & Bello, Juan. (2017). Deep Salience Representations for f0 

Estimation in Polyphonic Music. In proc ISMIR 2017
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An extension focus on singing voices

H. Cuesta, B. McFee, and E. Gomez, “Multiple f0 estimation in vocal ensembles using convolutional neural 

networks,” in Proc. ISMIR, 2020,
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An extension focus on singing voices

 Extended input features with HCQT Phase

(phase is directly linked to Instantaneous frequency)

 New architectures (with fusion of input)
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An extension focus on singing voices

 An idea of the performances (test sets > 3000 audio files)
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Multipith estimation using Unets (with spectrogram 

reconstruction)

 Intuition: we mimic the human behaviour when evaluating a 

transcription:

• We « listen » to the transcription 

• We optimise the algorithm to reduce the errors

Cheuk, Kin Wai et al. “The Effect of Spectrogram Reconstruction on Automatic Music Transcription: An Alternative 

Approach to Improve Transcription Accuracy.” 2020 25th International Conference on Pattern Recognition (ICPR) (2020): 

9091-9098.
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U-net architectures for multipitch estimation

C. Weiß and G. Peeters, "Comparing Deep Models and Evaluation Strategies for Multi-Pitch Estimation in Music Recordings," 

in IEEE/ACM Trans. On AASP, vol. 30, pp. 2814-2827, 2022, doi: 10.1109/TASLP.2022.3200547
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Multipitch estimation using neural networks: other neural 

approaches

• Deep spiking networks [5]

• Multi-resolution spectrogram as input with LSTM networks [4]

• Use of a kind of “language model” in Neural Autoregressive Distribution Estimator, also 

known as NADE (similar to wavenet architecture) [3]

• A succession of 2 bi-LSTM networks (for note onset detection and note duration 

estimation), in [2]

• Unet networks (with self-attention [6], spectrogram reconstruction [7], varied architectures 

[8])

• An interesting reading: [1]

« Yet, despite these [...] limitations, NMF-based methods remain competitive or even exceed 

the results achieved using NNs.”

[5] Qian, Hanxiao et al. “Robust Multipitch Estimation of Piano Sounds Using Deep Spiking Neural Networks.” 2019 IEEE Symposium 

Series on Computational Intelligence (SSCI) (2019): 2335-2341.

[6]Y. -T. Wu, B. Chen and L. Su, "Multi-Instrument Automatic Music Transcription With Self-Attention-Based Instance Segmentation," in 

IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 28, pp. 2796-2809, 2020, doi: 

[8] C. Weiß and G. Peeters, "Comparing Deep Models and Evaluation Strategies for Multi-Pitch Estimation in Music Recordings," in 

IEEE/ACM Trans. On AASP, vol. 30, pp. 2814-2827, 2022, doi: 10.1109/TASLP.2022.3200547. 

[4] S. Böck and M. Schedl, “Polyphonic piano note transcription with recurrent neural networks,” in Proc. IEEE Int. Conf. Acoustics, 

Speech, and Signal Processing, 2012, pp. 121–124.

[3] S. Sigtia, E. Benetos, and S. Dixon, “An end-to-end neural network for polyphonic piano music transcription,” IEEE/ACM Trans. 

Audio, Speech, Language Process., vol. 24, no. 5, pp. 927–939, 2016.

[2] C. Hawthorne, E. Elsen, J. Song, A. Roberts, I. S. C. Raffel, J. Engel, S. Oore, and D. Eck, “Onsets and frames: Dual-objective piano 

transcription,” in Proc. Int. Society Music Information Retrieval Conf., 2018, pp. 50–57.

[1] E. Benetos, S. Dixon, Z. Duan and S. Ewert, "Automatic Music Transcription: An Overview," in IEEE Signal Processing Magazine, 

vol. 36, no. 1, pp. 20-30, Jan. 2019, doi: 10.1109/MSP.2018.2869928.


