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Abstract Side-channel attacks allow to extract secret keys
from embedded systems like smartcards or smartphones. In
practice, the side-channel signal is measured as a trace con-
sisting of several samples. Also, several sensitive bits are
manipulated in parallel, each leaking differently. Therefore,
the informed attacker needs to devise side-channel distin-
guishers that can handle both multivariate leakages and
multiple models. In the state of the art, these two issues
have two independent solutions: on the one hand, dimen-
sionality reduction can cope with multivariate leakage; on
the other hand, online stochastic approach can cope with
multiple models. In this paper, we combine both solutions
to derive closed-form expressions of the resulting optimal
distinguisher in terms of matrix operations, in all situations
where the model can be either profiled offline or regressed
online. Optimality here means that the success rate is maxi-
mized for a given number of traces.We recover known results
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for uni- and bivariate models (including correlation power
analysis) and investigate novel distinguishers for multiple
models with more than two parameters. In addition, follow-
ing ideas from the AsiaCrypt’2013 paper “Behind the Scene
of Side-Channel Attacks,” we provide fast computation algo-
rithms inwhich the traces are accumulated prior to computing
the distinguisher values.

Keywords Side-channel analysis · Optimal distinguishers ·
Multivariate leakage · Stochastic attacks

1 Introduction

Side-channel attacks allow to extract secret keys from cryp-
tographic devices. Template attacks [4] have been introduced
as the strongest analysis method. They consist in two phases:
(1) a profiling offline phase where the leakage model of
the device under attack is characterized and (2) an attack
online phase in which the secret key is extracted using fresh
measurements along with the precharacterized model. Such
attacks are known to use a maximum likelihood princi-
ple to ensure the highest possible success probability (see,
eg., [10]).

In this paper, we study optimal attacks with the best pos-
sible success probability when extracting the secret key.1 We
leverage on such optimal distinguishers to answer the fol-
lowing question: How to attack with the best probability of
success when the leakage is multivariate and the model is

1 The success probability in key recovery is chosen as a figure of merit
for optimization. Such an objective is typical of “pure” side-channel
attacks. Other approaches [9,13,17] relax the condition that the key
found by the side-channel analysis be ranked first and complements
it with a key enumeration stage. This yields a data versus complexity
trade-off that is not explored in this paper.
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multiple? An initial empirical2 work has already been car-
ried out in [15] which confirmed that this type of approach
can be very fruitful.3

1.1 Contributions

We derive closed-form expressions for the optimal distin-
guishers in all situations where the model is known (e.g.,
using profiling) or regressed online. In the case of a known
univariate model, we recover the results in [3]. However, our
“fullymatrix” formalismmakes equations simpler andproofs
shorter. Moreover, compared to [3] we extend the leakage
model to the case where the traces are not necessarily cen-
tered, thereby allowing a more natural application on real
traces. In the realistic “(online) stochastic attack” situation
where the model is parametric, i.e., where the coefficients
of the model are unknown, we express the optimal distin-
guisher bymaximizing success over thewhole set of possible
coefficients. Finally, we provide fast computation algorithms
for our novel distinguishers, which happen to be remarkably
simple and efficient.

1.2 Outline

The remainder of this paper is organized as follows. Sec-
tion 2 provides a modelization of a side-channel attack that
is generic4 enough to capturemanydifferentmultivariate sce-
narios The main results of this paper are outlined in Sect. 3.
Section 4 presents experimental results on simulated traces
and real-world acquisition campaigns. Conclusions and per-
spectives are given in Sect. 5.

2 Notations and leakage model

2.1 Notations

We let X denote the leakage measurements, Y the model, N
themeasurement noise, andα the link between themodel and

2 The work in [15] does not detail the modus operandi result for the
regression neither plugs it into the distinguisher, which is incidentally
not chosen to be the optimal one.
3 Multi-target attacks [13,18] have a somewhat different goal, namely
the best aggregation of information about several subparts of a key,
possibly leaking at different times with different models, in order to
recover the full key efficiently. Here we consider only one multivariate
leakagemodel and focus on recovering one subpart of the key. However,
our derivation is capable of handling multivariate leakages and models
and may still be combined with the multi-target approaches.
4 By generic, we qualify a leakagemodelmore complex than the classi-
cal Hammingweight or distance, where each bit of the sensitive variable
has different strengths of leakage (situation we will show to happen in
practice).

the measurements.5 The model Y depends on a key guess k,
an n-bit vector, and on some known text T (usually also an n-
bit vector), e.g., through a function φ such that Y = φ(T, k).
A well-known example is Y = wH (T ⊕ k), where wH is
the Hamming weight function. However, in general, some
parameters of themodel are unknown. To remain generic, we
do not detail further the link between Y and the pair (T, k).
As it is customary in side-channel analysis, the correct key
is denoted by k⋆. The corresponding model using the correct
key Y (k⋆) is denoted by Y ⋆.

Let Q be the number of queries (number of measure-
ments), D be the data dimensionality (number of time
samples per measurement trace), and S be the model dimen-
sionality (φ : Fn

2 × Fn
2 → RS is a vectorial function, with S

components). Roman letters in bold indicate vectors ormatri-
ces that have a dimension in Q, i.e., which are different for
each trace q = 1, 2, . . . , Q. More precisely,X represents the
full attack campaign, a matrix of D × Q measurement sam-
ples. The q-th trace is denoted Xq which is a D × 1 column
vector. Similarly, for the q-th trace, the S × 1 column vector
Yq represents the deterministic part of the model while the
D × 1 column vector Nq is the corresponding measurement
noise with D × D correlation matrix $.

We denote by tr (·) the trace of a square matrix, that is, the
sum of its diagonal terms. Note that tr (AB) = tr (BA) for
compatiblematrix dimensions. Let ∥·∥2 denote theEuclidean
norm of a 1×Q row vector. Thus, ∥X∥22 = XXT = tr

(
XTX

)
,

where ( · )T is the transposition operator. Finally, let ∥ · ∥F
denote the Frobenius norm of a matrix (square root of the
sum of its squared elements), such that ∥M∥2F = tr

(
MMT)

.

2.2 General model

We make the following simplifying assumptions. First,
the (environmental) noise is steady, e.g., chip temperature
and supply voltage do not vary during the side-channel
measurements. Thus, N1, N2, . . . , NQ are independent and
identically distributed (i.i.d.) (denoted by N with index q
dropped). Second, the attacker does not inject partial infor-
mation gathered from the leakage analysis into a possible
choice of plaintexts/ciphertexts (non-adaptive attack).6 Thus,
Y1, Y2, . . . ,YQ are assumed i.i.d. (denoted by Y ). Under the
adopted leakage model, it follows that the leakage measure-
ments X1, X2, . . . , XQ are also i.i.d. (denoted by X ).

AdistinguisherDmaps a collection of leakagesx and texts
t to an estimation of the secret key k⋆. Let us recall that x and

5 Notations X, Y are consistent with the usual convention in machine
learning, where X is for the collected data and Y for the classification
labels.
6 In fact, our results tolerate chosen texts, but consider them as observed
inputs to the attack. We do not optimize the attack according to chosen
inputs.
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Fig. 1 Example of leakage model with S = 2 and a model in Hamming weight, with n = 4 values (no noise is added)

t are realizations of random variables X and T: x is a D × Q
matrix of real numbers (the acquisition campaign) and t is a
1 × Q vector of n-bit words (bytes when n = 8) which are
the publicly known plaintext or ciphertext bytes. An optimal
distinguishermaximizes the probability of successD(x, t) =
k⋆.

The simplest situation occurs when X consists in a mod-
ulation of Y plus noise, in which case we let α be the signal
envelope. In real traces, however, we face the more general
situation where the model can be offset by some quantity the
general case being an S-dimensional parametricmodel with
S ≥ 2 components. For this reason, we consider α as a D×S
matrix and we set in matrix notation

X = αY⋆ + N (1)

whereX is D×Q, α is D× S,Y⋆ is S×Q, andN is D×Q.
Notice that our convention to consider traces as lines and
dimensions as rows allows us to write the deterministic part
of the leakage as αY⋆ which writes more naturally than the
opposite order where traces would be viewed as a vertical
time series.7

We notice that in the state of the art, monovariate leak-
age models are assumed vectorial in the context where they
are considered unknown pseudo-Boolean functions of the
pair (T, k). In this paper, we highlight that these coefficients
extend to waveforms in the context of multivariate leakage
and thus take on a physical interpretation of leakage models
as a sum of waveforms resulting from the leakage of indi-
vidual resources. This means that seeing α as D lines, each
representing the series of S weights, is awkward, since not
related to the way the multivariate leakage is built from the
processed data. Instead, it is natural to see α as S columns,
each representing the waveform which is generated by one
coordinate of model Y .

7 We underline that Y⋆ denotes the model for the correct key; we use
Y(k) for a model assuming a guessed key k. Sometimes, in a view
to make notations more legible, the dependence in k is tacit and Y(k)
simply writes as Y.

For each trace q = 1, 2, . . . , Q, we assume that the vector
N = Nq follows that same multivariate normal distribution
N (0,$), where the D×D correlationmatrix$ = E(NNT)

is assumed known to the attacker.8 Since $ is assumed sym-
metric positive definite, there exists a matrix $1/2, which is
such that $1/2$1/2 = $. We refer to $1/2 as the standard
deviation noise matrix.

The model (1) used throughout the paper is quite generic
and has multiple facets depending on the choice of S and the
respective values given to α and Y . This is discussed next.

2.3 Examples with S = 2 and S = 9

For S = 1, the traces consist only in a modulation of the
model plus noise as in [2,3]. When considering traces that
are not only modulated, but also have an offset term, we have

S = 2. We then write the 2-dimensional model as
(
Y
1

)
,

where Y and 1 are 1 × Q matrices (Y1, Y2, . . . ,YQ) and
(1, 1, . . . , 1). The D × 2 matrix α in (1) actually takes the
special form (α β) where β is the offset value.

An illustration is provided in Fig. 1 where the parameter
β ∈ RD is the waveform when there is no signal, whereas
α ∈ RD is the signal envelope. The complete model is the
sum αY +β, where Y is the Hamming weight of some inter-
mediate variable (such as theXORoperation T ⊕k) on n = 4
bits. While the leakage signal may be represented as a con-
tinuous curve as illustrated in Fig. 1, the practical acquisition
consists in a temporal series of D “discrete samples,” typi-
cally within one clock period. For S = 2, we thus write (1)
as

X = αY⋆ + β1+ N (2)

whereX is D×Q, α and β are D×1,Y⋆ and 1 = (1, . . . , 1)
are 1 × Q, and N is D × Q. Here Y is assumed centered:

8 We may simplify (2) by incorporating β1 into the noise expectation,
but the noise is intrinsically zero-mean and it is clearer to exhibit a
specific offset term.
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Fig. 2 Leakage evaluation of traces from DPA contest V4 (knowing
the mask)

E(Y) = 0 = (0, . . . , 0) (since the non-centered part is
captured by the β1 term) and of unit variance for every q:
Var(Yq) = E(Y 2

q ) = 1.
For S ≥ 2, the actual value of S reflects the complexity of

the model. For example, in the weighted sum of bits model,
the model for each trace can be written as

∑n
s=1 αsYs +

β, where Ys is the sth bit of the n-bit sensitive variable Y .
Accordingly, we have

S = n + 1, and thus:

α =
(
α1 . . . αn β

)
, Y = (Y1 . . .Yn 1)T. (3)

This leakage model is more complex than before, but may
arise in practice. For example, Fig. 2 plots the coefficients
α1, . . . ,α8 estimated of the traces taken from an ATMega
smartcard—the datasets are available from the DPA contest
V4 team [16]. In particular, one can observe that samples
around [50, 80] are ordered by Hamming weight: this part
of the trace resembles the upper left part of Fig. 1 for S =
2. By analyzing the (n + 1)-variate model of (3), one can
indeed see that around [50, 80], the vectors α1, . . . ,α8 are
almost identical. However, samples in intervals [170, 250]
or [330, 400] have a more complex model. These times, the
eight vectors α1, . . . ,α8 are clearly different, so the leakage
is 9-variate.

In the sequel, we consider both types of attacks: thosewith
offline profiling where α for each component of the model
is precharacterized like in Fig. 2 and also those where the
model is learned online like in a linear regression attack [7].

3 Theoretical results and implementation

3.1 General mathematical expressions

In this section, we derive the mathematical expression of the
optimal distinguisher D in the general case of multivariate
leakage (D ≥ 1) andmultiplemodels (S ≥ 1).An illustration
of our results is given in Fig. 3 for the case when the leakage
is completely known (or profiled as in the template attack)
and when the leakage is unknown and estimated online.

Definition 1 (Optimal distinguisher knowing or ignoring α)

DML(x, t) = argmax
k∈F2

p(x|t) and

DML,sto(x, t) = argmax
k∈F2

max
α∈RD×S

p(x|t,α).

In both cases (Theorems 1 and 3.1 below), the result is a
distinguisher which is computed using simple matrix opera-
tions. WhileDML resembles a template attack with Gaussian
templates [4],DML,sto is a novel expression that results from
a non-trivial maximization over the matrix α and may be
interpreted as a generalization of a multivariate correlation
power attack [1].

Theorem 1 The optimal maximum likelihood (ML) distin-
guisher [10] for Gaussian noise writes

DML(x, t) = argmin
k

tr
(
(x − αy)T$−1(x − αy)

)
. (4)

Proof From [10], we have DML(x, t) = argmaxk p(x|y)
while from (1) we see that p(x|y) = pN(x − αy). From the
i.i.d. assumption, the noise density pN(n) is given by

pN(n) =
Q∏

q=1

1
√
(2π)D| det$|

exp−1
2
nqT$−1nq

= 1
(2π)DQ/2

1
(det$)Q/2 exp−1

2

( Q∑

q=1

nqT$−1nq

)

= 1
(2π)DQ/2(det$)Q/2 exp−1

2
tr

(
nT$−1n

)
.

Fig. 3 Mathematical expression for multivariate (D ≥ 1) optimal attacks with a linear combination of models (S ≥ 1)
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Thus, pN(x − αy) is maximum when the expression
tr

(
nT$−1n

)
for n = x − αy is minimum. ⊓)

In Eqn. (4) of Theorem 1, the trace

tr
(
(x − αy)T$−1(x − αy)

)

consists in:

– the sum of Q Mahalanobis [12] distances (see also
Eqn. (22) of [5]),

– the sum of D elements (which is useful when D ≪ Q),
as attested by rewriting

tr
(
(x − αy)T$−1(x − αy)︸ ︷︷ ︸

Q×Q matrix

)

= tr
(

$−1(x − αy)(x − αy)T︸ ︷︷ ︸
D×D matrix

)
.

Theorem 2 The optimal stochastic multivariate attack is
given by

DML,sto(x, t) = argmax
k∈Fn2

tr
(
yT(yyT)−1y xT$−1x

)
(5)

for which the optimal value of α is given by

αopt = (xyT)(yyT)−1. (6)

For the proof, we need some known results of linear alge-
bra (Lemma 1) and linear regression (Lemma 2).

Lemma 1 Let b an S × Q matrix, with S < Q. The S × S
matrix bbT is invertible if and only if b has full rank S, i.e.,
if and only if the S lines of b are independent.

Proof Let x be a S × 1 column vector. We have that
xTbbTx = ∥bTx∥2 = 0 implies bTx = 0; hence, x = 0.
Hence, the matrix bbT is positive definite. ⊓)

Lemma 2 Let a, b, and α be, respectively, 1×Q, S×Q, and
1× S with S < Q, where b has full rank S. Then, ∥a−αb∥2
reaches its minimum for α = abT(bbT)−1.

Proof Expanding the squared norm gives ∥a−αb∥22 = (a−
αb)(a − αb)T = aaT − 2αbaT + αbbTαT. Therefore, the
gradient ∂

∂α ∥a − αb∥22 = −2baT + 2bbTαT vanishes if and
only if αT = (bbT)−1baT, i.e., α = abT(bbT)−1 where we
have used the fact that bbT is invertible by Lemma 1. ⊓)

Proof (Proof of Theorem 3.1) Let x′ = $−1/2 x and y′ =
(yyT)−1/2 y. The optimal distinguisher minimizes the fol-
lowing expression over α ∈ RD×S :

tr
(
(x − αy)T$−1(x − αy)

)

= tr
(
(x′ − α′y)(x′ − α′y)T

)
=

D∑

d=1

∥x′
d − α′

dy∥2.

By Lemma 2, the minimization over α′
d yields α′

d =
(x′

dy
T)(yyT)−1 for all d = 1, . . . , D. This gives α′ =

(x′yT)(yyT)−1 hence α = (xyT)(yyT)−1, which remarkably
does not depend on $.

The minimized value of the distinguisher is thus

min
α

tr
(
(x − αy)T$−1(x − αy)

)

= tr
(
(x − αopty)T$−1(x − αopty)

)

= tr
(
(Id − yT(yyT)−1)2xT$−1x

)

= tr
(
xT$−1x

)
− tr

(
yT(yyT)−1 xT$−1x

)

where Id denotes the D × D identity matrix and where
tr

(
xT$−1x

)
is a constant independent of k. This proves The-

orem 3.1. ⊓)

The expression ofDML,sto(x, t) given in Theorem3.1 con-
sists in the trace of a Q× Q matrix, which can be admittedly
very large. It can be, however, rewritten in a way that is easier
to compute when Q is much greater than S and D:

Corollary 1 (Alternative expression of DML,sto) Letting
x′ = $−1/2 x, and y′ = (yyT)−1/2 y as in the proof of
Theorem 3.1, we have

DML,sto(x, t) = argmax
k∈Fn2

∥x′y′T∥F . (7)

Here the Frobenius norm is of a D × S matrix.

Proof Let us write (yyT)−1 = (yyT)−1/2(yyT)−1/2 in (5).
By the properties of the trace,

tr
(
yT(yyT)−1y xT$−1x

)

= tr

⎛

⎜⎜⎝
(
(yyT)−

1
2 y($− 1

2 x)
T)

︸ ︷︷ ︸
S×D

(
(yyT)−

1
2 y($− 1

2 x)
T)T

︸ ︷︷ ︸
D×S

⎞

⎟⎟⎠

= tr
(
(y′x′T)(y′x′T)

T)
= ∥x′y′T∥2F .

⊓)
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α, β ∈ RD×1,Σ ∈ RD×D
x ∈ RD×Q,y ∈ R1×Qx = αy⋆ + β1+ n

∀q, nq ∼ N (0,Σ)
y⋆ = φ(t, k⋆)
y = φ(t, k)

Affine projection: Data transformation:

Leakage model:

yes noknown?
Are α, β

Univariate ML attack: New multivariate CPA attack:

x̃ = αTΣ−1

αTΣ−1α(x − β1) ∈ R1×Q x′ = Σ−1/2x

DS=2
ML (x, t) = argmink ||x̃ − y||22 DS=2

ML,sto(x, t) = argmaxk
∑D

d=1
Ĉov(x′

d,y)
2

V̂ar(y)

Fig. 4 Modus operandi for multivariate (D ≥ 1) optimal attacks with one model Y associated with envelope α ∈ RD×1 and a constant offset
β ∈ RD×1 (S = 2)

Remark 1 Notice that in Corollary 1, y′ is a vector of empir-
ical covariance equal to the identity matrix. Indeed, y′y′T =
(yyT)−1/2yyT(yyT)−1/2 = Id.

3.2 Mathematical expressions for S = 2

In order to provide interpretations for the optimal distin-
guisher expressions, we detail how an optimal attack unfolds
when the leakage consists in a sum of a modulated scalar
model and an offset (S = 2). The cases for profiled attacks
(denoted DS=2

ML ) and non-profiled attacks (denoted DS=2
ML,sto)

are presented in Fig. 4.
Interestingly, when S = 2, the template attack can decom-

pose in two steps (affine projection followed by a Euclidean
distance to the model). Remarkably, the projection vector is
the same for all key guesses. This extends similar results [3]
where only the linear relationship between leakage andmodel
is explored. As for the online attack, DS=2

ML,sto consists in a
sum of square of CPA attacks on transformed data, aiming at
orthogonalizing the noise.

3.3 Efficient implementation

Both DML and DML,sto can be optimized using the idea pre-
sented in [11]. This article applies a precomputation step in
the case the number of traces is larger than the number of
possible plaintexts (Q > #T = 2n). In this case, all sum-
mations

∑
q can be advantageously replaced by

∑
t
∑

tq=t .
In most cases, the sum

∑
tq=t can be achieved on the fly

and does not involve an hypothesis on the key. Therefore,

a speed gain of 2n (the cardinality of the key space) is
expected.

Such optimization strategy can be applied toDML. Indeed,
let us define x′ = $−1/2x and α′ = $−1/2α. Then,

DML(x, t)=argmin
k

D∑

d=1

∥x′
d − α′

dy∥22 (see Corollary 1)

= argmin
k

D∑

d=1

∑

t∈Fn2

⎛

⎝
∑

q/tq=t

x ′
d,q

2 − 2
∑

q/tq=t

x ′
d,qα

′
d y(t, k)

+

⎛

⎝
∑

q/tq=t

1

⎞

⎠ (α′
d y(t, k))

2

⎞

⎠

= argmin
k

D∑

d=1

∑

t∈Fn2

−2
( ∑

q/tq=t

x ′
d,q

)

︸ ︷︷ ︸
denoted as x ′

d,t

α′
d y(t, k)

+
( ∑

q/tq=t

1
)

︸ ︷︷ ︸
denoted as nt

(α′
d y(t, k))

2 (8)

= argmax
k

tr
(
x′(α′y(k)

)T)
− 1

2

∑

t∈Fn2

nt
∥∥α′y(t, k)

∥∥2
2 .

(9)

Notice that at line (8), the term
∑

q/tq=t x
′
d,q

2 which does
not depend on the key is simplified. The fast version of this
computation is given in Algorithm 1.
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input : x, t
output: DML(x, t)

// Initialize to zero a matrix x ′
d,t of size

D × 2n

// Initialize to zero a vector nt of
length 2n

1 for q ∈ {1, . . . , Q} do // On-the-fly accumulation
2 x ′

tq ← x ′
tq + $−1/2xq

3 ntq ← ntq + 1

4 return // Single evaluation, as in (9)

argmaxk∈K tr
(
x′(α′y(k)

)T)
− 1

2
∑

t nt
∥∥α′y(t, k)

∥∥2
2

Algorithm 1: Fast computation algorithm for DML

The same optimization applies to DML,sto. Indeed, in
expression (7) of DML,sto(x, t) = argmaxk ∥x′y′T∥2F , one
can write

∥x′y′T∥2F =
∑

s,d

( Q∑

q=1

x ′
d,q y

′
s,q

)2

=
∑

s,d

(∑

t∈Fn2

(∑
q/tq=t x

′
d,t

)

︸ ︷︷ ︸
denoted as x ′

d,t

(
y′
s(t, k)

)

︸ ︷︷ ︸
denoted as y′

s,t

)2
. (10)

This means that x′ can be obtained by simple accumula-
tion, exactly as in line 2 of Algorithm 1. The term y′

s(t, k)
requires the computation of yyT. In the case Q ≫ 1, it can
be assumed that the texts t are uniformly distributed. Hence,
when Q → +∞, by the law of large numbers,

1
Q
yyT = 1

Q

Q∑

q=1

yq yqT =
∑

t∈Fn2

∑
q/tq=t 1

Q
y(t, k)y(t, k)T

−−−−−→
Q→+∞

1
2n

∑

t∈Fn2

y(t, k)y(t, k)T.

Therefore, in (10), y′
s(t) can also be precomputed. To the

best of our knowledge, this optimization has never been dis-
cussed previously. The resulting distinguishing procedure is
given in Algorithm 2. At line 3, the argument of the Frobe-
nius norm can be computed by a fast matrix multiplication.
Also, we notice that the matrix inversion at line 0 is actually
a precomputation which involves only the model. Besides,
if the EIS (Equal Images under all Subkeys) assumption
holds [14, Def. 2], e.g., y(t, k) only depends on t ⊕ k, then∑

t y(t, k)y(t, k)
T does not depend on k, hence only one

single matrix inversion to compute. Eventually, the compu-
tational complexity of the optimal stochastic attack simply
consists in traces accumulation per class and as many matrix
products and Frobenius norms as keys to be guessed.

input : x, t
output: DML,sto(x, t)

// Precompute #K = 2n matrices y′(k) of size

S × 2n, s.t. y′(k) = ( 1
2n

∑
t y(t, k)y(t, k)

T)−1/2y(k)

// Initialize to zero a matrix x ′
d,t of size

D × 2n

0 for q ∈ {1, . . . , Q} do
1 x ′

tq ← x ′
tq + $−1/2xq // In-place accumulation

of a column in matrix x′

2 return argmaxk∈K ∥x′y′(k)T∥F // As in (10)

Algorithm 2: Fast computation algorithm for DML,sto
when t is balanced

4 Practical results

4.1 Characterization of !

In this article, we assume that the attacker knows the noise
covariance matrix. We give a straightforward procedure for
the estimation.

1. collect Q traces (i.e., a matrix x ∈ RD×Q) where the
plaintext is fixed to a given value,

2. estimate $ as $̂ = 1
Q−1

(
x − 1

Q x1
T1

)(
x − 1

Q x1
T1

)T
,

where 1 = (1, . . . , 1) ∈ R1×Q . This estimator is sample
covariance matrix, which is unbiased.

Remark 2 Notice that $ cannot be obtained by a direct pro-
filing on the same traces to be used for the attack. Indeed,
in those traces, the plaintext is varying; hence, the attacker
would use for $̂ the covariance matrix of x − αopty, where
αopt is equal to αopt = (xyT)(yyT)−1 [recall (6)]. Hence,
$̂ = 1

Q−1 (x − αopty)(x − αopty)T. But the distinguisher
DML,sto is

DML,sto(x, t)

= argmin
k∈Fn2

min
α∈RD×S

tr
(
(x − αy)T$̂−1(x − αy)

)

= argmin
k∈Fn2

min
α∈RD×S

tr
(
$̂−1(x − αy)(x − αy)T

)

= argmin
k∈Fn2

tr
(
$̂−1(x − αopty)(x − αopty)T

)
(11)

= argmin
k∈Fn2

tr
(
(Q − 1)$̂−1$̂

)
= argmin

k∈Fn2
D(Q − 1).

(12)

Indeed, at line (11), we demonstrated in the proof of The-
orem 3.1 in that the minimal value (6) of α is independent
on $. Eventually, it can be seen at line (12) that the dis-
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Fig. 5 Simulations for D = 3, S = 5, n = 4, σ = 1 (AR noise with ρ = 0.5)

tinguisher with $̂ instead of $ does not depend on the
key.9

4.2 Attacks on synthetic (i.e., simulated) traces

In this subsection, we present simulations when α is known
exactly or regressed online. We consider an attack of
PRESENT, where the SBox is n = 4 → n = 4.
For the sake of the simulations, we choose two kinds
of α:

– “identical”: all the n = 4 bits leak the same waveform,
like in the Hamming weight model,

– “proportional”: the waveform has weight 1 for SBox bit
0 and is multiplied by 2 (resp. 3 and 4) for SBox bit 1
(resp. 2 and 3).

The waveform for each bit is that represented in Fig. 1 (upper
left graph). Specifically, for all 1 ≤ d ≤ D and 1 ≤ s ≤ S,
the envelope consists in damped oscillations:

9 Indeed, argmink cst = Fn
2, meaning that all keys are equiprobable.

Intuitively, when both the noise and the model parameters are regressed
at the same time, any key manages to achieve the same match between
parametric model and side-channel observations.

αd,s = e− 2d
D cos

(
2π

d
D

)
for the “identical” case, (13)

αd,s = s · e− 2d
D cos

(
2π

d
D

)
for the “proportional” case.

(14)

The noise is chosen normal, using two distributions:

– “isotropic”: the covariance matrix is σ 2 times the D× D
identity,

– “auto-regressive” (of “AR” for short): the covariance
matrix element at position (d, d ′), for 1 ≤ d, d ′ ≤ D, is
σ 2ρ|d−d ′|. This noise is not independent from sample to
its neighbors, but the correlation ρ decreases exponen-
tially as samples get further apart.

Proposition 1 The success probability of DML is greater
than that of DML,sto.

Proof Indeed, according to [10],DML maximizes the success
probability. Thus, the distinguisher DML,sto has a smaller
success probability. The success probability is the same if
the minimization over α in the proof of Theorem 3.1 yields
the exact matrix α used in the model (1). ⊓)

Simulations allow to estimate the loss in terms of effi-
ciency of not knowing the model (Proposition 1), by compar-
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Fig. 6 Simulations for D = 3, S = 5, n = 4, σ = 4 (AR noise with ρ = 0.5)

ing distinguishers DML [(4)] and DML,sto [(5)]. The success
rate of the optimal distinguisher DML is drawn in order to
materialize the limit between feasible (below) and unfeasi-
ble (above) attacks.

Results for low noise (σ = 1) are represented in Fig. 5.
We can see that the Hamming weight model is clearly harder
to attack, because the leakage of one bit cannot be distin-
guished from that of the other bits. Besides, we notice that
the stochastic attack is performing much worse than the opti-
mal attack: about 10 times more traces are required for an
equivalent success probability in key extraction.

Results for high noise (σ = 4) are represented in Fig. 6.
Again, the “proportional” model is easier to attack than the
“identical” model (for each bit). Now, we also see that the
gap between the optimal ML attack and the stochastic attack
narrows: only about 5 times more traces are needed for the
stochastic attack to perform as well as the optimal attack in
terms of success probability. Besides, we notice that the AR
noise is favorable to the attacker. It is therefore important in
practice for the attacker to characterize precisely the noise
distribution (recall the methodology presented in Sect. 4.1).

Clearly, these conclusions are in line with the template
versus stochastic (offline) study carried out in [8]: for high
noise, the (online) learning of the model requires more
traces; hence, is more accurate. Therefore, the performance
of DML,sto gets closer to that of DML than for high noise.

4.3 Attacks on real-world traces

We now compare CPA with DML and DML,sto on measure-
ments provided by the DPA contest V4. These traces have
been acquired from an 8-bit processor and hence have a
signal-to-noise ratio greater than one, reaching 7 at some
points in time. The interval for our case study is [170, 250]
from Fig. 2; hence, D = 80. Regarding ML, two learning
strategies have been implemented:

1. themodel is learned froma disjoint set of 5k traces,which
is the operational scenario for a profiled attack;

2. the model is learned from the traces being attacked
(denoted self in Fig. 7). This case does not represent
a realistic attack, but is interesting in that it highlights the
best possible attacker.

The attack success rates are plotted in Fig. 7.
One can see that both variants of DML and DML,sto

achieve better with S = 9 than with S = 2. This is
consistent with the analysis carried out in Sect. 2.3. Actu-
ally, the CPA has a very poor performance because the
model is very far from a Hamming weight: as shown in
Fig. 2, some parameters αi (e.g., for i = 2 and 6) are
positive in region [180, 200], whereas others α j (e.g., for
j = 1, 3, 4 and 5) are negative. The compensating signs
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Fig. 7 Comparison of success rate of CPA,DML,sto for S ∈ {9, 2}, and
DML for S ∈ {9, 2} (with two distinct learning methods)

account why the Hamming weight model is inappropriate.
The ML with model precharacterization on the traces under
attack shows that very strong attacks are possible (using
a few traces only). Interestingly, when the model used by
ML is characterized on 5k traces distinct from the traces
being attacked, the performance is almost similar. Eventually,
the online stochastic attack derived in this paper (DML,sto)
performs better than CPA (the distinguisher being the max-
imum value of the Pearson correlation over the D = 80
samples).

5 Conclusions and perspectives

Distinguishing a key from both multivariate leakage sam-
ples and multiple models can be done in one step as shown
in this paper. A compact expression of the distinguisher is
provided, using matrix operations. The strategy is applied to
real-world traces in profiled and non-profiled scenarios. The
resulting attack ismore efficient than the traditional approach
“dimensionality reduction then stochastic (linear regression)
attack).” The new multivariate distinguisher outperforms the
other state-of-the-art attacks. The presented methodology
allows for leakage agnostic attacks on vectorial leakagemea-
surements and complexmodels. In addition, thematrix-based
expression of the distinguisher benefits frommatrix-oriented
software that implements computational optimizations for
large dimensions.

A companion future work would consist in determin-
ing the optimal model dimensionality and basis from any
acquisition campaign. Another perspective is to adapt the
methodology to masked implementations, as already done
for monovariate leakage in [6], yet for this case the dis-
tinguishers will certainly not exhibit simple closed-form
expressions. However, we believe that the approach could
be fruitful in practice backed with suitable optimization
software.
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