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Yet Another Proof of the Entropy Power Inequality
Olivier Rioul, Member, IEEE

Abstract— Yet another simple proof of the entropy power
inequality is given, which avoids both the integration over a
path of Gaussian perturbation and the use of Young’s inequality
with sharp constant or Rényi entropies. The proof is based on
a simple change of variables, is formally identical in one and
several dimensions, and easily settles the equality case.

Index Terms— Entropy power inequality, differential entropy,
gaussian variables, optimal transport.

I. INTRODUCTION

THE entropy power inequality (EPI) was stated by
Shannon [1] in the form

e
2
n h(X+Y ) ≥ e

2
n h(X) + e

2
n h(Y ) (1)

for any independent n-dimensional random vectors X, Y ∈ Rn

with densities and finite second moments, with equality if and
only if X and Y are Gaussian with proportional covariances.
Shannon gave an incomplete proof; the first complete proof
was given by Stam [2] using properties of Fisher’s information.
A detailed version of Stam’s proof was given by Blachman [3].
A very different proof was provided by Lieb [4] using Young’s
convolutional inequality with sharp constant. Dembo et al. [5]
provided a clear exposition of both Stam’s and Lieb’s proofs.
Carlen and Soffer gave an interesting variation of Stam’s proof
for one-dimensional variables [6]. Szarek and Voiculescu [7]
gave a proof related to Lieb’s but based on a variant of
the Brunn-Minkowski inequality. Guo et al. [8], Verdú and
Guo [9] gave another proof based on the I-MMSE relation.
A similar proof based on a relation between divergence and
causal MMSE was given by Binia [10]. Yet another proof
based on properties of mutual information was proposed
in [11] and [12]. A more involved proof based on a stronger
form of the EPI that uses spherically symmetric rearrange-
ments, also related to Young’s inequality with sharp constant,
was recently given by Wang and Madiman [13].

As first noted by Lieb [4], the above Shannon’s formula-
tion (1) of the EPI is equivalent to

h(
√

λX +
√

1 − λ Y ) ≥ λh(X) + (1 − λ)h(Y ) (2)

for any 0 < λ < 1. All available proofs of the EPI used this
form.1 Proofs of the equivalence can be found in numerous
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1Stam’s original proof [2] is an exception, but it was later simplified by

Dembo, Cover and Thomas [5] using this form.

papers, e.g., [5, Ths. 4, 6, and 7], [9, Lemma 1], [12, Prop. 2],
and [14, Th. 2.5].

There are a few technical difficulties for proving (2) which
are not always explicitly stated in previous proofs. First of
all, one should check that for any random vector X with
finite second moments, the differential entropy h(X) is always
well-defined—even though it could be equal to −∞. This is a
consequence of [12, Proposition 1]; see also Appendix A for a
precise statement and proof. Now if both independent random
vectors X and Y have densities and finite second moments,
so has

√
λX+√

1 − λ Y and both sides of (2) are well-defined.
Moreover, if either h(X) or h(Y ) equals −∞ then (2) is
obviously satisfied. Therefore, one can always assume that
X and Y have finite differential entropies.2

Another technical difficulty is the requirement for smooth
densities. More precisely, as noted in [13, Remark 10] some
previous proofs use implicitly that for any X with arbitrary
density and finite second moments and any Gaussian3 Z inde-
pendent of X ,

lim
t↓0

h(X +
√

t Z) = h(X). (3)

This was proved explicitly in [12, Lemma 3] and [13, Th. 6.2]
using the lower-semicontinuity of divergence; the same result
can also be found in previous works that were not directly
related to the EPI [16, eq. (51)], [17, Proof of Lemma 1],
[18, Proof of Th. 1].

As a consequence, it is sufficient to prove the EPI for
random vectors of the form X+√

t Z (t > 0). Indeed, letting Z ′

be an independent copy of Z such that (Z , Z ′) is independent
of (X, Y ), the EPI written for X + √

t Z and Y + √
t Z ′ reads

h(
√

λX +
√

1 − λ Y +
√

t Z ′′)
≥ λh(X +

√
t Z) + (1 − λ)h(Y +

√
t Z ′)

where Z ′′ =
√

λZ +√
1 − λ Z ′ is again identically distributed

as Z and Z ′. Letting t → 0 we obtain the general EPI (2).4

Now, for any random vector X and any t > 0, X + √
t Z

has a continuous and positive density. This can be seen
using the properties of the characteristic function, similarly as
in [12, Lemma 1]; see Appendix B for a precise statement
and proof. Therefore, as already noticed in [13, Sec. XI], one
can always assume that X and Y have continuous, positive
densities.

One is thus led to prove the following version of the EPI.

2A nice discussion of general necessary and sufficient conditions for the
EPI (1) can be found in [15, Secs. V and VI].

3Throughout this paper we assume that Gaussian random vectors are non-
degenerate (have non-singular covariance matrices).

4A similar observation was done in [6] in a different context of the
Ornstein-Uhlenbeck semigroup (instead of the heat semigroup).
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Theorem (EPI): Let X, Y be independent random vec-
tors with continuous, positive densities and finite differential
entropies and second moments. For any 0 < λ < 1,

h(
√

λX +
√

1 − λ Y ) ≥ λh(X) + (1 − λ)h(Y ) (2)

with equality if and only if X, Y are Gaussian with identical
covariances.

Previous proofs of (2) can be classified into two categories:
• proofs in [2], [3], [6], and [8]–[12] rely on the inte-

gration over a path of a continuous Gaussian per-
turbation of some data processing inequality using
either Fisher’s information, the minimum mean-squared
error (MMSE) or mutual information. As explained
in [11, eq. (10)], [12] and [19, eq. (25)], it is interesting to
note that in this context, Fisher’s information and MMSE
are complementary quantities;

• proofs in [4], [7], [13], and [20] are related to Young’s
inequality with sharp constant or to an equivalent
argumentation using spherically symmetric rearrange-
ments, and/or the consideration of convergence of Rényi
entropies.

It should also be noted that not all of the available proofs
of (2) settle the equality case—that equality in (2) holds only
for Gaussian random vectors with identical covariances. Only
proofs from the first category using Fisher’s information were
shown to capture the equality case. This was made explicit by
Stam [2], Carlen and Soffer [6] and for more general fractional
EPI’s by Madiman and Barron [19].

In this paper, a simple proof of the Theorem is given
that avoids both the integration over a path of a continuous
Gaussian perturbation and the use of Young’s inequality,
spherically symmetric rearrangements, or Rényi entropies. It is
based on a “Gaussian to not Gaussian” lemma proposed in [21]
and is formally identical in one dimension (n = 1) and in
several dimensions (n > 1). It also easily settles the equality
case.

II. FROM GAUSSIAN TO NOT GAUSSIAN

The following “Gaussian to not Gaussian” lemma [21] will
be used here only in the case where X∗ is a n-variate Gaussian
vector, e.g., X∗ ∼ N (0, I), but holds more generally as X∗

needs not be Gaussian.
Lemma 1: Let X = (X1, . . . , Xn) and X∗ = (X∗

1 , . . . , X∗
n)

be any two n-dimensional random vectors in Rn with continu-
ous, positive densities. There exists a diffeomorphism " whose
Jacobian matrix is triangular with positive diagonal elements
such that X has the same distribution as "(X∗).

For completeness we present two proofs in the Appendix.
The first proof in Appendix C follows Knöthe [22]. The second
proof in Appendix D is based on the (multivariate) inverse
sampling method.

The essential content of this lemma is well known in
the theory of convex bodies [23, p. 126], [24, Th. 3.4],
[25, Th. 1.3.1] where " is known as the Knöthe map between
two convex bodies. The difference with Knöthe’s map is that
in Lemma 1, the determinant of the Jacobian matrix need not
be constant. The Knöthe map is also closely related to the

so-called Knöthe-Rosenblatt coupling in optimal transport the-
ory [26], [27], and there is a large literature of optimal trans-
portation arguments for geometric-functional inequalities such
as the Brunn-Minkowki, isoperimetric, sharp Young, sharp
Sobolev and Prékopa-Leindler inequalities. The Knöthe map
was used in the original paper by Knöthe [22] to generalize the
Brunn-Minkowski inequality, by Gromov in [23, Appendix I]
to obtain isoperimetric inequalities on manifolds and by
Barthe [28] to prove the sharp Young’s inequality. In a
similar vein, other transport maps such as the Brenier map
were used in [29] for sharp Sobolev and Gagliardo-Nirenberg
inequalities and in [30] for a generalized Prékopa-Leindler
inequality on manifolds with lower Ricci curvature bounds.
Since the present paper was submitted, the Brenier map has
also been applied to the stability of the EPI for log-concave
densities [31]. All the above-mentionned geometric-functional
inequalities are known to be closely related to the EPI
(see e.g., [5]), and it is perhaps not too surprising to expect
a direct proof of the EPI using an optimal transportation
argument—namely, Knöthe map—which is what this paper
is about.

Let "′ be the Jacobian (i.e., the determinant of the Jacobian
matrix) of ". Since "′ > 0, the usual change of variable
formula reads∫

f (x) dx =
∫

f ("(x∗))"′(x∗) dx∗. (4)

A simple application of this formula gives the following
well-known lemma which was used in [21].

Lemma 2: For any diffeomorphism " with positive
Jacobian "′ > 0, if h

(
"(X∗)

)
is finite,

h
(
"(X∗)

)
= h(X∗) + E{log "′(X∗)}. (5)

The proof is given for completeness.
Proof: Let f (x) be the density of "(X∗) so that

g(x∗) = f ("(x∗))"′(x∗) is the density of X∗. Then we have∫
f (x) log f (x) dx =

∫
f ("(x∗)) log f ("(x∗)) · "′(x∗)dx∗

=
∫

g(x∗) log
(
g(x∗)/"′(x∗)

)
dx∗ which yields (5). !

III. PROOF OF THE ENTROPY POWER INEQUALITY

Let X∗, Y ∗ be any i.i.d. Gaussian random vectors,
e.g., ∼N (0, I). For any 0 < λ < 1,

√
λX∗ + √

1 − λ Y ∗ is
identically distributed as X∗ and Y ∗ and, therefore,

h(
√

λX∗ +
√

1 − λ Y ∗) = λh(X∗) + (1 − λ)h(Y ∗). (6)

Subtracting both sides from both sides of (2) one is led to
prove that

h(
√

λX +
√

1 − λ Y ) − h(
√

λX∗ +
√

1 − λ Y ∗)
≥ λ

(
h(X) − h(X∗)

) + (1 − λ)
(
h(Y ) − h(Y ∗)

)
. (7)

Let " be as in Lemma 1, so that X has the same distribution
as "(X∗). Similarly let # be such that Y has the same
distribution as #(Y ∗). Since

√
λX + √

1 − λ Y is identically
distributed as

√
λ"(X∗) + √

1 − λ#(Y ∗),

h(
√

λX +
√

1 − λ Y ) − h(
√

λX∗ +
√

1 − λ Y ∗)
= h

(√
λ"(X∗) +

√
1 − λ#(Y ∗)

) − h(
√

λX∗ +
√

1 − λ Y ∗).
(8)
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On the other hand, by Lemma 2,

λ
(
h(X) − h(X∗)

)
+ (1 − λ)

(
h(Y ) − h(Y ∗)

)

= λ
(
h
(
"(X∗)

)
− h(X∗)

)
+ (1 − λ)

(
h
(
#(Y ∗)

)
− h(Y ∗)

)

= E{λ log "′(X∗) + (1 − λ) log # ′(Y ∗)}. (9)

Thus both sides of (7) have been rewritten in terms of the
Gaussian X∗ and Y ∗. We now compare (8) and (9). Toward
this aim we make the change of variable (X∗, Y ∗) → (X̃ , Ỹ )
where

{
X̃ =

√
λX∗ + √

1 − λ Y ∗

Ỹ = −√
1 − λ X∗ +

√
λY ∗.

(10)

Again X̃ , Ỹ are i.i.d. Gaussian and
{

X∗ =
√

λX̃ − √
1 − λ Ỹ

Y ∗ = √
1 − λ X̃ +

√
λỸ .

(11)

To simplify the notation define

$ ỹ(x̃) =
√

λ"(
√

λx̃ −
√

1 − λ ỹ)

+
√

1 − λ#(
√

1 − λ x̃ +
√

λỹ). (12)

Then (8) becomes

h(
√

λX +
√

1 − λ Y ) − h(
√

λX∗ +
√

1 − λ Y ∗)
= h

(
$Ỹ (X̃)

)
− h(X̃). (13)

Here Lemma 2 cannot be applied directly because $Ỹ (X̃)
is not a deterministic function of X̃ . But since conditioning
reduces entropy,

h
(
$Ỹ (X̃)

)
≥ h

(
$Ỹ (X̃)

∣∣Ỹ
)

(14)

Now for fixed ỹ, since " and # have triangular Jacobian
matrices with positive diagonal elements, the Jacobian matrix
of $ ỹ is also triangular with positive diagonal elements. Thus,
by Lemma 2,

h
(
$Ỹ (X̃)

∣∣Ỹ = ỹ
)
− h(X̃) = E{log $′

ỹ(X̃)} (15)

where $′
ỹ is the Jacobian of the transformation $ ỹ . Since

X̃ and Ỹ are independent, averaging over Ỹ yields

h
(
$Ỹ (X̃)

∣∣Ỹ
) − h(X̃) = E{log $′

Ỹ
(X̃)}. (16)

Therefore, by (13)-(14)

h(
√

λX +
√

1 − λ Y ) − h(
√

λX∗ +
√

1 − λ Y ∗)
≥ E{log $′

Ỹ
(X̃)}. (17)

On the other hand, (9) becomes

λ
(
h(X) − h(X∗)

)
+ (1 − λ)

(
h(Y ) − h(Y ∗)

)

= E{λ log "′(
√

λX̃ −
√

1 − λ Ỹ ) (18)

+ (1 − λ) log # ′(
√

1 − λ X̃ +
√

λỸ )}

=
n∑

i=1

E
{
λ log

∂"i

∂xi
(
√

λX̃ −
√

1 − λ Ỹ ) (19)

+ (1 − λ) log
∂#i

∂yi
(
√

1 − λ X̃ +
√

λỸ )
}

≤
n∑

i=1

E log
{
λ
∂"i

∂xi
(
√

λX̃ −
√

1 − λ Ỹ ) (20)

+ (1 − λ)
∂#i

∂yi
(
√

1 − λ X̃ +
√

λỸ )
}

=
n∑

i=1

E log
∂
(
$Ỹ

)
i

∂ x̃i
(X̃) = E log $′

Ỹ
(X̃) (21)

≤ h(
√

λX +
√

1 − λ Y ) − h(
√

λX∗ +
√

1 − λ Y ∗) (22)

where in (20) we have used Jensen’s inequality λ log a +
(1−λ) log b ≤ log(λa + (1−λ)b) on each component, in (21)
the fact that the Jacobian matrix of $ ỹ is triangular with
positive diagonal elements, and (22) is (17). This proves (2).

IV. THE CASE OF EQUALITY

Equality in (2) holds if and only if both (14) and (20)
are equalities. Equality in (20) holds if and only if for all
i = 1, 2 . . . , n,

∂"i

∂xi
(X∗) = ∂#i

∂yi
(Y ∗) a.e. (23)

Since X∗ and Y ∗ are independent Gaussian random vectors

this implies that
∂"i

∂xi
and

∂#i

∂yi
are constant and equal. Thus

in particular $′
ỹ is constant. Now equality in (14) holds if

and only if $Ỹ (X̃) is independent of Ỹ , thus $ ỹ(X̃) = $(X̃)
does not depend on the particular value of ỹ. Thus for all
i, j = 1, 2, . . . , n,

0 = ∂($ ỹ(X̃))i

∂ ỹ j

= −
√

λ
√

1 − λ
∂"i

∂x j
(
√

λX̃ −
√

1 − λ Ỹ )

+
√

1 − λ
√

λ
∂#i

∂y j
(
√

1 − λ X̃ +
√

λỸ ) (24)

which implies
∂"i

∂x j
(X∗) = ∂#i

∂y j
(Y ∗) a.e., (25)

hence
∂"i

∂x j
and

∂#i

∂y j
are constant and equal for any i, j =

1, 2, . . . , n. Therefore, " and # are linear transformations,
equal up to an additive constant. It follows that "(X∗)
and "(Y ∗) (hence X and Y ) are Gaussian with identical
covariances. This ends the proof of the Theorem. !

Extensions of similar ideas when X∗, Y ∗ need not be
Gaussian can be found in [32].

APPENDIX A
The differential entropy h(X) = −

∫
f log f of a random

vector X with density f is not always well-defined because
the negative and positive parts of the integral might be both
infinite, as in the example f (x) = 1/(2x log2x) for 0 < x <
1/e and e < x < +∞, and = 0 otherwise [12].

Proposition 1: Let X be an random vector with density f
and finite second moments. Then h(X) = −

∫
f log f is well-

defined and < +∞.
Proof: Let Z be any Gaussian vector with density g > 0.

On one hand, since X has finite second moments, the integral
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∫
f log g is finite. On the other hand, since g never vanishes,

the probability measure of X is absolutely continuous with
respect to that of Z . Therefore, the divergence D( f ∥g) is
equal to the integral

∫
f log( f/g). Since the divergence is

non-negative, it follows that −
∫

f log f = −
∫

f log g −
D( f ∥g) ≤ −

∫
f log g is well-defined and < +∞ (the

positive part of the integral is finite). !
APPENDIX B

It is stated in [33, Appendix II A] that strong smoothness
properties of distributions of Y = X + Z for independent
Gaussian Z are “very well known in certain mathematical
circles” but it seems difficult to find a reference.

The following result is stated for an arbitrary random
vector X . It is not required that X have a density. It could
instead follow e.g., a discrete distribution.

Proposition 2: Let X be any random vector and Z be
any independent Gaussian vector with density g > 0. Then
Y = X + Z has a bounded, positive, indefinitely differen-
tiable (hence continuous) density that tends to zero at infinity,
whose all derivatives are also bounded and tend to zero at
infinity.

Proof: Taking characteristic functions, E(eit ·Y ) =
E(eit ·X ) · E(eit ·Z ), where ĝ(t) = E(eit ·Z ) is the Fourier
transform of the Gaussian density g. Now ĝ(t) is also a
Gaussian function with exponential decay at infinity and
|E(eit ·Y )| ≤ |E(eit ·X )|·|E(eit ·Z )| ≤ E(|eit ·X |)|·|ĝ(t)| = |ĝ(t)|.
Therefore, the Fourier transform of the probability measure
of Y (which is always continuous) also has exponential decay
at infinity. In particular, this Fourier transform is integrable,
and by the Riemann-Lebesgue lemma, Y has a bounded
continuous density which tends to zero at infinity. Similarly,
for any monomial5 tα , (i t)αE(eit ·Y ) is integrable and is the
Fourier transform of the αth partial derivative of the density
of Y , which is, therefore, also bounded continuous and tends
to zero at infinity.

It remains to prove that the density of Y is positive. Let Z1,
Z2 be independent Gaussian random vectors with density φ
equal to that of Z/

√
2 so that Z has the same distribution as

Z1 + Z2. By what has just been proved, X + Z1 follows a
continuous density f . Since Y has the same distribution as
(X + Z1)+ Z2, its density is equal to the convolution product
f ∗φ (y) =

∫
R φ(z) f (y−z) dz. Now φ is positive, and for any

y ∈ Rn ,
∫
R φ(z) f (y − z) dz = 0 would imply that f vanishes

identically, which is impossible. !
APPENDIX C

FIRST PROOF OF LEMMA 1

We use the notation f for densities (p.d.f.’s). In the first
dimension, for each x∗

1 ∈ R, define "1(x∗
1 ) such that

∫ "1(x∗
1 )

−∞
fX1 =

∫ x∗
1

−∞
fX∗

1
. (26)

Since the densities are continuous and positive, "1 is contin-
uously differentiable and increasing; differentiating gives

fX1("1(x∗
1 ))

∂"1

∂x∗
1

(x∗
1 ) = fX∗

1
(x∗

1 ) (27)

5Here we use the multi-index notation tα = tα1
1 tα1

1 · · · tαn
n .

which proves the result in one dimension: X1 has the same

distribution as "1(X∗
1) where

∂"1

∂x∗
1

is positive.

In the first two dimensions, for each x∗
1 , x∗

2 in R, define
"2(x∗

1 , x∗
2 ) such that

∫ "2(x∗
1 ,x∗

2 )

−∞
fX1,X2("1(x∗

1 ), · ) ∂"1

∂x∗
1

(x∗
1 ) =

∫ x∗
2

−∞
fX∗

1 ,X∗
2
(x∗

1 , · ).
(28)

Again "2 is continuously differentiable and increasing in x∗
2 ;

differentiating gives

fX1,X2("1(x∗
1 ),"2(x∗

1 , x∗
2 ))

∂"1

∂x∗
1

(x∗
1 )

∂"2

∂x∗
2

(x∗
1 , x∗

2 )

= fX∗
1 ,X∗

2
(x∗

1 , x∗
2 ) (29)

which proves the result in two dimensions. Continuing in this
manner we arrive at

fX1,X2,...,Xn ("1(x∗
1 ),"2(x∗

1 , x∗
2 ), . . . ,"n(x∗

1 , x∗
2 , . . . , x∗

n ))

× ∂"1

∂x∗
1

(x∗
1 )

∂"2

∂x∗
2

(x∗
1 , x∗

2 ) · · · ∂"n

∂x∗
n

(x∗
1 , x∗

2 , . . . , x∗
n )

= fX∗
1 ,X∗

2 ,...,X∗
n
(x∗

1 , x∗
2 , . . . , x∗

n ) (30)

which shows that X = (X1, X2, . . . , Xn) has the
same distribution as "(X∗

1, X∗
2 , . . . , X∗

n) = (
"1(X∗

1),
"2(X∗

1, X∗
2), . . . ,"n(X∗

1 , X∗
2 , . . . , X∗

n)
)
. The Jacobian matrix

of " has the form

J"(x∗
1 , x∗

2 , . . . , x∗
n ) =

⎛

⎜⎜⎜⎜⎝

∂"1
∂x∗

1
0 · · · 0

∂"2
∂x∗

1

∂"2
∂x∗

2
· · · 0

. . . . . . . . . . . . . . . . . . . . .
∂"n
∂x∗

1

∂"n
∂x∗

2
· · · ∂"n

∂x∗
n

⎞

⎟⎟⎟⎟⎠
(31)

where all diagonal elements are positive since by construction
each "k is increasing in x∗

k . !

APPENDIX D
SECOND PROOF OF LEMMA 1

We use the notation F for distribution functions (c.d.f.’s).
We also note FX2|X1(x2|x1) = P(X2 ≤ x2 | X1 = x1) and
let F−1

X2|X1
(·|x1) be the corresponding inverse function in the

argument x2 for a fixed value of x1. Such inverse functions
are well-defined since it is assumed that X is a random vector
with continuous, positive density.

The inverse transform sampling method is well known for
univariate random variables but its multivariate generalization
is not.

Lemma 3 (Multivariate Inverse Transform Sampling
Method (see, e.g., [34, Algorithm 2])): Let U = (U1,
U2, . . . , Un) be uniformly distributed on [0, 1]n. The vector
"(U) with components

"1(U1) = F−1
X1

(U1)

"2(U1, U2) = F−1
X2|X1

(U2|"1(U1))
...

"n(U1, U2, . . . , Un) =
F−1

Xn |X1,...,Xn−1
(Un |"1(U1), . . . ,"n−1(U1, . . . , Un−1)) (32)

has the same distribution as X.
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Proof: By inverting ", it is easily seen that an
equivalent statement is that the random vector

(
FX1(X1),

FX2|X1(X2|X1), . . . , FXn |X1,...,Xn−1(Xn |X1, . . . , Xn−1)
)

is uni-
formly distributed in [0, 1]n . Clearly FX1(X1) is uniformly
distributed in [0, 1], since

P(FX1(X1) ≤ u1) = P(X1 ≤ F−1
X1

(u1))

= FX1 ◦ F−1
X1

(u1)

= u1. (33)

Similarly, for any k > 0 and fixed x1, . . . , xk−1, FXk |X1,...,Xk−1

(Xk |X1 = x1, X2 = x2, . . . , Xk−1 = xk−1) is also uniformly
distributed in [0, 1]. The result follows by the chain rule. !

Proof of Lemma 1: By Lemma 3, X has the same distrib-
ution as "(U), where each "k(u1, u2, . . . , uk) is increasing
in uk . Similarly X∗ has the same distribution as #(U), where
both " and # have (lower) triangular Jacobian matrices
J", J# with positive diagonal elements. Then X has the
same distribution as "(#−1(X∗)). By the chain rule for
differentiation, the transformation "◦#−1 has Jacobian matrix
(J" ◦ #−1) · J#−1 = (J" ◦ #−1) · (J# ◦ #−1)−1. This
product of (lower) triangular matrices with positive diagonal
elements and is again (lower) triangular with positive diagonal
elements. !
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