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Abstract. In practice, a side-channel signal is measured as a trace consisting of several samples
where several sensitive bits are manipulated in parallel, each leaking differently. Therefore, the in-
formed attacker needs to devise side-channel distinguishers that can handle both multivariate leakages
and multivariate models at the same time. In the state of the art, these two issues have two inde-
pendent solutions: on the one hand, dimensionality reduction can cope with multivariate leakage; on
the other hand, online stochastic approaches can cope with multivariate models.
In this work, we combine both solutions to derive closed-form expressions of the resulting optimal
distinguisher in terms of matrix operations, in all situations where the model can be either profiled
offline or regressed online. Optimality here means that the success probability is maximized for a given
number of traces. We recover known results for uni- and bi-variate models (including correlation power
analysis), and investigate novel distinguishers for multivariate models with more than two parameters.
Following ideas from the AsiaCrypt’2013 paper “Behind the Scene of Side-Channel Attacks”, we
also provide fast computation algorithms in which the traces are accumulated prior to computing the
distinguisher values.
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1. Fact
Side-channel leakages are:

– multi-variate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (in time)

– multi-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (e.g., each bit leaks 6=)

2. Matrix Notations
– Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of queries,

– D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of samples,

– S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of models.

In matrix notation:

X = αY? + N (1)

where

– X is a matrix of size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D ×Q,

– α is a matrix of size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D × S,

– Y? (the star means: “for the correct key k = k?”) is a matrix of size . . . . . . . . . . . . . . . . . . . . .S ×Q,

– N is a matrix of size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D ×Q.

3. Real World Example

The figures below show power consumption traces taken from an ATMega smartcard—datasets are
available from the DPA contest V4 team [?] (knowing the mask).

S = 9S = 2 S = 9

(a) Weights of bits of the sensitive variable

S = 9 S = 9S = 2

(b) Mean power consumption for each Hamming weight class

4. Question

What is the optimal distinguisher, when in Equation (1):

– α is known? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .DML(x, t)

– α is unknown? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .DML,sto(x, t)

5. Solution
Theorem 1.The optimal maximum likelihood (ML) distinguisher [?] for Gaussian noise writes

DML(x, t) = argmin
k

tr
(

(x− αy)TΣ−1(x− αy)
)
. (2)

Proof. From [?] we have DML(x, t) = argmaxk p(x|y) where from (1) it is easily seen that
p(x|y) = pN(x− αy). From the i.i.d. assumption the noise density pN(n) is given by

pN(n) =

Q∏

q=1

1√
(2π)D| det Σ|

exp−1

2
nq

TΣ−1nq (3)

=
1

(2π)DQ/2

1

(det Σ)Q/2
exp−1

2




Q∑

q=1

nq
TΣ−1nq


 (4)

=
1

(2π)DQ/2(det Σ)Q/2
exp−1

2
tr
(
nTΣ−1n

)
. (5)

Thus pN(x− αy) is maximum when the expression tr
(
nTΣ−1n

)
for n = x− αy is minimum.

Theorem 2.The optimal stochastic multivariate attack is given by

DML,sto(x, t) = argmax
k∈Fn2

tr
(
yT(yyT)−1y xTΣ−1x

)
. (6)

for which the optimal value of α is given by

αopt = (xyT)(yyT)−1. (7)

Proof. Let x′ = Σ−1/2 x and y′ = (yyT)−1/2 y. The optimal distinguisher minimizes the following
expression over α ∈ RD×S:

tr
(

(x− αy)TΣ−1(x− αy)
)

= tr
(

(x′ − α′y)(x′ − α′y)
T
)

=

D∑

d=1

‖x′ − α′dy‖2.

The minimization over α′d yields α′d = (x′dy
T)(yyT)−1 for all d = 1, . . . , D. This gives α′ =

(x′yT)(yyT)−1 hence α = (xyT)(yyT)−1, which remarkably does not depend on Σ.
The minimized value of the distinguisher is thus

min
α

tr
(

(x− αy)TΣ−1(x− αy)
)

= tr
(

(x− αopty)
T

Σ−1(x− αopty)
)

= tr
(

(Id− yT(yyT)−1)2xTΣ−1x
)

= tr
(
xTΣ−1x

)
− tr

(
yT(yyT)−1 xTΣ−1x

)

where Id is the D ×D identity matrix and where tr
(
xTΣ−1x

)
is a constant independent of k.

6. Summary for S > 2 Models

Mathematical expression for multivariate (D ≥ 1) optimal attacks
with a linear combination of models (S ≥ 1):

Is α
known?

DML(x, t) = argmink tr
(
(x− αy)TΣ−1(x− αy)

)
yes

Leakage model: Optimal distinguisher:

x = αy⋆ + n
∀q, nq ∼ N (0,Σ)
y⋆ = φ(t, k⋆)
y = φ(t, k)

noα ∈ RD×S,Σ ∈ RD×D
x ∈ RD×Q,y ∈ RS×Q

DML,sto(x, t) = argmaxk tr
(
yT(yyT)−1y xTΣ−1x

)

6bis. Summary for S = 2 Models

Modus operandi for multivariate (D ≥ 1) optimal attacks
with one model Y associated to envelope α ∈ RD×1

and a constant offset β ∈ RD×1 (S = 2):

α, β ∈ RD×1,Σ ∈ RD×D
x ∈ RD×Q,y ∈ R1×Qx = αy⋆ + β1+ n

∀q, nq ∼ N (0,Σ)
y⋆ = φ(t, k⋆)
y = φ(t, k)

Affine projection: Data transformation:

Leakage model:

yes noknown?
Are α, β

Univariate ML attack: New multivariate CPA attack:

x̃ = αTΣ−1

αTΣ−1α
(x− β1) ∈ R1×Q x′ = Σ−1/2x

DS=2
ML (x, t) = argmink ||x̃− y||22 DS=2

ML,sto(x, t) = argmaxk
∑D

d=1

Ĉov(x′
d,y)

2

V̂ar(y)


