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Abstract. Reducing the dimensionality of the measurements is an
important problem in side-channel analysis. It allows to capture multi-
dimensional leakage as one single compressed sample, and therefore also
helps to reduce the computational complexity. The other side of the coin
with dimensionality reduction is that it may at the same time reduce the
efficiency of the attack, in terms of success probability.

In this paper, we carry out a mathematical analysis of dimensionality
reduction. We show that optimal attacks remain optimal after a first pass
of preprocessing, which takes the form of a linear projection of the sam-
ples. We then investigate the state-of-the-art dimensionality reduction
techniques, and find that asymptotically, the optimal strategy coincides
with the linear discriminant analysis.

1 Introduction

Side-channel analysis exploits leakages from devices. Embedded systems are tar-
gets of choice for such attacks. Typical leakages are captured by instruments
such as oscilloscopes, which sample power or electromagnetic traces. The result-
ing leaked information about sensitive variables is spread over time.

In practice, two different attack strategies coexist. On the one hand, the
various leaked samples can be considered individually—this is typical of non-
profiled attacks such as Correlation Power Analysis [4]. On the other hand, pro-
filed attacks characterize the leakage in a preliminary phase. An efficient leakage
modelization should then involve a multi-dimensional probabilistic representa-
tion [6].

The large number of samples to feed into the model has always been a prob-
lematic issue for multi-dimensional side-channel analysis. One solution is to use
techniques to select points of interest. Most of them, such as sum-of-square dif-
ferences (SOSD) and t-test (SOST) [14], are ad hoc in that they result from
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a criterion which is independent from the attacker’s key extraction objective.
Recent criteria, such as leakage maximization by sensitive value [1], avoid this
problem. Other formal criteria, related to non-profiled attacks, have also been
proposed [18,23].

Therefore, there seems to be a converging effort, in both non-profiled and pro-
filed attacks, to reduce the dimensionality of multi-dimensional measurements.
This desirable property of dimensionality reduction achieves several goals simul-
taneously:

– it simplifies the side-channel problem (to a single multivariate pdf);
– it concentrates the information (to distinguish using fewer traces); and
– it improves computational speed.

It can be argued, however, that like every preprocessing technique, dimension-
ality reduction would lose information.

Contributions. In this paper, we tackle this problem of dimensionality reduc-
tion from a theoretical viewpoint. Provided that the attacker has full knowledge
of the leakage model, we find that “less is more”: the advantages of dimension-
ality reduction can come with no impact on the attack success probability, while
improving computational speed.

We derive that the optimal dimensionality reduction process consists in a
linear combination of samples, which we explicit as a projection on a specific
one-dimensional space. For white noise, it turns out that the improved signal-to-
noise ratio (SNR) after projection is simply the sum of the signal-to-noise ratios
at the various samples before projection.

Finally, we show that the optimal dimensionality reduction technique asymp-
totically matches the linear discriminant analysis (LDA) preprocessing. We find
that LDA generally outperforms principal component analysis (PCA) for which
the SNR increases to a lesser extend than LDA, except in the case of white
homoscedastic noise where PCA and LDA become equivalent.

We also validate in practice those results on theDPA contest v2 traces [34].

Review of the State-of-the-Art. Dimensionality reduction is part and par-
cel of profiled attacks. The seminal paper on template attacks [6] is motivated
by keeping covariance matrices involved in the training phase sufficiently well
conditioned. Manual selection of relevant leaking points was discussed in [24]
as educated guesses. Several automated techniques were proposed, such as sum-
of-square differences (SOSD) and t-test (SOST) [14], and also wavelet trans-
forms [11].

Several related metrics were proposed for leakage detection. The ANOVA
(ANalysis Of VAriance) F-test is a ratio between the explained variance and
the total variance—see e.g. [7,10] and [3] where it is named Normalized Inter-
Class Variance (NICV). Also used for linear regression analysis, it is known as
the coefficient of determination, denoted by the symbol “R2”. It is employed in
the context of side-channel analysis in [33] as multivariate regression analysis in
the presence of white noise, and in [29], where it is used as a distinguisher and
as a linearity metric.
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PCA has been used to compact traces in [2] and templates in [1]. The eigen-
values of PCA can be viewed as a security metric [15] or even as a distin-
guisher [30]. This technique is particularly attractive as it can be easily and
accurately computed with no divisions involved. It is advocated in [21] that PCA
aims at maximizing the inter-class variance, yet it is also important to take the
intra-class variance into account. For this reason, LDA has been promoted as
an improved alternative. Empirical comparisons were investigated in [26,31,32].
Unfortunately, despite some differences in terms of qualitative efficiency, there is
no clear rationale to prefer one method over the other. In fact, it is unclear which
of the intrinsic virtue of statistical tools, their implementation, or the dataset is
actually responsible for the performance of dimensionality reduction.

Other works attempted to consider different objective functions. In [23], the
correct key correlation is taken as the objective to be maximized. A similar
goal is pursued in [16–19]. Still other dimensionality reduction techniques exist,
such as quadratic discriminant analysis, but have not been studied in the side-
channel literature. We mention that similar questions have also been raised in
the presence of masking countermeasures [5,12,27].

Outline. The remainder of the paper is as follows. The optimal dimensionality
reduction is derived theoretically in Sect. 2. Section 3 provides illustrative exam-
ples. A comparison with state-of-the-art techniques such as PCA, and LDA [31]
is given in Sect. 4. Practical validations on real traces are in Sect. 5. Section 6
concludes.

2 Theoretical Solution in the Presence of Gaussian Noise

2.1 Notations

We adopt a matrix notation. The different queries are indexed by q = 1, . . . , Q,
where Q is the number of traces. The different samples in a given trace are
indexed by d = 1, . . . , D. Any matrix containing D samples from Q queries is
denoted by:

MD,Q = (Md,q)d,q,

where d = 1, . . . , D is a row index and q = 1, . . . , Q is a column index. We also
denote all dth samples for all traces as (Md,q)q = MQ

d , and all the samples for
the qth trace as (Md,q)d = MD

q . Thus, MQ
d is a row vector and MD

q is a column
vector. Two matrices noted side-by-side are implicitly multiplied.

The notation (·)T is for transpose. For instance, if u = uD is D × 1 matrix,
then uT = (uD)T is a 1×D matrix. The usual scalar product on RD is denoted
by ⟨u | v⟩ = uTv ∈ R. The associated 2-norm of u is ∥u∥2 =

√
⟨u | u⟩.

Random variables will be denoted by capital letters. The probability density
function of a random variable X, as a function of x, is denoted by pX(x) or
simply p(x) if the context is clear.
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2.2 Model

For most devices, the leakage signal may be represented as a continuous curve as
illustrated in Fig. 1. The practical acquisition is done through a temporal series
of D “discrete samples” within one clock period.

Fig. 1. Example of a modulated trace XD
q

A sensitive variable that depends on the unknown secret key k∗ is leaking
through a leakage function φ. Typically, φ is the Hamming weight function, a sum
of weighted bits, or its composition with a substitution box function. In order
to further simplify the mathematical derivations, we assume that φ is centered.
In deriving the optimal attack, it is assumed that the leakage model is perfectly
known to the attacker. The model for a given key byte hypothesis k is given by

Yq(k) = φ(Tq ⊕ k), (1)

where the random variable Tq denotes a plain or cipher text byte, which is the
same for all values of d. Without loss of generality we may assume that Yq(k)
has normalized variance, i.e., Var(Yq(k)) = E(Y 2

q (k)) = 1 for all values of q. The
actual leakage can be written as

Xd,q = αdYq(k∗) +Nd,q, (2)

where the weights αd are not all zero, k∗ is the (unknown) correct key, and Nd,q

is some random measurement noise. The αd and noise distribution are assumed
known to the attacker.

In matrix notation, we can summarize the equations for different values of d
and q by a single matrix equation

XD,Q = αDY Q(k∗) +ND,Q (3)

where αD is a single column matrix and Y Q(k∗) is a single row matrix, whose
product is a D × Q matrix.
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We make the stationarity assumption that the noise distribution does not
depend on the particular query, that is, the ND

q are independent and identically
distributed independently of the value of q. For a given q, however, the noise
samples of ND

q can very well be correlated. We assume that ND
q follows a D-

dimensional zero-mean Gaussian distribution N (0,Σ), where covariance matrix
Σ is a symmetric positive definite D×D matrix. Therefore, there exists a matrix
Σ1/2, which is such that Σ1/2Σ1/2 = Σ. We assume that the matrix Σ is known
by the attacker.

2.3 Optimal Attack

We focus on the optimal attack as part of our scientific approach to the problem.
It is always possible that for some peculiar reason a suboptimal attack actually
performs better in the presence of dimensionality reduction. But by the data
processing theorem [9] any preprocessing like dimensionality reduction can only
decrease information about the secret, and, therefore, degrade performance of
the optimal attack. As a result, it does make sense to minimize the impact of
dimensionality reduction on the success rate for this optimal attack so as not to
be biased by performance loss or gain due to other factors.

The optimal attack, also known as the template attack [6], consists in apply-
ing the maximum likelihood principle [20]. Having collected Q traces of dimen-
sionality D in a matrix xD,Q, where each trace xD

q corresponds to a known
plaintext tq, the best key guess that maximizes the probability of success is
given by

D(xD,Q, tQ) = argmax
k

p(xD,Q|tQ, k∗ = k) (4)

= argmax
k

pND,Q(xD,Q − αDyQ(k)) (5)

= argmax
k

Q∏

q=1

pNq,D(xD
q − αDyq(k)) (6)

where
pNq,D (zD) =

1√
(2π)D|detΣ|

exp
(
−1
2
(zD)

T
Σ−1zD

)
. (7)

We have used the independence of the queries in (6) and the assumption that
at each query, the noise distribution is the same in (7).

Notice that, the optimal attack can as well be a simple power attack (if
Q = 1) or a differential power attack (if Q > 1), using the terminology from [22].
Still, in the sequel, we focus on attacks which require many traces (Q ≫ 1).

2.4 Optimal Dimensionality Reduction

We state our main result in the following Theorem 1:
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Theorem 1. The optimal attack on the multivariate traces xD,Q is equivalent
to the optimal attack on the monovariate traces x̃Q, obtained from xD,Q by the
formula:

x̃q =
(
αD

)T
Σ−1xD

q

(αD)TΣ−1αD
(q = 1, . . . , Q). (8)

Proof. By taking the logarithm of the expression to be maximized in Eqs. (4)–
(7), the optimal distinguisher D(xD,Q, tQ) rewrites

D(xD,Q, tQ) = argmin
k

Q∑

q=1

(
xD
q − αDyq(k)

)T
Σ−1

(
xD
q − αDyq(k)

)
. (9)

For each trace index q, the terms in the sum expand to

(xD
q )

T
Σ−1xD

q︸ ︷︷ ︸
cst. C independent of k

− 2(αD)
T
yq(k)Σ−1xD

q + (yq(k))2(αD)
T
Σ−1αD

= C − 2yq(k)
[
(αD)

T
Σ−1xD

q

]
+ (yq(k))2

[
(αD)

T
Σ−1αD

]

=
[
(αD)

T
Σ−1αD

](
yq(k) −

(αD)TΣ−1xD
q

(αD)TΣ−1αD

)2

+ C ′.

The latter division is valid since Σ is positive definite and αD is a nonzero vector.
Therefore,

D(xD,Q, tQ) = argmin
k

Q∑

q=1

(
yq(k) −

(αD)TΣ−1xD
q

(αD)TΣ−1αD

)2[
(αD)

T
Σ−1αD

]

= argmin
k

Q∑

q=1

(
x̃q − yq(k)

)2

σ̃2
, (10)

where ⎧
⎪⎨

⎪⎩
x̃q =

(αD)TΣ−1xD
q

(αD)TΣ−1αD
,

σ̃ =
(
(αD)TΣ−1αD

)−1/2
.

(11)

We have shown that (9) and (10) are equivalent expressions for the same optimal
distinguisher, computed either:

– on multivariate traces xD
q , with a noise covariance matrix Σ, or:

– on monovariate (i.e., scalar) traces x̃q, with scalar noise of variance σ̃2. ⊓*

Theorem 1 shows that in fact, the optimal attack already integrates an optimal
dimensionality reduction. The maximal success rate is not altered.
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Definition 2 (Projection vector). Let V D be a column of D elements. We
call the projection of an acquisition campaign XD,Q on V D the new mono-sample
traces (V D)TXD,Q. That is, every trace XD

q (1 ≤ q ≤ Q) of the initial campaign
is summarized as one sample (V D)TXD

q = ⟨V D | XD
q ⟩.

Based on this definition, Theorem 1 can be interpreted as follows.

Corollary 3. The optimal dimensionality reduction is made by a linear com-
bination of the samples where each multivariate trace is projected on the vector
V D = Σ−1αD

(αD)TΣ−1αD , of size D × 1.

Proof. By Theorem 1,

x̃Q
︸ ︷︷ ︸

1×Q matrix

=
(αD)TΣ−1

(αD)TΣ−1αD

︸ ︷︷ ︸
1×D matrix (V D)T

xD,Q
︸ ︷︷ ︸
D×Q matrix

. ⊓*

In addition, after this projection, the leakage becomes scalar and can be char-
acterized by a signal-to-noise ratio as shown in the following.

Corollary 4. After optimal dimensionality reduction, the signal-noise-ratio is
given by

1
σ̃2

= (αD)
T
Σ−1αD.

Proof. This is in line with Eq. (10). The random leakage XD,Q is protected onto
V D to yield X̃q = Yq(k) + Ñ (q = 1, . . . , Q) where Ñ is an additive white
Gaussian noise (AWGN) distributed as N (0, ((αD)TΣ−1αD)−1). Recall that the
variance of the leakage model has been assumed normalized = 1. Therefore, the
signal-to-noise ratio equals

Var(Yq(k))
Var(Ñ)

=
1

((αD)TΣ−1αD)−1
= (αD)

T
Σ−1αD . ⊓*

The SNR is an interesting metric on its own, because it quantifies how much
the signal has been concentrated (its power increased) for a given noise level.
Furthermore, the SNR directly relates to the success rate of optimal attacks [13].

2.5 Discussion

It is interesting to note that the optimal dimensionality reduction does not
depend on the actual distribution of Y D(k), the deterministic part of the leakage
model. This means that irrespective of the leakage function φ, the best dimen-
sionality reduction depends only on signal weights αD and on noise covariance Σ.

Similarly, the optimal dimensionality reduction does not depend on the con-
fusion coefficient of the leakage model [13]: for identical weight and noise distri-
bution, the optimal linear combination of leakages is the same whether an XOR
or a substitution box operation is targeted.
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3 Examples

3.1 White Noise

One interesting situation is when the noise samples are uncorrelated (see for
instance [33] for an experimental setup). The covariance matrix Σ is diagonal:

Σ =

⎛

⎜⎜⎜⎝

σ2
1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

D

⎞

⎟⎟⎟⎠
.

Proposition 5. For white noise, the optimal dimensionality reduction takes the
form:

x̃q =

D∑

d=1

αd

σ2
d

xd,q

D∑

d=1

α2
d

σ2
d

(q = 1, . . . , Q) (12)

Proof. Apply Theorem 1, where Σ−1 is diagonal with diagonal entries 1/σ2
d. ⊓*

Let SNRd = α2
d/σ

2
d be the initial signal-to-noise ratio at the dth sample before

dimensionality reduction.

Proposition 6. For white noise, the equivalent signal-to-noise ratio after opti-
mal dimensionality reduction is given by the sum

S̃NR =
D∑

d=1

SNRd. (13)

Proof. By Corollary 4, S̃NR = (αD)TΣ−1αD =
∑D

d=1
α2

d

σ2
d
=
∑D

d=1 SNRd. ⊓*

Thus, combining independent multidimensional samples within one trace
increases the signal-to-noise as if those samples were captured in D indepen-
dent traces. In this case having Q traces of D samples each is simply the same
as having Q × D independent monovariate traces.

3.2 Correlated Autoregressive Noise

Amore general situation is when the samples are correlated like an autoregressive
process. More precisely, assume that all samples share the same noise distribution
of variance σ2, and that two consecutive noise samples have correlation factor
equal to ρ ∈]−1,+1[. The correlation factors ρ typically models an autoregressive
low-pass filtering of the acquisition setup (see Sect. 5.2 for a real-world example).
The noise covariance matrix takes the Toeplitz form:
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Σ = σ2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ ρ2 ρ3 · · · ρD−2 ρD−1

ρ 1 ρ ρ2 · · · ρD−3 ρD−2

ρ2 ρ 1 ρ · · · ρD−4 ρD−3

ρ3 ρ2 ρ 1 · · · ρD−5 ρD−4

...
...

...
...

. . .
...

...
ρD−2 ρD−3 ρD−4 ρD−5 · · · 1 ρ
ρD−1 ρD−2 ρD−3 ρD−4 · · · ρ 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(
σ2ρ|d−d′|)

1≤d,d′≤D
.

We emphasize that |ρ| is strictly smaller than one in keeping with the assumption
that Σ be positive definite. When ρ = 0, the noise becomes white as in the
preceding subsection.

Proposition 7. For autoregressive noise, the optimal dimensionality reduction
takes the form:

x̃q = 1
σ2(1−ρ2)

[
(α1 − ρα2)xq,1 +

∑D−1
d=2 ((1 + ρ2)αd − ρ(αd−1 + αd+1))xd,q

+(αD − ραD−1)xq,D

]
. (14)

Proof. It can easily be checked that Σ−1 is tridiagonal:

Σ−1 =
1

σ2(1 − ρ2)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −ρ 0 0 · · · 0 0
−ρ 1 + ρ2 −ρ 0 · · · 0 0
0 −ρ 1 + ρ2 −ρ · · · 0 0
0 0 −ρ 1 + ρ2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 + ρ2 −ρ
0 0 0 0 · · · −ρ 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then apply Theorem 1:

x̃q = 1
σ2(1−ρ2)

(
α1 α2 · · · αD−1 αD

)

⎛

⎜⎜⎜⎜⎜⎝

1 −ρ · · · 0 0
−ρ 1 + ρ2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 + ρ2 −ρ
0 0 · · · −ρ 1

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

xq,1

xq,2
...

xq,D−1

xq,D

⎞

⎟⎟⎟⎟⎟⎠

and expand. ⊓*

Notice that in the optimal dimensionality reduction, each leakage sample xd,q is
not only weighted by its corresponding αd but also by its two neighbor weights
αd±1, provided the latter exist.

Proposition 8. For autoregressive noise, the equivalent signal-to-noise ratio
after optimal dimensionality reduction is given by

S̃NR = 1
σ2(1−ρ2)

[
α2
1 + (1 + ρ2)

∑D−1
d=2 α2

d + α2
D − 2ρ

∑D−1
d=1 αdαd+1

]
. (15)
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Proof. Apply Corollary 4:

S̃NR = 1
σ2(1−ρ2)

(
α1 α2 · · · αD−1 αD

)

⎛

⎜⎜⎜⎜⎜⎝

1 −ρ · · · 0 0
−ρ 1 + ρ2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 + ρ2 −ρ
0 0 · · · −ρ 1

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

α1

α2
...

αD−1

αD

⎞

⎟⎟⎟⎟⎟⎠

and expand. ⊓*

Corollary 9. For equal weights α1 = · · · = αD = α, i.e., when initial signal-to-
noise ratios SNR1 = · · · = SNRD = SNR are the same, one has

S̃NR = SNR × D(1 − ρ) + 2ρ
1 + ρ

. (16)

Proof. Proposition 8 reduces to

S̃NR =
α2

σ2(1 − ρ2)
(
2 + (D − 2)(1 + ρ2) − 2ρ(D − 1)

)

=
α2

σ2(1 − ρ)(1 + ρ)
((1 − ρ)(D − ρ(D − 2)))

=
α2

σ2

1
1 + ρ

(D − ρ(D − 2)) = SNR × D(1 − ρ) + 2ρ
1 + ρ

. ⊓*

In other words, optimal dimensionality reduction has the effect of multiplying the
monovariate SNR by the factor D−ρ(D−2)

1+ρ . This gain factor is of course equal to
1 for dimension D = 1, but becomes strictly greater than 1 for larger dimensions,
since D−ρ(D−2)

1+ρ > D−(D−2)
2 = 1 where we have used that ρ > −1 or 1

1+ρ > 1
2 .

For very small values of correlation ρ, Taylor expansion about ρ = 0 gives
D−ρ(D−2)

1+ρ = D − 2(D − 1)ρ + O(ρ2). The SNR gain is equal to the dimension
D at first order, which is consistent with Proposition 6. In addition, that gain
is never greater than D, since D(1−ρ)+2ρ

1+ρ ≤ D(1−ρ)+2Dρ
1+ρ = D. Therefore, when

SNR1 = . . . = SNRD, nonzero values of correlation ρ decrease the efficiency of
dimensionality reduction, the most favorable situation being the case of white
noise samples.

4 Comparison with PCA and LDA

When the attacker does not precisely know the model given by Eq. (2), the
optimal dimensionality reduction cannot be applied directly. In this section, we
analyse theoretically two well-known engineering solutions to reduce the dimen-
sionality: PCA and LDA. Both techniques are based on eigen decompositions.
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4.1 Principal Components Analysis (PCA)

Principal components analysis aims at identifying directions in the centered data
set MD,Q = (Md,q)d,q defined by

Md,q = Xd,q − 1
Q

Q∑

q′=1

Xd,q′ (1 ≤ q ≤ Q, 1 ≤ d ≤ D). (17)

The directions of PCA are the eigenvectors of MD,Q(MD,Q)T.

Proposition 10. Asymptotically as Q −→ +∞,

1
Q
MD,Q(MD,Q)

T −→ αD(αD)
T
+ Σ. (18)

Proof. By the law of large numbers,

1
Q

Q∑

q=1

Md,qMd′,q −→ Cov(Md,q,Md′,q)

almost surely, where the covariance term can be computed as:
Cov(Md,q,Md′,q) = Cov(αdYq + Nd,q,αd′Yq + Nd′,q). When expanding this
expression, cross terms disappear by independence of Y Q and ND,Q. There
remains:

Cov(Md,q,Md′,q) = αdαd′ + Σd,d′

where we have used the hypothesis that Yq has unit variance. ⊓*

The classical PCA has the drawback that MD,Q(MD,Q)T depends both on
the signal and on the noise. Inter-class PCA has been introduced in [1]. The
matrix MD,Q used in the PCA is traded for a more simple matrix ZD,#Y , where
each column, indexed by y, is the centered column 1∑

1≤q≤Q
Yq=y

1

∑
1≤q≤Q
Yq=y

XD
q . One

advantage of this method is that it explicitly takes into account the sensitive
variables Y .

It can be easily checked, that, asymptotically, each column ZD
y tends to

αDy when Q −→ +∞. Therefore, ZD,#Y (ZD,#Y )T tends to a D × D matrix
proportional to αD(αD)T. Here, the noise has been averaged away in each class
y, which is a second advantage. Therefore, in the sequel, we shall refer to the
inter-class PCA of [1] simply as PCA.

We have the following spectral characterization of the asymptotic PCA:

Proposition 11. Asymptotically, PCA has only one principal direction, namely
the vector αD.
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Proof. By Proposition 10, the PCA matrix tends asymptotically to αD(αD)T.
This D × D matrix has rank one, because all its columns are multiple of αD.
Since

(αD(αD)
T
)αD = αD((αD)

T
αD) =

∥∥αD
∥∥2
2

× αD,

αD is the eigenvector with corresponding nonzero eigenvalue = ∥αD∥22. ⊓*

Notice that the uniqueness of the eigenvector for PCA holds in our model (2).
However, Proposition 11 would not hold if e.g., the noise were correlated to the
signal.

Remark 1. The classical PCA has the same eigenvector αD if the noise is
isotropic, i.e., white and of same variance in every dimension.

The paper [1] presents an optimization procedure to find the eigenelements.

Proposition 12. The asymptotic signal-to-noise ratio after projection using

PCA is equal to ∥αD∥4

2
(αD)TΣαD .

Proof. After projection on the (asymptotic) eigenvector αD, the leakage
becomes: (αD)TαDYq(k∗)+(αD)TND

q . The projected signal is ((αD)TαD)Yq(k∗).
The projected noise is (αD)TND

q , which remains centered. Its variance is equal
to the expectation of its square:

Var((αD)
T
ND

q ) = E
(
(αD)

T
ND

q

)2
= E

(
(αD)

T
ND

q (ND
q )

T
αD

)

= (αD)
TE

(
ND

q (ND
q )

T
)

αD = (αD)
T
ΣαD.

Therefore,

SNRPCA =
Var(((αD)TαD)Yq(k∗))

Var((αD)TND
q )

=
Var(

∥∥αD
∥∥2
2
Yq(k∗))

(αD)TΣαD
=

∥∥αD
∥∥4
2

(αD)TΣαD
. ⊓*

Example 13. For white noise (Sect. 3.1)

SNRPCA =

(∑D
d=1 α2

d

)2

∑D
d=1 α2

dσ
2
d

. (19)

Example 14. For autoregressive noise (Sect. 3.2)

SNRPCA =
∑D

d=1 α2
d

σ2

1
1 + 2∑D

d=1 α2
d

∑D−1
d=1 ρd

∑D−d
d′=1 αd′αd′+d

. (20)

We can now compare the performance of the asymptotic PCA to the optimal
dimensionality reduction.
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Theorem 15. The SNR of the asymptotic PCA is smaller than the SNR of the
optimal dimensionality reduction.

Proof. By assumption the noise covariance matrix is symmetric positive definite,
hence there exists a matrix Σ1/2, which is such that Σ1/2Σ1/2 = Σ. By Cauchy-
Schwarz inequality,

(
⟨Σ−1/2αD | Σ1/2αD⟩

)2
≤
∥∥∥Σ−1/2αD

∥∥∥
2

2
·
∥∥∥Σ1/2αD

∥∥∥
2

2
.

Therefore, SNRPCA = ((αD)
T
αD)2

(αD)TΣαD ≤ (αD)TΣ−1αD = S̃NR. ⊓*

Corollary 16. The asymptotic PCA has the same SNR as the the optimal
dimensionality reduction if and only if αD is an eigenvector of Σ. In this case,
both dimensionality reductions are equivalent.

Proof. Equality holds in Theorem 15 if and only if there exists a nonzero real
number λ such that Σ1/2αD = λΣ−1/2αD, i.e., ΣαD = λαD, i.e., αD is an
eigenvector of Σ.

In this case, the optimal protection is on the vector Σ−1αD = 1
λαD, which

is proportional to the projection vector belonging to the asymptotic PCA. ⊓*
Remark 2. Assume white noise (Sect. 3.1) where all values σ2

d (1 ≤ d ≤ D)
are different. Then, by Corollary 16, the asymptotic PCA is optimal only if
αD = (0, 0, · · · , 0, 1, 0, · · · , 0), which we may consider unrealistic since only one
sample out of D would leak secret information.

In contrast, if σ1 = · · · = σD = σ, the covariance matrix has only one
eigenvalue, namely (1, 1, · · · , 1), which has multiplicity D. Thus, for white
homoscedastic noise, PCA is asymptotically optimal if and only if α1 = · · ·αD =
α, that is, the SNR is the same for each sample.

Still in the case of white noise, we can lower bound the SNR of the asymptotic
PCA:
Lemma 17. For white noise, the SNR of the asymptotic PCA is not less than
the worst SNR among the samples, but can be strictly smaller than the higher
SNR among the samples.

Proof. We have
D∑

d=1

α2
dσ

2
d =

D∑

d=1

σ2
d

α2
d

α4
d ≤

(
Dmax

d=1

σ2
d

α2
d

) D∑

d=1

α4
d.

Since
(
maxDd=1

σ2
d

α2
d

)−1
= minDd=1

α2
d

σ2
d
= minDd=1 SNRd, the expression of the SNR

of the asymptotic PCA given by Eq. (19) is such that

SNRPCA =

(∑D
d=1 α2

d

)2

∑D
d=1 α2

dσ
2
d

≥

(∑D
d=1 α2

d

)2

∑D
d=1 α4

d

D
min
d=1

SNRd ≥
D
min
d=1

SNRd (21)

where we have used Cauchy-Schwarz inequality
∑D

d=1 α2
dα

2
d ≤

(∑D
d=1 α2

d

)2
.
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Conversely, we can give an example for which SNRPCA < maxDd=1
α2

d

σ2
d
. Take

D = 2, α1 = α2 = 1, σ1 = 1 and σ2 = 10. Then SNRPCA = 4/(1+102) = 4/101,
which is strictly smaller than α2

1/σ
2
1 = 1. ⊓*

4.2 Linear Discriminant Analysis (LDA)

LDA has been introduced in side-channel analysis in [31]. With respect to inter-
class PCA, it computes the eigenvectors of the matrix S−1

w Sb, where:

– Sw is the within-class scatter matrix, asymptotically equal to Σ, and
– Sb is the between-class scatter matrix, equal to αD(αD)T.

We have the following spectral characterization of the asymptotic LDA:

Proposition 18. Asymptotically, LDA has only one principal direction, namely
the vector Σ−1αD.

Proof. The matrix S−1
w Sb = Σ−1αD(αD)T has rank one. Indeed, αD(αD)T has

rank one, and multiplying by an invertible matrix (namely Σ−1) keeps the rank
unchanged. Since

(Σ−1αD(αD)
T
)Σ−1αD = Σ−1αD((αD)

T
Σ−1αD) =

(
(αD)

T
Σ−1αD

)
× Σ−1αD,

Σ−1αD is the unique eigenvector with corresponding eigenvalue (αD)TΣ−1αD >
0. This eigenvalue is equal to the SNR of the asymptotic LDA. ⊓*

By Corollary 4, the SNR of the asymptotic LDA is equal to the SNR of
the optimal dimensionality reduction, denoted by S̃NR. In fact, we have the
following.

Theorem 19. The asymptotic LDA computes exactly the optimal dimensional-
ity reduction.

Proof. Compare Theorem 1 with Proposition 18: in both cases, the projection
vector is collinear with Σ−1αD. ⊓*

4.3 Numerical Comparison Between Asymptotic PCA and LDA

Numerical comparison between asymptotic PCA and LDA is given in Fig. 2(a)
and (b), for D = 6 samples. The noise is chosen autoregressive, with σ = 1 and
different values for ρ (Sect. 3.2). The vector αD is chosen equal to (1, 1, 1, 1, 1, 1)T

in Fig. 2(a) and to
√
6.0/6.4 · (1.0, 1.1, 1.2, 1.3, 0.9, 0.5)T in Fig. 2(b), such that

S̃NR = 6 when ρ = 0. The SNR of the asymptotic LDA is that of the optimal
dimensionality reduction (cf. Corollary 4), and that of the asymptotic PCA can
be found in Example 14. The first case (Fig. 2(a)) fits the situation depicted in
Corollary 9. The asymptotic PCA and LDA are almost similar. Besides, when
ρ → 1−, both SNRs tend to 1 (recall Eqs. (20) and (16)). But, when the SNR
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varies over the D samples (Fig. 2(b)), the asymptotic LDA can be significantly
better than the asymptotic PCA. The sample-wise extremal SNRs (SNRd =
α2
d/σ

2) are also represented: the SNR of the PCA can be smaller than the largest
SNR, namely max1≤d≤D SNRd, (recall Lemma 17), which is not the case of
the SNR of the LDA. Actually, the SNR of LDA increases to infinity because
S̃NR ≈ 0.164/(1 − ρ) when ρ → 1− (see Eq. (15)).

(a) Equal SNRd = 1, 1 ≤ d ≤ D (b) Varying SNRd, 1 ≤ d ≤ D
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Fig. 2. Comparison of the SNR of asymptotic LDA (optimal) and of asymptotic PCA

5 Practical Validation

In this section, we investigate real traces. Experiments are carried out on the
DPA contest v2 [34] traces. One clock cycle lasts D = 200 samples. As traces
are captured from a hardware implementation of an AES, we consider the Ham-
ming distance leakage model (in accordance with most attacks reported on the
analyzed device [8], namely a SASEBO-GII board with a Xilinx XC5VLX30
FPGA [28]). In the sequel, we focus on the Hamming distance between the byte 0
of the last round and that of the cipher text. That is, the function φ in Eq. (1) is
a normalized Hamming weight; precisely, φ : z ∈ Fn

2 0→ 2√
n

(
wH(z) − n

2

)
, where

n = 8, because AES is a byte-oriented block cipher. In addition, we emphasize
that our model (Eq. (2)) is indeed suitable to leakage dimensionality reduction
within one clock period.

5.1 Precharacterization of the Model Parameters αD and Σ

In order to characterize the model, we need to recover the column matrix αD

and the D × D covariance matrix Σ of the noise.

Proposition 20. The parameters of the model (2) which minimize the fitting
error are given by

α̂D =
XD,Q(Y Q)T

Y Q(Y Q)T
.
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Proof. The goal (minimizing the fitting error) is similar to that of the opti-
mal distinguisher, namely maximize the probability of pND,Q(XD,Q − αDY Q)
(Eq. (6)). But in the context of characterization, the correct key is known. There-
fore, we wish to minimize in αD and Σ the following objective function:

objective(αD,Σ) =
Q∑

q=1

{(
xD
q − αDyq(k∗)

)T
Σ−1

(
xD
q − αDyq(k∗)

)}
, (22)

which reminds of Eq. (9) (except that now, the key k = k∗ is known). We use
the notation (α̂D, Σ̂) = argmin(αD,Σ) objective(αD,Σ).

We fix Σ and minimize only on αD. The gradient of objective(αD,Σ) w.r.t.
(αD)T writes:

∂

∂(αD)T
objective(αD,Σ) =

Q∑

q=1

−2yq(k∗)
(
Σ−1xD

q − yq(k∗)Σ−1αD
)
. (23)

The objective function is extremal in α̂D if and only if its derivative is equal to
zero at this point. Let Y Q be an abbreviation for Y Q(k∗). This condition takes
the form of a normal equation

α̂D =
∑Q

q=1 yqx
D
q

∑Q
q=1 y

2
q

=
XD,Q(Y Q)T

Y Q(Y Q)T
. (24)

where the numerator is the inter-covariance matrix of XD,Q and Y Q, and the
denominator is the covariance matrix of Y Q. ⊓*

Interestingly, the most likely value α̂D of αD does not depend on the noise
covariance matrix. As ND,Q = XD,Q − α̂DY Q has zero mean, the latter can be
evaluated on its own as the well-known unbiased estimator of Σ:

Σ̂ =
1

Q − 1
(XD,Q − α̂DY Q)(XD,Q − α̂DY Q)

T
. (25)

By plugging Eq. (24) into Eq. (25), one obtains

Σ̂ = 1
Q−1

(
XD,Q − XD,Q (Y Q)TY Q

Y Q(Y Q)T

)(
XD,Q − XD,Q (Y Q)TY Q

Y Q(Y Q)T

)T

= 1
Q−1X

D,Q

(
IQ,Q − (Y Q)TY Q

Y Q(Y Q)T

)2

(XD,Q)
T

(26)

= 1
Q−1X

D,Q

(
IQ,Q − (Y Q)TY Q

Y Q(Y Q)T

)
(XD,Q)

T
(27)

= 1
Q−1

(
XD,Q(XD,Q)

T − XD,Q(Y Q)TY Q(XD,Q)T

Y Q(Y Q)T

)
.
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In Eq. 26, IQ,Q denotes the Q×Q identity matrix, and we use in Eq. 27 the fact
that the matrix IQ,Q − (Y Q)TY Q/(Y Q(Y Q)T) is idempotent, i.e., equal to its
square.

Remark 3. We have the following remarkable identity:

XD,Q(XD,Q)
T

= α̂D(α̂D)
T
Y Q(Y Q)

T
+ (Q − 1)Σ̂.

This equation is the non-asymptotic version of Proposition 10.

5.2 Computation of SNRs on the AES Traces from DPA Contest
v2 Last Round

The values α̂D and Σ̂ are represented in Fig. 3. We obtain:

– maxDd=1 α̂2
d/Σ̂d,d = 1.69 · 10−3 (no dimensionality reduction)

– SNRPCA = ((α̂D)
T
α̂D)2

(α̂D)TΣ̂α̂D
= 1.36 · 10−3 (PCA)

– SNRLDA = (α̂D)TΣ̂α̂D = 12.78 · 10−3 (LDA).

Therefore, the LDA has the largest SNR: it is about seven times larger than the
maximum sample-wise SNR. The PCA has, in this example, an SNR smaller
than the maximum univariable SNR (see Lemma 17).

Interestingly, one can see in Fig. 3 that the noise is locally autoregressive, for
instance between samples 107 and 117.

Fig. 3. Estimated α̂D (left) and Σ̂ (right), for Q = 10, 000 traces

6 Conclusions and Perspectives

Dimensionality reduction is common practice in side-channel analysis. This pre-
processing technique has many virtues, such as an elegant multivariate descrip-
tion of the leakages, the concentration of information which reduces the required
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number of measurements to extract the key, and the increase of computational
efficiency. Nonetheless, as any processing, dimensionality reduction can only
reduce some information.

Using a mathematical approach, we have shown that dimensionality reduc-
tion is actually part of the optimal attack. This proves rigorously that dimension-
ality reduction can be achieved without loss in terms of attack success probability
in extracting a secret key. As it turns out, the optimal dimensionality reduction
consists in a linear projection of the trace samples.

We have also shown that the linear discriminant analysis asymptotically
achieves the same projection, and hence becomes optimal as the number of traces
increases. When the various samples are weakly correlated, we have found that
PCA is nearly equivalent to the optimal dimensionality reduction and to LDA.
Thus, in realistic contexts, state-of-the-art dimensionality reduction techniques
are actually close to the optimal method.

Finally, we show how to estimate the model parameters (modulation vector
αD and noise covariance matrix Σ), and compute them on a real traces. An
SNR gain factor of 7 can be obtained with respect to sample-wise SNR, which
stresses the practical interest of dimensionality reduction.

As a perspective, we note that it should also be possible to obtain similar
results when the noise is non-Gaussian (e.g., uniform). It is also desirable to com-
pare dimensionality reduction based on linear projections to machine-learning
techniques which are also multidimensional, such as SVM, random forests, K-
means, etc.
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