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Abstract — DVB-T2 was the first industrial standard

deploying rotated and cyclic Q delayed (RCQD) modulation to
improve performance over fading channels. This enables
important gains compared to conventional quadrature
amplitude modulations (QAM) under severe channel conditions.
However, the corresponding demodulation complexity still
prevents its use for wider applications. This paper proposes
several rotation angles for different QAM constellations and a
corresponding low-complexity detection method. Results show
that the proposed solution simplifies both the transmitter and
the receiver with often better performance than the proposed
angles in DVB-T2. Compared with the lowest complexity
demappers currently used in DVB-T2, the proposed solution
achieves an additional reduction by more than 60%.
Index Terms — DVB-T2, Rotated and Cyclic Q Delayed

(RCQD) Modulations, Signal Space Diversity (SSD), Fading
Channel, Quadrature Amplitude Modulations (QAM),
Max-Log, Computational Complexity.

I. INTRODUCTION

HE DVB-T2 standard [1] clearly presents improved
performance when compared to its predecessor - DVB-T

[2] over highly attenuated or erased frequency selective
channels. This is partly due to the adoption of the rotated and
cyclic Q delayed (RCQD) quadrature amplitude modulations
(QAM) [3]. The idea of the RCQD modulation is to correlate
the in-phase (I) and the quadrature (Q) components of the
conventional QAM signals by rotation and then to introduce
different fading attenuations to I and Q components by
distributing these components on different subcarriers.

Due to different attenuations over the I and Q components,
decorrelation based methods such as zero forcing (ZF) or
minimum mean square error (MMSE) demapper [5] are not
optimum anymore. Instead, two dimensional (I and Q)
demappers (2D-DEM) are required [6]-[10]. For high order
constellations such as 64-QAM or 256-QAM, the
computational complexity of a 2D-DEM has a non-negligible
impact on the receiver design.
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The rotation angles of the RCQD modulations of DVB-T2
jointly considered the codes and the modulations, and were
selected by applying different criteria as described in [3], [4].
However, these angles were designed to achieve a
compromise between performance over fading channels with
and without erasures. They do not aim at considering the
receiver complexity.

Differently from previous works [3], [11]-[17], [22] and
[23], this paper aims at reducing the RCQD demapping
complexity and proposes a series of rotation angles for
different orders of QAM signals with interesting structural
properties. Based on these structural properties, a dedicated
low-complexity max-log based "sphere-demapper" is
designed. Radically different from the sphere-decoders used
for MIMO detection [18], the radius of the proposed
"sphere-demapper" implies the exact amount of involved
constellation points; it also guarantees the soft demapping
operation to be successfully performed. Moreover, in the
worst case, the proposed sphere-demapper achieves almost
the same performance as the full-complexity max-log
demapper with operational complexity being much less than
the demappers proposed in the literature.

The remainder of the paper is organized as follows. The
system model and the soft demapping process are introduced
in section II. The proposed modulation and demodulation
solution is detailed in section III. Simulation results,
computational complexity and performance comparisons are
given in section IV. Section V concludes the proposal.

II. SYSTEM MODEL

A. Rotated and Cyclic Q Delayed Constellations
A conventional square M -QAM symbol s (where M is

an integer) can take values from the following cS set:

� �c c,I Q I Qs s js s s� � � �S A , (1)

where cA is defined as:

� � � �� �c 1 2 0,1, , 1s m mM p p M�� 	 � � � 	A � ; (2)

m can either be I (in-phase component) or Q (quadrature
component) and s� is a normalization factor [1] (e.g., for

64-QAM 1 42s� � and for 256-QAM 1 170s� � ).
In order to obtain a RCQD constellation, the conventional

square symbol is first rotated by an angle � to obtain a
rotated symbol � �exp I Qz s j z jz�� 
 � � , where Iz and Qz are:
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Then the real part of symbol z and the imaginary part of
another previously delayed symbol z� build the symbol to be
transmitted x on a given subcarrier, i.e., � � � �Re Imx z j z�� � .

At the receiver side, the components � �Re z and � �Im z of
symbol z are attenuated differently. Let 0Ih � and 0Qh �

denote the Rayleigh distributed fading coefficients of the two
subcarriers where symbol z has been transmitted. The
observed symbol I Qy y jy� � received by the demapper can
be expressed as:

� � � �I Q I I I Q Q Qy jy h z n j h z n� � � � � , (4)

where I Qn n jn� � represents a zero-mean circularly

symmetric complex Gaussian noise term with variance 2
n� .

B. Soft-Demapping Algorithm
The maximum likelihood (ML) soft demapper [21]

requires the computation of the log likelihood ratio (LLR)
corresponding to each mapped bit ib (with

20,1, , log 1i M� 	� ) such that:
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(5)
where � �c ib b�Z denotes the subset of cZ that contains all

constellation points associated with ib b� and � �0,1b � , and

� �, | ,I Qd y z h h is the square of the 2D Euclidean distance

between the observation symbol y and the considered
constellation symbol z of cZ in (3) with known channel
attenuations Ih and Qh :

� � � � � �22, | ,I Q I I I Q Q Qd y z h h y h z y h z� 	 � 	 . (6)

The LLR computation of (5) requires the exploration of a
signal space containing all the possible M complex-valued
constellation points. A suboptimal soft-demapping solution
with a negligible loss can be obtained by applying the
max-log approximation [6] over (5):
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(7)
Note that performing LLR computations by (7) is equivalent
to finding the optimum point with global minimum distance
among all candidates and then finding 2log M minimum
distances with one bit information complementary to the
global optimum point.

C. Optimum 2D Joint Detection
Designating 1,1 cosIh h �� , 1,2 sinIh h �� 	 , 2,1 sinQh h �� ,

and 2,2 cosQh h �� , the distance metric � �, | ,I Qd y z h h in (6)

can be further expanded as follows:
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(8)
Note that the first four terms are independent from Is and Qs ,
the fifth and the sixth terms are distances dependent
respectively on Is and Qs , however, the last term is a
cross-correlated term related to both Is and Qs . (8) indicates

that the minimum distance � �� �min , | ,I Qd y z h h cannot be

obtained with independent decisions over Is and Qs due to
the last cross-correlated term at the right-hand side of (8).

Therefore computing the maximum likelihood (ML) or the
max-log solution requires a 2D joint detection. This implies a

� �2O M level complexity for the demapper which can be

reduced by the adoption of a carefully designed rotation angle
as proposed next.

III. NEW SIGNAL SPACE DIVERSITY SOLUTION

A. Properties of Rotated Constellation with Rotation Angle
� �arctan 1 M� �

We propose the rotation angle � �arctan 1 U� � for the

RCQD, where it should be mentioned that U M� is an
integer value. From (1)-(3), the components Iz and Qz of the
rotated constellation can then be expressed as:

� �� �
� �

1 1 2 sin
2

1 2 sin ,
2

I I Q s
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Mz M p M p

Mz M p p
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	 �� �� � � �� �� � ��

(9)

where Ip and Qp are integers given in (2).
This rotation angle introduces the following interesting

properties:
Property 1: The values Iz and Qz projected by the rotated

constellation z are uniformly distributed along the I-axis and
the Q-axis. The minimum distance between any projected
consecutive points is 2 sins� � , i.e.,

1D, min = min min 2 sin
I I Q Q

I I Q QI sz z z z
d z z z z � �

� �� �
� �	 � 	 � .
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Property 2: Since Ip and Qp take integer values from 0

to the integer � �1M 	 (see (1) and (2)), the terms

� �� �1I QM p M p� 	 	 and � �Q IM p p� in (9) can take M

values. Therefore, these latter can be treated as two-digit
numbers, each digit being able to take M values;
consequently from (3), Iz and Qz can identically take M

values. Moreover, without considering the minimum distance
factor 2 sins� � , the most and least significant digits of Iz are
respectively Ip and Qp , while the most and least significant
digits of Qz are respectively Qp and Ip .

Reciprocally, one can determine � �,I Qp p for any given
value Iz or Qz with the following property.

Property 3: From (9), one given value Iz uniquely
determines one pair � �,I Qp p :

� �1 ,

I
I

Q I I

Tp
M

p M T M p

� � !�� � !� � "
� � 	 	 	��

(10)

as well as one given value Qz uniquely determines one pair

� �,I Qp p :

� � ,

Q
Q

I Q Q

T
p

M

p T M p

� � !
�� � !� � "

� � 	��

(11)

where IT and QT are shown as below:

� �
1D, min

1 1
2

I
I

zT M
d

� � 	 (12)

� �
1D, min

1 1 .
2

Q
Q

z
T M

d
� � 	 (13)

Note that the values IT and QT are integers belonging

to # $0, 1M 	 . Moreover, the integer division by M (resp. the

multiplication by M ) is not implemented by a divider (resp.
a multiplier), instead, they can be implemented by 2log M
right-shifts (or left-shifts).

Property 4: Any M consecutive values of IT (resp. QT )
contains exactly all possible values of Qp (resp. Ip ) and each
value occurs once.

This property is due to fact that Qp is the least significant
digit of IT while Ip is the least significant digit of QT ; Every

consecutive M IT or QT values contain every integer

values from 0 to 1M 	 .
To synthesize the previous properties, one can find the 2D

point z from either its real part or its imaginary part: given
Iz (resp. Qz ) from (12) (resp. (13)) (see Fig.1 for QPSK

constellation), one first finds IT (resp. QT ) (see Fig.2), then

finds � �,I Qp p from (10) (resp. (11)) (see Fig.3), and return z

from (9) (see Fig.1).
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At the receiver side, the observations Iy and Qy can be
equalized as:

� �

� �
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(14)

where m can either be I or Q, and mY can either be IY or QY .
From (12) and (14), one has:

� � � �� �22 2
1D, minI I I I I Iy h z d h Y T	 � 	 (15)

and similarly from (13) and (14):

� � � �� �22 2
1D, minQ Q Q Q Q Qy h z d h Y T	 � 	 . (16)
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In this way, the distance metric � �, | ,I Qd y z h h of (6) can be
modified as:

� � � �� � � �� �� �222
1D, min, | ,I Q I I I Q Q Qd y z h h d h Y T h Y T� 	 � 	 . (17)

Note that (17) simplifies the evaluation of the distance metric
(and the corresponding soft demapping in (7)), as the only
varying parameters IT and QT are now integer valued.

B. Low-complexity Sphere-Demapper
Let IT� (resp. QT� ) be the estimated value of IT and (resp.

QT ), obtained by rounding the equalized value IY (resp. QY )
of (14) to an integer. From (10) (resp. (11)), one can find the
only local closest point to IY (resp. QY ), and ML point z in

the rotated constellation can only be found when IT� and QT�

are pointing to the same pair � �,I Qp p , i.e.,

� � � �� � � � � �� �, ,I I Q I I Q Q Qp T p T p T p T�� � � �� � � � . When IT� and QT� do not

lead to the same constellation point, in order to locate the
global optimum point with minimum distance to � �,I QY Y (i.e.,

minimizing (17)), one can increase the observation candidate
number by searching regions centered around IY and QY with
radius d . This region can be expressed as:

� �
# $

# $
0,2 1 , if ,

2 , 1 , if ,
1, else,

m

m m

m m

d Y d
Y M d M Y M d

Y d Y d

� 	 %
�

� 	 	 � 	
��  	 � �� ! � !� " � "� "�

T� (18)

where m can either be I or Q, and mY can either be IY or QY .

Note that points within � �mYT� are uniformly distributed
along the axis m with unit interval, i.e., 1. With the given
radius d , � �mYT� in (18) computes exactly 2d points and thus
searching the global optimum point requires a search to be
performed among 4d points within � �IYT� and � �QYT� .

Differently from the classical sphere-decoder proposed in
[18], mY in (14) are equalized observations instead of the
received unequalized observations Iy and Qy in [18].
Moreover, the integer radius d means that 2d points are to
be found within each region � �mYT� , whereas the radius in [18]
gives no indication on the number of points involved in the
sphere decoding.

Due to the useful property 4, the radius used by the sphere
demapping algorithm is 2M . Therefore, the sphere
demapping algorithm can be summarized into four steps:

1) Transform linearly the received signals Iy and Qy into

IY or QY by using (14);

2) Compute the regions � �IYT� and � �QYT� centered around

IY or QY by using (18);
3) Compute the Euclidean distance metrics within the 4d

points of step 2) by using (6);
4) Perform LLR computations by (7), i.e., finding the

global minimum distance among all candidates and then
finding 2log M minimum distances with one bit information
complementary to the global optimum point.

The detailed analysis on the complexity of this algorithm is

evaluated in terms of number of candidate points (CPs), real
multiplications (RMs), real comparisons (RCs), real
inversions (RIs) and real sums (RSs), where RS can either be
real additions or real subtractions.

1) In step 1, the terms 2
1D, min1 d and � �1 2M 	 are

constants and do not need repeated computations, therefore
the transformations of (14) require 2RSs, 2RMs and 2RIs.

2) In step 2, according to (18), the selection of two regions
� �IYT� and � �QYT� needs 4 RCs. Generating all points within

the two regions requires another 2 M RSs.
3) In step 3, computing one 2D Euclidean distance metric

� �� � � �� �22
I I I Q Q Qh Y T h Y T	 � 	 requires 4 RMs and 3RSs. Since

there are 2 M distances to compute, 8 M RMs and
6 M RSs are required in total.

4) In order to perform LLR computations as in (7), one
needs to find the global minimum distance among all 2 M
candidates and this requires 2 1M 	 RCs. Moreover, one
also has to compute 2log M minimum distances with one bit
information complementary to the global optimum point.
Since each complementary bit needs 2 2M 	 RCs, finding
complementary points needs � � 22 2 logM M	 in total. After

finding the minimum distances, one also needs additional
2log M RMs and 2log M RSs.

Therefore, performing LLR computations in (7) requires
2 M CPs, 28 2 logM M� � RMs, 2 RIs, 28 2 logM M� �

RSs and � �� �25 2 2 1 logM M� 	 � RCs.

IV. SIMULATION AND RESULTS

This section is divided into two subsections. The first
subsection compares the bit error rate (BER) of the new
RCQD solution with rotation angle � �arctan 1 M� � with

the BER of the classical RCQD used in DVB-T2 for
16-QAM and 64-QAM over fading and fading erasure
channels. The second subsection compares the proposed
sphere demapping algorithm with other currently proposed
algorithms for 256-QAM signal in terms of performance and
complexity. It should be mentioned that the 256-QAM is the
only constellation using rotation angle � �arctan 1 M� � in

DVB-T2.
In these simulations, perfect synchronization and channel

estimation are assumed, which is different from the practical
case [19], [20]. BERs are obtained with the DVB-T2 LDPC
code with length 64800 and rate 4/5 with min-sum decoding
applying 25 iterations. Performance is evaluated over
Rayleigh fading channels with and without erasure events as
defined in [21].

A. The New RCQD Solution with rotation angle
� �arctan 1 M� �

Fig. 4 and Fig. 5 compare the BER performance of the
proposed rotation angles with the DVB-T2 rotation angles
over the Rayleigh fading channel. It can be observed that the
performance of the RCQD with the proposed angle loses 0.05
dB (resp. 0.025 dB) compared with the performance of the
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RCQD with the DVB-T2 angle for 16-QAM (resp. 64-QAM)
signal at a BER = 10-6. The negligible performance loss is due
to the fact that the proposed angles are not jointly designed
with the LDPC codes for a maximization of the coding gain.

Fig. 4. BER comparison of the 16-QAM RCQD solutions with proposed
rotation angle (14.0 degree), rotation angle proposed by DVB-T2 (16.8

degree) over a fading channel.

Fig. 5. BER comparison of the 64-QAM RCQD solutions with proposed
rotation angle (7.1 degree), rotation angle proposed by DVB-T2 (8.6 degree)

over a fading channel.
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Fig. 6. BER comparison of the 16-QAM RCQD solutions with proposed
rotation angle, rotation angle proposed by DVB-T2 over a fading channel

with 15% of erasure events.
Fig. 6 and Fig. 7 compare the BER performance over

fading erasure channel with a 15% erasure rate. It can be
easily noticed that the proposed rotation angle outperforms
the original DVB-T2 rotation angle by 0.5 dB (resp. 0.75 dB)
for 16-QAM (resp. 64-QAM) signal at a BER = 10-6. The

larger gain of the erasure channel is because the proposed
rotation angle maximizes the minimum interval between two
consecutive points projected over real and imaginary axis
(see property 1).

Furthermore, the proposed low-complexity sphere based
algorithm achieves the same performance as the max-log
algorithm with full complexity. The structural properties of
the proposed rotation angle not only introduce a simplified
demapping algorithm but also lead to improved robustness of
the system. Similar results are observed for other erasure
rates.
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Fig. 7. BER comparison of the 64-QAM RCQD solutions with proposed
rotation angle, rotation angle proposed by DVB-T2 over a fading channel

with 15% of erasure events.

B. The Proposed Sphere based Demapping Algorithm
In this part, the proposed sphere based demapping

algorithm is compared with other methods in terms of BER
and computation complexity, such as the max-log method
(see (5)), the MMSE method [5], the sub-region method [6],
and the PD-DEM method [10].

Since the rotation angle of the DVB-T2 RCQD 256-QAM
signal satisfies � �arctan 1 M� � , the proposed demapper

can also be applied to this case directly. TABLE I gives the
complexity comparison in terms of CP, RM, RS, RC and RI
(these abbreviations are defined in section III.B) to demap the
RCQD 256-QAM signal.

TABLE I Complexity Comparison of the considered algorithms for the
DVB-T2 RCQD 256-QAM constellation.

Algorithm CP RM RS RC RI
Max-Log 256 1032 776 2048 0

Sub-region 81 332 251 648 0
MMSE 16 64 48 128 6

PD-DEM 80 390 279 231 0
Proposed 32 138 138 275 2

Fig. 8 and Fig. 9 display the BER performance of the
various algorithms. Among them, the MMSE method has the
lowest computation complexity. However, it achieves the
worst performance among all the simulated methods; this is
due to the fact that the decorrelation based algorithm is not
the optimum method (see the last term in (8)) for the RCQD
constellations. Since the other simulated algorithms are 2D
joint detection based methods, they are always better than the
MMSE algorithm (except the PD-DEM method over a fading
channel).

The proposed method achieves almost the same
performance as the full complexity max-log algorithm.
However, it reduces by 88% the number of CPs, 87% the
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number of RMs, 82% the number of RSs and 87% the
number of RCs with respect to the full complexity max-log
algorithm and requires 2 additional RIs. Furthermore,
compared with the PD-DEM which is the simplest method
among all the considered methods, the proposed demapping
algorithm introduces a 60% reduction in number of CPs and
64% reduction in number of RMs.

Fig.8. BER comparison of the considered methods for the DVB-T2 RCQD
256-QAM constellation over a fading channel.

Fig.9. BER comparison of the considered methods for the DVB-T2 RCQD
256-QAM constellation over a fading channel with 15% of erasure events.

V. CONCLUSION

This paper proposes a series of rotation angles for different
RCQD signals having interesting structural properties. Based
on these properties, a low-complexity sphere-based max-log
demapper is designed. This makes it particularly suited for a
hardware implementation. In addition, the proposed solution
improves the robustness of the current DVB-T2 system. Due
to all these features, this work enables a wider application for
the RCQD QAM constellations.
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