

Institut Mines-Télécom

Template Attacks, Optimal Distinguishers & Perceived Information Metric

Cryptarchi – June 29-30, 2015 – Leuven

Sylvain Guilley*, Annelie Heuser*, Olivier Rioul* and François-Xavier Standaert**

*Telecom ParisTech, **UCL

Overview

Introduction

Motivation

Notations

Perceived Information

Derivations

Maximum a posteriori probability

Maximum Likelihood

Experiments

Believing or seeing?

Conclusion

Outlines

Introduction

Motivation

Notations

Perceived Information

Derivations

Maximum a posteriori probability

Maximum Likelihood

Experiments

Believing or seeing?

Conclusion

 Consolidate state-of-the-art about optimal distinguishers with a deeper look on the probability estimation

- Consolidate state-of-the-art about optimal distinguishers with a deeper look on the probability estimation
- Perceived Information (PI): information-theoretic metric quantifying the amount of leakage
- Show that PI is related to maximizing the success rate through the Maximum a posteriori probability (MAP)

- Consolidate state-of-the-art about optimal distinguishers with a deeper look on the probability estimation
- Perceived Information (PI): information-theoretic metric quantifying the amount of leakage
- Show that PI is related to maximizing the success rate through the Maximum a posteriori probability (MAP)
- Use the maximum likelihood (ML) to derive MIA and the (experimental) template attack in case of profiling

- Consolidate state-of-the-art about optimal distinguishers with a deeper look on the probability estimation
- Perceived Information (PI): information-theoretic metric quantifying the amount of leakage
- Show that PI is related to maximizing the success rate through the Maximum a posteriori probability (MAP)
- Use the maximum likelihood (ML) to derive MIA and the (experimental) template attack in case of profiling
- Experiments: should theoretical values of probabilities be used or should they be estimated on-the-fly?

Profiling device

- p for an estimation offline
 - $\rightarrow \mathbb{P}$ exact probability

Attacking device

 $\tilde{\mathbb{P}}$ estimated online on-the-fly

Profiling device

- p for an estimation offline
 - $\rightarrow \mathbb{P}$ exact probability

Attacking device

 $\tilde{\mathbb{P}}$ estimated online on-the-fly

Profiling device

- p for an estimation offline
 - $ightarrow \mathbb{P}$ exact probability

Attacking device

 $\tilde{\mathbb{P}}$ estimated online on-the-fly

Notations

- secret key k* deterministic but unknown
- m independent measurements $\mathbf{x} = (x_1, ..., x_m)$ and independent and uniformly distributed inputs $\mathbf{t} = (t_1, ..., t_m)$
- leakage model $\mathbf{y}(k) = \varphi(f(k,\mathbf{t}))$, where φ is a device specific leakage function and f maps the inputs to an intermediate algorithmic state
- $\mathbf{x} = \mathbf{y}(k^*) + \mathbf{n}$ with independent noise \mathbf{n}

Idea [Renauld et al., 2011]

- Metric quantifying degraded leakage models
- Testing models against each other, e.g., from the true distribution against estimations
- Generalization of mutual information

June 29-30, 2015

Perceived information

Idea [Renauld et al., 2011]

- Metric quantifying degraded leakage models
- Testing models against each other, e.g., from the true distribution against estimations
- Generalization of mutual information

Ideal case

- the distribution P is known
- PI is MI

$$MI(K; X, T) = H(K) + \sum_{k} \mathbb{P}(k) \sum_{t} \mathbb{P}(t) \sum_{x} \mathbb{P}(x|t, k) \log_{2} \mathbb{P}(k|t, x)$$

Profiled case

- the distribution P is known

$$PI(K;X,T) = H(K) + \textstyle\sum_k \mathbb{P}(k) \textstyle\sum_t \mathbb{P}(t) \textstyle\sum_x \mathbb{P}(x|t,k) \log_2 \hat{\mathbb{P}}(k|t,x)$$

Profiled case

- the distribution P is known
- test a profiled model P against P

$$PI(K;X,T) = H(K) + \sum_{k} \mathbb{P}(k) \sum_{t} \mathbb{P}(t) \sum_{x} \mathbb{P}(x|t,k) \log_{2} \hat{\mathbb{P}}(k|t,x)$$

Real case

- the distribution P is unknown
- test a profiled model P against an online estimated model P

$$\hat{PI}(K;X,T) = H(K) + \sum_k \mathbb{P}(k) \sum_t \mathbb{P}(t) \sum_x \tilde{\mathbb{P}}(x|t,k) \log_2 \hat{\mathbb{P}}(k|t,x)$$

Outlines

Introduction

Motivation

Notations

Perceived Information

Derivations

Maximum a posteriori probability

Maximum Likelihood

Experiments

Believing or seeing?

Conclusion

Maximum a posteriori probability

MAP

The optimal distinguishing rule is given by the *maximum a posteriori* probability (MAP) rule

$$\mathcal{D}(\mathbf{x}, \mathbf{t}) = \arg \max_{k} \ \mathbb{P}(k|\mathbf{x}, \mathbf{t}).$$

MAP

The optimal distinguishing rule is given by the *maximum a posteriori* probability (MAP) rule

$$\mathcal{D}(\mathbf{x}, \mathbf{t}) = \arg \max_{k} \ \mathbb{P}(k|\mathbf{x}, \mathbf{t}).$$

With the help of Bayes' rule...

$$\mathbb{P}(k|\mathbf{x}, \mathbf{t}) = \frac{\mathbb{P}(\mathbf{x}|k, \mathbf{t}) \cdot \mathbb{P}(k)}{\mathbb{P}(\mathbf{x}|\mathbf{t})} = \frac{\mathbb{P}(\mathbf{x}|k, \mathbf{t}) \cdot \mathbb{P}(k)}{\sum_{k} \mathbb{P}(k) \mathbb{P}(\mathbf{x}|\mathbf{t}, k)}.$$

Relation between MAP and PI

- Profiling scenario
- Profiled model $\hat{\mathbb{P}}$, model $\tilde{\mathbb{P}}$ estimated online on-the-fly

Relation between MAP and PI

- Profiling scenario
- Profiled model $\hat{\mathbb{P}}$, model $\tilde{\mathbb{P}}$ estimated online on-the-fly
- $\hat{\mathbb{P}}(k|\mathbf{x},\mathbf{t}) \propto \prod_{i=1}^{m} \hat{\mathbb{P}}(k|x_i,t_i)$

Relation between MAP and PI

- Profiling scenario
- Profiled model $\hat{\mathbb{P}}$, model $\tilde{\mathbb{P}}$ estimated online on-the-fly
- $\hat{\mathbb{P}}(k|\mathbf{x},\mathbf{t}) \propto \prod_{i=1}^{m} \hat{\mathbb{P}}(k|x_i,t_i)$

We start by maximizing MAP:

$$\arg \max_{k} \ \hat{\mathbb{P}}(k|\mathbf{x}, \mathbf{t}) = \arg \max_{k} \ \prod_{i=1}^{m} \hat{\mathbb{P}}(k|x_{i}, t_{i})$$
$$= \arg \max_{k} \ \prod_{x, t} \hat{\mathbb{P}}(k|x, t)^{m\tilde{\mathbb{P}}_{k}(x, t)},$$

where $\tilde{\mathbb{P}}_k(x,t) = \tilde{\mathbb{P}}(x,t|k)$ is the "counting" estimation (online) of x and t that depends on k. Now taking the log_2 gives

$$= \arg\max_{k} \; \sum_{x,t} \tilde{\mathbb{P}}_{k}(x,t) \log_{2} \hat{\mathbb{P}}(k|x,t)$$

Cryptarchi 2015

Relation between MAP and PI (cont'd)

$$\begin{split} &= \arg\max_{k} \ \sum_{x,t} \tilde{\mathbb{P}}_{k}(x,t) \log_{2} \hat{\mathbb{P}}(k|x,t) \\ &= \arg\max_{k} \ \sum_{x,t} \tilde{\mathbb{P}}(x,t|k) \log_{2} \hat{\mathbb{P}}(k|x,t) \\ &= \arg\max_{k} \ \sum_{t} \tilde{\mathbb{P}}(t) \sum_{x} \tilde{\mathbb{P}}(x|t,k) \log_{2} \hat{\mathbb{P}}(k|x,t) \end{split}$$

Relation between MAP and PI (cont'd)

$$\begin{split} &= \arg\max_{k} \ \sum_{x,t} \tilde{\mathbb{P}}_{k}(x,t) \log_{2} \hat{\mathbb{P}}(k|x,t) \\ &= \arg\max_{k} \ \sum_{x,t} \tilde{\mathbb{P}}(x,t|k) \log_{2} \hat{\mathbb{P}}(k|x,t) \\ &= \arg\max_{k} \ \sum_{t} \tilde{\mathbb{P}}(t) \sum_{x} \tilde{\mathbb{P}}(x|t,k) \log_{2} \hat{\mathbb{P}}(k|x,t) \end{split}$$

Taking the average over k and adding H(K) gives $\hat{PI}(K;X,T) =$

$$H(K) + \sum_{t} \mathbb{P}(k) \sum_{t} \tilde{\mathbb{P}}(t) \sum_{x} \tilde{\mathbb{P}}(x|t,k) \log_{2} \hat{\mathbb{P}}(k|x,t).$$

(except $\tilde{\mathbb{P}}(t)$ vs. $\mathbb{P}(t)$)

Relation between MAP and PI (cont'd)

PI ⇔ MAP

 \hat{PI} (real case) is the expectation of the MAP over the keys.

$PI \Leftrightarrow MAP$

 \hat{PI} (real case) is the expectation of the MAP over the keys.

Profiled case

If we have an infinite number of traces to estimate $\tilde{\mathbb{P}} \to \mathbb{P}$ then we recover PI(K;X,T).

PI ⇔ MAP

 \hat{PI} (real case) is the expectation of the MAP over the keys.

Profiled case

If we have an infinite number of traces to estimate $\tilde{\mathbb{P}} \to \mathbb{P}$ then we recover PI(K;X,T).

Ideal case

If we have an infinite number of traces to estimate $\tilde{\mathbb{P}} \to \mathbb{P}$ and $\hat{\mathbb{P}} \to \mathbb{P}$ then we recover MI(K;X,T).

The leakage model follows the

Markov condition

The leakage ${\bf x}$ depends on the secret key k only through the computed model y(k). Thus, we have the Markov chain:

$$(k,t) \to y = \varphi(f(t,k)) \to x.$$

Related to the EIS [Schindler et al., 2005] assumption.

- Markov condition: invariance of conditional probabilities
- EIS assumption: invariance of images under different subkeys

Cryptarchi 2015

Maximum Likelihood Attack

Assuming we have $y(k)=\varphi(f(t,k))$ that follows the Markov condition, then the optimal distinguishing rule is given by the maximum likelihood (ML) rule

$$\mathcal{D}(\mathbf{x}, \mathbf{t}) = \arg \max_{k} \ \mathbb{P}(\mathbf{x}|\mathbf{y}).$$

Proven and investigated in [Heuser et al., 2014].

Similarly, as in the previous derivation we have

$$\arg\max_{k} \ \mathbb{P}(\mathbf{x}|\mathbf{y}) = \arg\max_{k} \ \prod_{i=1}^{m} \mathbb{P}(x_{i}|y_{i}) = \arg\max_{k} \ \prod_{x,y} \mathbb{P}(x|y)^{m\tilde{\mathbb{P}}(x,y)}.$$

Taking the log_2 gives us

$$\arg\max_{k} \sum_{x,y} \tilde{\mathbb{P}}(x,y) \log_{2} \mathbb{P}(x|y)$$

Now we add the cross entropy term that does not depend on a key guess \boldsymbol{k}

$$-\sum_{x} \tilde{\mathbb{P}}(x,y) \log_2 \mathbb{P}(x).$$

This results to

$$\arg\max_{k} \sum_{x,y} \tilde{\mathbb{P}}(x,y) \log_{2} \frac{\mathbb{P}(y|x)}{\mathbb{P}(y)}.$$

This results to

$$\arg\max_{k} \sum_{x,y} \tilde{\mathbb{P}}(x,y) \log_{2} \frac{\mathbb{P}(y|x)}{\mathbb{P}(y)}.$$

In practise...

- P is most likely not known perfectly by the attacker
- either estimated offline by ÎP
- or online on-the-fly $\tilde{\mathbb{P}}$

Profiled

 \mathbb{P} is estimated offline $\hat{\mathbb{P}}$ on a training device

$$\arg\max_{k} \sum_{x,y} \tilde{\mathbb{P}}(x,y) \log_{2} \frac{\hat{\mathbb{P}}(y|x)}{\hat{\mathbb{P}}(y)},$$

which is the template attack [Chari et al., 2002].

Distinguisher resulting from the MAP with

- A priori knowledge on the key distribution
- Markov condition

Profiled

P is estimated offline P on a training device

$$\arg\max_{k} \sum_{x,y} \tilde{\mathbb{P}}(x,y) \log_{2} \frac{\hat{\mathbb{P}}(y|x)}{\hat{\mathbb{P}}(y)},$$

which is the *template attack* [Chari et al., 2002].

Non-Profiled

P is estimated online P on a the device under attack

$$\arg\max_{k} \sum_{x,y} \tilde{\mathbb{P}}(x,y) \log_{2} \frac{\tilde{\mathbb{P}}(y|x)}{\tilde{\mathbb{P}}(y)},$$

which gives the Mutual Information Analysis [Gierlichs et al., 2008].

Outlines

Introduction

Motivation

Notations

Perceived Information

Derivations

Maximum a posteriori probability

Maximum Likelihood

Experiments

Believing or seeing?

Conclusion

Should probabilities be considered as precise as possible?

- Many recent works (e.g., [Veyrat-Charvillon and Standaert, 2009]) showed that using kernel estimation is more efficient than using histograms
- Accordingly, if $\mathbb{P}(Y)$ is known, should it be used instead of $\tilde{\mathbb{P}}(Y)$ and $\hat{\mathbb{P}}(Y)$?

$$\arg\max_{k} \sum_{x,y} \tilde{\mathbb{P}}(y) \tilde{\mathbb{P}}(x|y) \log_{2} \frac{\hat{\mathbb{P}}(y|x)}{\hat{\mathbb{P}}(y)}$$
$$\arg\max_{k} \sum_{x,y} \tilde{\mathbb{P}}(y) \tilde{\mathbb{P}}(x|y) \log_{2} \frac{\tilde{\mathbb{P}}(y|x)}{\tilde{\mathbb{P}}(y)}$$

Should probabilities be considered as precise as possible?

- Many recent works (e.g., [Veyrat-Charvillon and Standaert, 2009]) showed that using kernel estimation is more efficient than using histograms
- Accordingly, if $\mathbb{P}(Y)$ is known, should it be used instead of $\tilde{\mathbb{P}}(Y)$ and $\hat{\mathbb{P}}(Y)$?

$$\begin{split} \arg\max_{k} \;\; \sum_{x,y} \mathbb{P}(y) \tilde{\mathbb{P}}(x|y) \log_{2} \frac{\hat{\mathbb{P}}(y|x)}{\mathbb{P}(y)} \\ \arg\max_{k} \;\; \sum_{x,y} \mathbb{P}(y) \tilde{\mathbb{P}}(x|y) \log_{2} \frac{\tilde{\mathbb{P}}(y|x)}{\mathbb{P}(y)} \end{split}$$

Believing or seeing?

Simple scenario

$$X = Y(k^*) + N,$$

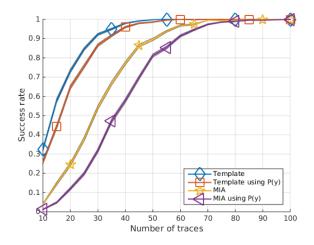
$$Y(k) = HW(Sbox(T \oplus k))$$

As Y follows a binomial distribution with parameters (n,1/2), we have

$$\mathbb{P}(Y) = \{1/256, 8/256, 28/256, 56/256, 28/256, 8/256, 1/256\}.$$

- Template attack: replace $\tilde{\mathbb{P}}(Y)$ and $\hat{\mathbb{P}}(Y)$ by $\mathbb{P}(Y)$
- MIA: replace: $\tilde{\mathbb{P}}(Y)$ by $\mathbb{P}(Y)$

Believing or seeing?



Cryptarchi 2015

Outlines

Introduction

Motivation

Notations

Perceived Information

Derivations

Maximum a posteriori probability

Maximum Likelihood

Experiments

Believing or seeing?

Conclusion

Conclusion

- PI is the expectation of the MAP over the keys
- ML is a simple alternative to MAP (with no penalty if keys are uniform)
- Maximum likelihood to recover
 - template attack when probabilities are estimated offline $(\hat{\mathbb{P}})$
 - MIA when probabilities are estimated online on-the-fly (P)
- All attacks work by "testing" a model (estimated offline or "on-the-fly") against fresh samples
- lacksquare $\mathbb{P}(Y)$ should be estimated instead of using its theoretical value

Thank you!

Questions?

annelie.heuser@telecom.paristech.fr

References I

Chari, S., Rao, J. R., and Rohatgi, P. (2002). Template Attacks.

In *CHES*, volume 2523 of *LNCS*, pages 13–28. Springer. San Francisco Bay (Redwood City), USA.

Gierlichs, B., Batina, L., Tuyls, P., and Preneel, B. (2008). Mutual information analysis.

In *CHES, 10th International Workshop*, volume 5154 of *Lecture Notes in Computer Science*, pages 426–442. Springer. Washington, D.C., USA.

References II

Heuser, A., Rioul, O., and Guilley, S. (2014).

Good Is Not Good Enough - Deriving Optimal Distinguishers from Communication Theory.

In Batina, L. and Robshaw, M., editors, *Cryptographic Hardware* and *Embedded Systems - CHES 2014 - 16th International Workshop, Busan, South Korea, September 23-26, 2014. Proceedings*, volume 8731 of *Lecture Notes in Computer Science*, pages 55–74. Springer.

References III

A Formal Study of Power Variability Issues and Side-Channel Attacks for Nanoscale Devices

In EUROCRYPT, volume 6632 of LNCS, pages 109–128. Springer.

Tallinn. Estonia.

Schindler, W., Lemke, K., and Paar, C. (2005).

A Stochastic Model for Differential Side Channel Cryptanalysis.

In LNCS, editor, CHES, volume 3659 of LNCS, pages 30–46. Springer.

Edinburgh, Scotland, UK.

References IV

Veyrat-Charvillon, N. and Standaert, F.-X. (2009). Mutual Information Analysis: How, When and Why? In *CHES*, volume 5747 of *LNCS*, pages 429–443. Springer. Lausanne, Switzerland.

