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POWER VS. LOGARITHMIC MODEL OF FITTS’ LAW:
A MATHEMATICAL ANALYSIS1

Olivier RIOUL2, Yves GUIARD2

résumé – Modèle de puissance vs. logarithmique de la loi de Fitts : une analyse mathématique.
Après bientôt soixante années d’études, il reste toujours à déterminer si la loi de Fitts, un modèle
célèbre du mouvement de pointage humain, est une loi logarithmique ou de puissance. Dans deux
articles abondamment cités, Meyer & al. ont avancé l’idée que le modèle de puissance qu’ils ont déduit
de leur théorie stochastique des sous-mouvements optimisés englobe le modèle logarithmique comme
un cas limite atteint lorsque le nombre de sous-mouvements devient grand. Reconsidérant la théorie
des sous-mouvements de Meyer et al., nous montrons que cette proposition est mathématiquement
inexacte. La théorie de Meyer et al. implique en réalité un modèle quasi-logarithmique plutôt que de
puissance, le premier n’étant pas équivalent au second. Une pleine conscience que les deux classes
possibles de description mathématique de la loi de Fitts ne sont pas équivalentes nous semble de
nature à stimuler la recherche expérimentale dans ce domaine.

mots-clés – Loi de Fitts, Équations fonctionnelles, Modèles mathématiques en psychologie,
Pointage, Mouvement rapide orienté vers une cible

summary – Whether Fitts’ law, a well-known model of human pointing movement, is a
logarithmic law or a power law has remained unclear so far. In two widely cited papers, Meyer
& al. have claimed that the power model they derived from their celebrated stochastic optimized-
submovement theory encompasses the logarithmic model as a limiting case, when the number of
submovements grows large. We review the Meyer & al. submovement theory and show that this
claim is questionable mathematically. Our analysis reveals that Meyer & al.’s theory implies in fact
a quasi-logarithmic, rather than quasi-power model, the two models not being equivalent. Awareness
that the two classes of candidate mathematical descriptions of Fitts’ law are not equivalent should
stimulate experimental research in the field.

keywords – Fitts’ law, Functional equations, Mathematical models in psychology, Pointing,
Simple rapid aimed movement

1. INTRODUCTION

Fitts’ law [Fitts, 1954; Fitts & Peterson, 1964; Plamondon & Alimi, 1997] is a
well-known empirical regularity which predicts the average movement time T it takes
people, under time pressure, to reach a target of width W located at distance D

1Part of this paper was presented at the 2011 Meeting of the European Mathematical Psychology
Group [Rioul & Guiard, to appear].

2Télécom ParisTech, CNRS LTCI, 46 rue Barrault 75634 Paris Cedex 13, (olivier.rioul,
yves.guiard)@telecom-paristech.fr
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(see Figure 1) with some pointer. This model has proven useful in several fields of
applied psychology such as Human-Computer Interaction and Ergonomics.
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figure 1. One-dimensional single-shot movement paradigm settled by Fitts [Fitts &
Peterson, 1964]. Starting at origin o, the pointer must be moved rapidly to target center c,
the target being displayed as a tolerance interval of width W .

The mathematical formulation of Fitts’ law is as follows: movement time T is
linearly dependent on an index of difficulty [Fitts & Peterson, 1964] ID, which in
turn is a strictly increasing function f of the relative distance D/W . Thus

T = a + b · f(D/W ),

where a and b are adjustable constants. The question is to know what the shape of
f is. Many different formulations have been proposed for f in the literature over
the past fifty years, none of which has been empirically disproved. Perhaps the most
favorably received are:

ID = f(D/W ) =



log2

2D

W
Fitts [1954] (1a)

log2

(
0.5 +

D

W

)
Welford [1960] (1b)

log2

(
1 +

D

W

)
McKenzie [1989] (1c)√

D

W
Meyer et al. [1988] (1d)( D
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Meyer et al. [1990]3 (1e)

In particular, whether Fitts’ law is a logarithmic (1a)–(1c) or a power law (1d)–(1e)
has remained unclear so far. One plausible explanation is that the practical range of
relative distances D/W that can be actually investigated in the laboratory is rather
narrow [Guiard & Olafsdottir, 2011]:

3 .
D

W
. 33. (2)

This is because for D/W � 3 experimenters have a floor effect on T (speed saturation)
while for D/W � 33 the error rate tends to explode (accuracy saturation). Within
the range [3, 33], the curves (1a)–(1e) are indeed similar (see Figure 2), making it
difficult to decide empirically between the logarithmic and the power model.

3Here n is an integer representing the maximum “number of submovements” [Meyer et al., 1990]
and (1d) corresponds to n = 2. The paternity of the power law was later claimed by Kvålseth [1993],
who showed that the formulation T = a(D/W )b achieves higher fits to Fitts’ data [Kvålseth, 1980].
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figure 2. Movement time T vs. D/W for the four formulations of (1) in the range (2).
Eq. (1d) yields a square-root law while Eq. (1e) is plotted with n = 3 (cube-root law).

Such irresolution would not be a problem if mathematical models were just black
boxes serving to deliver numerical simulations of empirical data – that minimal job
is done about equally well by the logarithmic and the power model of Fitts’ law.
Thus, from a practical perspective, one could always support the claim that one
mathematical model or another accurately approximates the data.

But our concern is more theoretical. In general Fitts’ law researchers do care about
the internal structure of their mathematical formulas, which they typically take as
models of the law they want to understand. Ideally a mathematical model, as distinct
from a blind numerical simulation, is a short statement whose variables, parameters,
and relations explicitly map onto quantities and relations of some substantive theory.
For example, in (1c) the term log2(1 + D/W ) is meant to represent a measure of
Shannon’s information capacity [Shannon, 1948] and so the logarithmic form of
that model is a deliberate, theoretically-driven option. Likewise, it is an elaborate
theoretical analysis that led Meyer et al. [1990] to put forth the power equation
of (1e), in which the parameter n is supposed to represent the maximum number of
submovements a participant is willing to make.

Despite the similarity of predictions within the range of interest (2), the logarith-
mic vs. power form of Fitts’ law is indeed a theoretically-important empirical issue,
and so there is reason to be concerned by the lack of consensus. To paraphrase Platt
[1964, p. 351], “a failure to agree for 60 years is public advertisement of a failure to
disprove.”

In two widely cited papers Meyer et al. [Meyer et al., 1988, 1990] argued that
a+b·(D/W )1/n tends to a′+b′·log(D/W ) as the maximum number n of submovements
tends to infinity. This suggests that there is no real logarithmic vs. power issue
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about Fitts’ law: the power model they derived from their celebrated stochastic
optimized-submovement theory would encompass the logarithmic model as a limiting
case.

It turns out, however, that this claim is questionable. We propose a detailed
analysis to show that Meyer et al.’s model does not predict a genuine power law
but rather some quasi-logarithmic law, the two classes of candidate mathematical
descriptions of Fitts’ law being not equivalent.

This paper is organized as follows. In Section 2, after reviewing some mathematical
derivations of Fitts’ law based on submovement models, we restate Meyer et al.’s
claim and disprove it. We then review the stochastic optimized-submovement model
in Section 3 to explain analytically why the power formulation fails as a mathematical
description of Fitts’ law for multiple submovements. Section 4 concludes.

2. PREVIOUS WORK AND A DISPROOF

We begin with a short review of two major mathematical derivations of Fitts’ law.
Both assume that the pointing movement toward the target is composed of a sequence
of n submovements.

2.1. deterministic iterative-corrections model

The deterministic iterative-corrections model was originally formulated by Crossman
and Goodeve [1963]. The model assumes that each submovement (i) requires a
constant time ∆T to be executed and (ii) covers a constant fraction λ < 1 of the
remaining distance to the center of the target. The target is reached if that remaining
distance is equal to half the target width W/2.

It follows that the required time T = n ∆T to reach the target is such that
λnD = W/2. This is easily seen to imply

T = c log2

2D

W

where c = ∆T log2(1/λ), that is, a logarithmic formulation of the form (1a).
This model, while being very simple, has long been abandoned because it relies

on rather strong assumptions (i,ii) that have been empirically observed to be wrong
[Plamondon & Alimi, 1997, § 2.1.2]. Also, one fatal objection is that the model
ignores submovement endpoint variability, and thus fails to predict any movement
endpoint spread and to accommodate the possibility of target misses, most notably
overshoots [Meyer et al., 1988, 1990; Plamondon & Alimi, 1997].

2.2. stochastic optimized-submovement model

The stochastic optimized-submovement model proposed by Meyer et al. [1988] as-
sumes a random spread of submovement endpoints. The authors follow Woodworth’s
1899 suggestion [Woodworth, 1899] that the movement involves n = 2 successive
phases4: There is an initial ‘ballistic’ submovement for which the endpoint spread is

4The model was also extended to multiple submovements (arbitrary large n): see Section 3.
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proportional to velocity, and whose duration is given by [Smith, 1988]

Ti =
D/W − 1/2

s

where s is some spread parameter5. Let ∆ be the resulting distance to the target
center; ∆ is modeled by a stochastic (random) variable – following, e.g., a Gaussian
distribution – whose standard deviation is proportional to s.

Next, if the target is not reached yet (|∆| > W/2), a secondary submovement
occurs. The total average time (within a constant multiplicative factor) is the sum:

T = min
s

{D/W − 1/2

s
+ E|∆|>W/2

( |∆|
W

)}
(3)

where the expectation E is with respect to ∆’s distribution over the region |∆| > W/2.
The optimization takes the form of a minimization over s, the only free variable left
[Meyer et al., 1988, appendix].

Meyer et al. found that the solution is proportional to

T ∝
2θ

√
D/W −

√
W/D

θ
√

θ −W/D
(4)

where θ is in fact a complicated function of D/W such that θ = k exp 1
2(θD/W−1)

and
is determined iteratively by a fixed point theorem [Meyer et al., 1988, appendix]
for a given value of proportionality factor k. The result is well aproximated by a
square-root law of the form (1d) (see Figure 3).
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figure 3. Movement time T vs. D/W for the exact solution (4) (solid) and corresponding
square-root approximation (dashed).

5Following [Smith, 1988], a term 1/2 is introduced so that T = 0 when the origin already lies in
the target.
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The stochastic optimized-submovement model can be easily extended to multiple
submovements (see subsection 3.1 below). Meyer et al. [1990] claimed that for n
submovements, the model yields a solution that can likewise be approximated by a
nth root law of the form (1e).

2.3. Meyer et al.’s [1988, 1990] claim for multiple submovements: a
disproof

The claim is as follows (see Figure 4):

Mathematically, log2(D/W ) is equivalent to the limiting case of a power
function (D/W )x of D/W whose positive exponent x tends to zero [Meyer
et al., 1988, footnote 13].
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figure 4. A remake of Meyer et al.’s [1990] original Figure 6.13 giving their hypothetical T
vs. D/W . They claim that as n grows large, their power relation “approaches a logarithmic
function, paralleling Fitts’ Law” [Meyer et al., 1990].

Meyer et al.’s widely cited papers [1988, 1990]6 have convinced the Fitts’ law research
community that their power law encompasses the logarithmic law at the extreme
case n = ∞ (see e.g. Wobbrock et al. [2008, Eq. (18)] for a recent account).

It turns out, however, that the above claim is mathematically questionable. For
any fixed value of D/W > 0, when the exponent x = 1/n tends to zero,

n
√

D/W = (D/W )1/n = exp
( 1

n
loge(D/W )

)
6At the time of this writing, [Meyer et al., 1988, 1990] received 744 and 225 citations, respectively.

Source: Google Scholar.
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has first order approximation 1 + 1
n

loge(D/W ) but tends to exp 0 = 1 as n → +∞.
Hence the limit is a ‘constant law’, which is not even a strictly increasing function of
D/W and is, therefore, inadequate as a model for Fitts’ law7. This was apparently
first noticed by one of us [Guiard et al., 2001, footnote 6].

Since we took (1e) for granted, our disproof raises the question of the actual
validity of the power law. Also, since a square-root or cube-root function is certainly
not constant, it makes the dependence on n questionable: different nth root laws (1e)
appear different for different values of n, including large ones. In the next section,
we attempt to solve these problems.

3. DETAILED ANALYSIS FOR n SUBMOVEMENTS

We now review the submovement theory of Meyer et al. for multiple submovements
[Meyer et al., 1990; Smith, 1988] to explain analytically why the nth-root model
fails.

3.1. derivation

Let T = fn(D/W ) be the average movement time required to reach the target
after n submovements. After the initial ‘ballistic’ submovement, there remain n− 1
submovements to reach the target located at random distance |∆|. The stochastic
optimized-submovement model (3) then predicts:

fn

( D

W

)
= min

s

{D/W − 1/2

s
+ E|∆|>W/2fn−1

( |∆|
W

)}
(5)

for any n > 1. To simplify the notation let δ denote any value of D/W and let
t denote any time value. To simplify the calculations we follow Smith’s [1988]
assumption that ∆’s distribution is uniform in the interval (−Ws/2, Ws/2)8:

fn(δ) = min
s

{δ − 1/2

s
+

2

s

∫ s/2

1/2

fn−1(δ)dδ
}

(6)

Note that the factor 2 accounts for undershoots as well as overshoots. It is easily seen
by induction that fn is well defined, regular (indefinitely continously differentiable)
and strictly increasing in the range δ > 1/2. We can, therefore, define its inverse
function δ = gn(t). It turns out [Smith, 1988] that the determination of relative
distance vs. time (that is, of gn) is easier than the direct determination of fn, that is,
of time vs. relative distance as in the classical formulation of Fitts’ law.

7The illustration made in [Meyer et al., 1990, Figure 6.13] (see Figure 4) would suggest a weaker
claim: there exist sequences (an), (bn) of real numbers with bn > 0 and constants a and b > 0 such
that limn→∞

(
an+bn

(
D
W

)1/n)
= a+b ·loge

(
D
W

)
. This is in fact possible by setting bn = a−an = n ·b

for all n, so that the curves all intersect at D/W = 1. During the review process, we became aware
that a similar statement was put forth by Kvålseth [1993]. This implies, however, that (an), (bn) are
unbounded sequences so that T = an + bn

(
D
W

)1/n is not a genuine power model: Section 3 offers
an explanation.

8Calculations run similarly for other distributions (e.g., Gaussian), with just more intricate
results.



92 o. rioul and y. guiard

We now derive a simple proof leading to Smith’s solution to (6). Making the first
derivative of (6) vanish, the optimal s = s(δ) satisfies

−δ − 1/2

s2
− 2

s2

∫ s/2

1/2

fn−1(δ) dδ +
1

s
fn−1(

s
2
) = 0,

which boils down to the condition

fn(δ) = fn−1(s/2). (7)

Now, by inverting arguments according to δ = gn(t), (6) can be rewritten as

t =
gn(t)− 1/2

s
+

2

s

∫ gn−1(t)

gn−1(0)

fn−1(δ)dδ (8)

t =
gn(t)− 1/2

s
+

2

s

(s

2
· t−

∫ t

0

gn−1(τ)dτ
)

(9)

where we have used (7) in the form gn−1(t) = s/2 in (8) and the inverse function
integration theorem (see Figure 5) in (9). After subtracting t on both sides of (9)

t

!
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figure 5. The inverse function integration theorem states that the sum of the two areas
A =

∫ s/2
1/2 fn−1(δ)dδ and B =

∫ t
0 gn−1(τ)dτ is equal to A + B = s

2 · t, the area of the
rectangle.

we end up with a simple recursion relation

gn(t) =
1

2
+ 2

∫ t

0

gn−1(τ)dτ

which is easily solved by induction. One finds:

gn(t) =
1

2
+

1

2
(2t) +

1

2

(2t)2

2
+ · · ·+ 1

2

(2t)n

n!
=

En(2t)

2
, (10)
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where
En(t) = 1 + t +

t2

2!
+ · · ·+ tn

n!
(11)

denotes the nth partial sum of the Taylor series of the exponential exp(t). Denoting
its inverse function by Ln = E−1

n , one obtains the following law:

T =
1

2
Ln

(
2

D

W

)
. (12)

3.2. closed-form expressions

For each n, the exact solution (12) is obtained by solving an nth degree equation of
the form En(t) = 0. We can compute Ln for the first few values of n.

For n = 2 one immediately obtains

L2(x) =
√

2x− 1− 1

which implies
T =

√
D/W − 1/4− 1/2.

Thus one recovers the quasi square-root law of Meyer et al. [1988].
For n = 3 one obtains

L3(x) =
3

√
3x +

√
9x2 − 6x + 2− 1− 1

3
√

3x +
√

9x2 − 6x + 2− 1
− 1,

which is a rather complex “quasi cube-root law:”

T =
1

2

3

√
6 D

W
+

√
36( D

W
)2 − 12 D

W
+ 2− 1− 1

2 3

√
6 D

W
+

√
36( D

W
)2 − 12 D

W
+ 2− 1

− 1

2
.

The case n = 4:

L4(x) =
1

2

√√√√√√√√√
16(2x−1)

3
√

192x+32
√

32x3−12x2+12x−3−32
− 3

√
192x + 32

√
32x3 − 12x2 + 12x− 3− 32

− 16vuut− 32x−
3
√

(192x+32
√

32x3−12x2+12x−3−32)2+4
3
√

192x+32
√

32x3−12x2+12x−3−32−16

3
√

192x+32
√

32x3−12x2+12x−3−32

− 8

+
1

2
√
−32x− 3

√
(192x+32

√
32x3−12x2+12x−3−32)2+4

3
√

192x+32
√

32x3−12x2+12x−3−32−16
3
√

192x+32
√

32x3−12x2+12x−3−32

− 1

cannot be easily identified with a “fourth-root law” and is probably too intricate to
be of any practical use.

For n > 4 the equation En(t) = 0 is not even solvable by radicals and so there
exists no closed-form expression. It follows that for large n, (12) cannot be identified
with an nth-root (power) formulation of Fitts’ law. Thus, the conclusion of Meyer et
al. [1988, 1990] that Fitts’ logarithmic formulation arises out of a power law with an
infinite number of submovements is doubtful. The next section confirms that doubt.
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3.3. quasi-power vs. quasi-exponential laws

In our derivation, the case |∆| ≤ W/2 (target is reached) implies a total number of
submovements strictly less than n. Therefore, n appears as the maximum number
of permitted submovements and it would be desirable to let n → +∞ to obtain a
general formulation of Fitts’ law accounting for any number of submovements.

Similarly to the case n = 2 [Meyer, 1988], one could argue that when D/W is
large (hence T is large) (11) can be approximated by its highest-degree term:

D

W
=

1

2
En(2T ) ≈ 1

2

(2T )n

n!
(13)

so that (12) is indeed approximated by an nth root law :

T =
1

2
n

√
n!

D

W
. (14)

However, this is not a genuine power model since as n → +∞, the multiplying slope
factor explodes: n

√
n! ∼ n/e → +∞ (see Figure 6).
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figure 6. Approximated nth-root laws (14) for increasing values of n.

In contrast, as Smith [1988] noticed, for any value of D/W (including small ones),
the partial sum (11) rapidly converges to the exponential as n → +∞:

D

W
=

1

2
En(2T ) −→ 1

2
exp(2T ), (15)

and so the final result is logarithmic (see Figure 7):

T =
1

2
loge

(
2

D

W

)
. (16)
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Comparison of Figures 6 and 7 shows that even for particular moderate values
of n, the nth-root power function does not approximate the stochastic optimized-
submovement model’s predicted movement times. The exact solution (12) is rather
quasi-logarithmic and rapidly converges to the logarithmic law (16).
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figure 7. Exact laws (12) rapidly converging to the logarithmic law (16) as n →∞.

4. CONCLUSION

Our mathematical analysis shows that for multiple submovements, the solution of
the stochastic optimized-submovement model cannot be identified with a power law
of the form (1e), even to a rough approximation, as the number n of submovements
grows large. Not only does the power model fail to encompass the logarithmic
model, the submovement theory does not yield a genuine power law; it is, rather,
a quasi-logarithmic law (12), which rapidly converges to a logarithmic law of the
form (1a) or (16).

Since Meyer et al.’s stochastic optimized submovement theory [1988, 1990] is
generally considered the best explanation of Fitts’ law to date, the community should
be aware that the supposedly resulting power model is in fact a logarithmic model
reminiscent of Fitt’s original formulation – as was incidentally the case for the older
deterministic iterative-corrections model.

In addition, our rigorous analysis shows that the two classes of candidate mathe-
matical descriptions of Fitts’ law are not equivalent and this, we feel, should stimulate
experimental research on the subject.
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