An optimal algorithm for ressource allocation problem in concave context

A. Le Poupon and O. Rioul
ENST, 46, rue Barrault, 75634 Paris cedex 13
(Axel.LePoupon, Olivier.Rioul)@enst.fr

Keywords: Trees, Discrete Lagrangian Method, Dynamic programming

In this communication, an optimal algorithm is presented for solving the following resource allocation problem

$$
\begin{equation*}
\max \left\{A=\sum_{i=1}^{N} A_{i} \mid B=\sum_{i=1}^{N} B_{i} \leqslant B_{0}\right\} \tag{1}
\end{equation*}
$$

where the $\left(A_{i}, B_{i}\right)$ are constrained to a finite set of values and where B_{0} is the ressource budget. We restrict our study to sets $\left\{\left(A_{i}, B_{i}\right)\right\}$ such that A_{i} is a concave function of B_{i} (see [3] for a generalization). Applications include optimal bit allocation procedures for source coding [1] and optimal power allocation for multicarrier channel coding [2].

Up to now, (1) has not been solved completely by an efficient algorithm. Dynamic programming has disastrous computational complexity, while Lagrangian methods [1] give sub-optimal results because the optimal solution does not necessarily lie on the convex hull in the $A-B$ plane (see fig.1a).

Define a critical multiplier λ as one of the values $\lambda=\Delta A / \Delta B$ for which two consecutive points on the convex hull are joigned by a segment of slope λ. The Shoham-Gersho procedure [1] finds a point on the convex hull as the path corresponding to the whole sequence of multipliers $\lambda_{1} \geqslant \lambda_{2} \cdots \geqslant \lambda_{M}$. We propose a procedure to find the optimal solution to (1) obtained from a concave path corresponding to a subsequence $\lambda_{i_{1}} \geqslant \lambda_{i_{2}} \cdots \geqslant \lambda_{i_{m}}$ (see fig.1b). The search of an inaccessible solution is made efficient by the means of a test criterion ensuring that all subsequent subpaths passing through a given point consist only of suboptimal points. They are therefore removed from the search which continues with surviving paths.

We obtain the following results : for $N=16$ sets of 16 values $\left(A_{i}, B_{i}\right)$, solving (1) with B_{0} covering the whole range (1000 test budgets), we find 100% of the optimal points when [1] finds in mean bearly 5%, and we operate in 5.0 seconds when dynamic programming lasts 451.5 seconds (on Pentium4 @ 2.6 GHz).

Figure 1: (a) Zoom on a $A-B$ set showing inaccessible solutions (inside triangles) between consecutive (circled) convex hull solutions. (b) Examples of concave paths drawn from origin $(A, B)=(0,0)$.
[1] Y. Shoham, A. Gercho, ASSP 36, 1988, 1445-1453.
[2] B. S. Krongold et al., ITC 48, 2000, 23-27.
[3] A. Le Poupon, O. Rioul, "On optimal ressource allocation", Trans. IT, submited, 2005

