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ABSTRACT

General results concerning Wigner-Ville representations with respect to the Weyl-
Heisenberg group (roughly, the group of time and frequency shifts) are transposed into another
formalism, using ax-+b group representations (ax+b denotes the group of shifts and
dilatations). This provides analytic, painless representations of signals, in which the Wigner-
Ville distribution is smoothed with windows adapted to a logarithmic scale in frequency.

A particular choice for the smoothing kernel, given by the Wigner-Ville distribution itself,
leads to the squared modulus of the Waveler Transform, introduced several years ago by Jean
Morlet and Alex Grossmarn!®!),
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1. NOTATIONS AND DEFINITIONS,

Let s(r) be a time-varying recal or complex-valued signal with finite energy, ic.
s()eL?(R,dr). Tis Fourier Transform is denoted by

Sy = [s@) e @™y,
its Wigner-Ville distribution is given by
1 * T ~2I7VT
W, (5 V) = js(r+_2—) $"(e42) e, 1)
In the following we use an extended form of (1),
o T * T -2imvt

W) = s (t+(1-0)) 5" (¢=(140) ) €, )
where —1<a<1. It is known that the Wigner Ville distribution and the Rihaczek distribution,
defined by

R, V) =5() S"(v) e 2™,

can be recovered from (2) by letting 0=0 and a=%1 respectively.

2., THE COHEN CLASS REPRESENTATIONS,

A common choice for so-called smoothed Wigner-Ville distributions is given by the Cohen
class, which can be obtained with general assumptions on a certain function C(s)¢, v). For
instance, if we assume that C(s)(z V) is bilinear in s, and that shifting s(¢) in time and
frequency amounts to shifting C(s) in the time-frequency plane, we obtain the following
formula:

Cri)ev) = | [ Tu—t.x—v) WG, x) du dx. 3)

Without Ioss of generality, we have taken o=0 in (3). Any W, v) can in fact be recovered
from (3), with a suitable kemel TT{H. A choice commonly adopted for practical computations
is to take a separable kernel I1(¢, v) = Iy (¢) TI;(v). Note that the smoothing procedure uses
windows whose dimension and shape remain constant for cvery value of T and x.

The following lemma shows that another particular choice for IT leads to the squared
modulus of the Short Time Fourier Transform.

2.1 Lemma 1:

Let s(1), s’(O)eL?(R,dt). One has:



|<s|s>12%= ”WS‘(:,V) WS ™ (t,v) dr dv, 4)
where <s|5'> denotes the dot product of s and 5", <s | &> = fs(t)s’* (Hdt.

Proof: W(t,v) is given by a Fourier Transform of a specific function that can be recovered
via the Fourier inversion formula:

s(t+(1—oc)izc~) S*(t—(1+0t)-21—) = [WoLv) ™ gy,
Using Plancherel’s isometry formula for W&(t, v) and W (z,v), one has:
T * T sk T, , T o o
fs (t+(1-~0€)“2‘) s (t—(1+a)§) § (H—(:{—a)—z—) § (;_(1+a),_2_) dt = st WS (V) dv.

Integrating over the variable ¢, and using the transformation;

T
u~t-—(0¢——1)~2-
T

= f—(0t1)—
v (0 )2

{whose Jacobian is 1) in the first integral leads (o (4) m

The squared modulus of the Short Time Fourier Transform can now be obtained casily if
we consider a representation of the Weyl-Heisenberg group, defined by
Ui(s () = e¥™ 5 (1), ®)
Uy simply consists in shifting the signal in time and frequency. An easy computation leads 0:
Wi (6. V) = Wt —1,v—x) 6)
If we define the Short Time Fourier Transform to be:
S,x) = [5(0) g"(e—1) 2™ ay, (7)
where g () is a given "analysing window," we have the following well known result:
2.2 Theorem 1:
Let s(te L2 (R,dt) and S (T.x) be the Short Time Fourier Transform of s(t). One has:
|St | 2 = [ [wea,v) we™@—,v—x) dt dv. ®)

Proof: Using lemma 1 and (6), we have:



| Ss(txy | 2= |<s | UYg)»> % = ”W%;(g)(t,v) W (t,v) dr dvm

3. A WIGNER-VILLE REPRESENTATION OF THE WAVELET TRANSFORM.

We use the same scheme as in § 2 to show that the squared modulus of the wavelet
transformation with respect to a analysing wavelet®® geLz(R,dr) can be recovered by
correlating the two distributions Wi(s,v) and W,(z,v). This is formally equivalent to § 2,
except that this correlation must now be computed in the ax+b-group sense, as shown in § 3.2.

Let U2 be the left-invariang square integrable representation of the ax+b group:

bo(r)) = g 122
Ua(s (1) = ms( P (®)

where a and » €R, a>0. Using the decomposition U2 = U U one can easily prove the
following lemma, which is similar 10 (6):

3.1 Lemma 2:

Let s(Ye L2(R,dt) and Ug (8 (1)) be the lefe-invariant ax+b-group representation. One has:
o acl —b
WUﬁ(S) (t! V) = W.s‘ (T;av)- (9)
Proof: We have to show that
Wiy (6, v) = Wie—b,v)
t
Wiz (V) = Wi(—.av)

The first assertion is obvious. A simple transformation of variables leads to the second m

If we define the Wavelet Transform to be:

1 «, t—b
T.(b,a) = pmemce | §(¢ —) dt 10
6.0) = =[50 75 (10)
where g(t) is a given "analysing wavelet’™ " we have the following:
3.2 Theorem 2:
Let S(f)ELz(R,df) and T.(b,a) be the Wavelet Transform of s(t). One has:
| Tyb,a) |2 = [ [wee,vy wes b,av)dtdv (11)



Proof: Using lemma 1 and 2, we have:

| <s | Ue)>1?
= | [Wiey vy WE*(t,v) dr dv

| T,(b,a) | 2

= ”W?(t,v) Wy *(fig,av) dt dvm

4. WIGNER-VILLE REPRESENTATIONS ADAPTED TQ SHIFTS AND DILATATIONS,

Following & 3, we can define a general "scale-smoothed" version of Wigner-Ville
representations by taking

Qr(s)(b.a) = f_[l'[(«%g,av) W (¢, v)dedv. (12)

This new class does not contain the Cohen class, but gives another smoothing procedure. Note
that a enters in both the time and the frequency intcgration. For numerical computations, it
may be useful to choose a separable kernel I1(z, v) = Iy (¢) IT,(v), which leads to the formula
(for o=0):

Q) bay— [ fs6-2) 5 0+ 2) 1) wy(E) ar a, 12)

where ¥, is the Fourier Transform of [T,. The smoothing procedure of (12) appears to be
quite different from (3). This is due to the behaviour of the smoothing windows used, whose
shapes are concentrated in time for high frequencies (v-3e<), and dilated in time for lower
frequencies (see figure). These windows have also the remarkable property to be automatically
distributed in a Iogarithmic way in the frequency domain:
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4.1 Remarks on special notations:

Wigner-Ville representations adapted to shifts and dilatations as defined in {12), can be
expressed in a general formalism where the time-frequency notations (7, v) are replaced by
time-scale notations (b,a).

In order to define the Wigner-Ville distribution W(t,v) depending on (b,a) we note that b
is a time translation parameter, whercas 1/a can be considered as a frequency parameter.
Moreover the sine wave function:

T
-2 —2inty
e Y=

is dilated (g) while translated (v) in frequency. This leads us to define Wigner-Ville
distribution adapted to time-shifts and time-dilatations as follows:
T
T, %, T, THUE
W,{b,a} = js(b+—2—) s"b-z)e . (13)
The correspondance between W, (f, v) is:

Wt V) = W, (b, —}
a

if we assume r=b and v=1/a. WX{b,a} is defined in a similar manner. Note that we could
have chosen t=b and v=k/a, where k is any scale constant. This has no implication for the
following definitions.

{b,a} are elements of the ax-+b-group for the product defined by {b,a}{P.y} =
{aP+b,ay}. The inverse of {b,a} is given by {ba}! = {-=bta,1/a}. and the identity (unit
element in the group) is {0,1}.

With these notations we can rewrite (11) as:

| o) |2 = [ [WEIBY W™ ({ba} {BoyD) —q%—;"l (14)

Note that the total cnergy of s(z) is given by integrating (14) with respect to the measure
db da/a?, if and only if g is said to be "admissible®]," i.e.;

~ 2
jlemi® . ..,
|vi
The general class of ax+b-smoothed Wigner-Ville representations is now defined by (compare

(12)):



Qu)b.a) = | [T{b.a} B,y Wiy} dﬁyfy (15)

Note that d(B,y) = dPdy/y* is the left-invariant measure of the ax+b-group, and that
integrating (15) with respect o d(b,a) leads to the total emergy of s(z) if IT is suitably
normalized. The right term of (15) appears to be the general expression of a correlation with
respect to the ax+b-group. We can taken o=0 since any W& {b,a}, with 00, can be recovered
from (15), with

I {balt = Ee .

We had a similar property for W(z, v) which can be recovered from (3) with

—_—V!
nd(t’ V) = @

Note that we have Tl {b,a} =y(b,1/a -1), so that Il, does not verify the same property
(13°) as W,. This comes {rom the fact that the two smoothing procedures (3) and (15) act in a
different way, so that no simple mapping (t,v)—{b,a} can make the connexion between (3)
and (15) for every function of two variables involved. Besides, W can be recovered from W,
for ox=0 with the limit of 11y {b,a} as 0—0, i.c. 6({b,a}={0,1}) as expected.

4.2 General assumptions providing Qp(s)(b,a):

It is interesting to note that, in a similar manner to the Cohen’s class, Qp(s)(b,a) can be
obtained with general assumptions as shown in Theorem 3:

4.2.1 Theorem 3: Ler Q(s)(b,a) be a bilinear form in s ()e L2(R,db), i.e.:
Q)ba) = | [K ¢ t.a,b) s() ") dr dt (16)

where Ke LM(R*,dr dt db da/ a). Assume that S(s)(b,a) is invariant under left ax-+b-shifis,
i.e.; for every element {b,,a,} of the ax+b group,

QU ())(B.a) = QsHLb,.a, 1 {b.a}). amn

Then there exists a kernel TI(h, a) such as:
Qn(s)bra) = | [W, B0 Ti{buat™ {B.0) MB (18)

Proof: Qp(b,a) defined by (18) can obviously be written in the form (16) via (12°). The
property (17} is also easy to verify, since (9) can be rewritten in the form:



WU:z(s){b!a} = Ws({bavao}_l {b.al)
and that the lefi-invariant measure dB do/o? is by definition invariant under left ax-+b shifts
{b,a}t—>{bya,Hb,al.
To prove the assertion, one just has to note that (17) implics:

bbs %,

a, a

Klayt+b,, a,t. b, a)y =K, 1,

for every b,,a,. Thus X is only depending on (r—b)/a and t/a. Taking the partial Fourier
Transform of K ((t—b)/a,t/a) in T and making the transformation of variables: 3=t and
o = 1/v (where v is the dual Fourier variable of T) leads to the announced formula m
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