
JS Frameworks for the web

pdf

Telecom Paris
Slides prepared by Jean-Claude Dufourd

1/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

http://jcdufourd.wp.mines-telecom.fr/

Introduction

JS is a very fast changing environment, everything changes
in 2 years
jQuery was the first framework, a ground breaker
Other early frameworks have all died : prototype, mootools,
yui, dojo. . .
Other functions have been integrated in frameworks

• link to a database, marshalling / unmarshalling
• responsive design
• JS module management
• compilation
• . . .

2/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

jQuery
Manage the differences between browsers
Develop faster, less verbose,
Facilitate DOM manipulations, CSS selectors
Manage mobile screen/feature differences
Add UI sugar (including animations), through plugins
A few tens of Kb
CONS :

• Opinion : horrible syntax : $
• Encourages spaghetti code that is hard to debug : e.g.

impossible to debug CSS if jQuery changes CSS on-the-fly
• It is easy not to follow good practices
• No high level abstraction
• Opinion : No logic in the API, e.g. a return value can be a

single value or an array, depending on context
PROS :

• Huge success, used everywhere
• Lots of very vocal fans
• Lots of variants and refactored versions

3/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Common Notions in Modern Libraries

1. Modules and manifest
2. Compilation, obfuscation, minifier
3. HTML+CSS+JS components
4. Communication and async code
5. Binding
6. JS Dialects
7. Routing

4/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Notion 1 : Modules and manifest
Need for encapsulation : the notion of private in Java
Closure :

• The closure is a function call.
• The variables and functions defined in a closure are not

visible outside.
• The return value of the closure makes variables and

functions accessible outside.
• The closure call parameters allow you to inject

dependencies that can remain hidden.
• The closure continues to exist as long as there is a pointer to

his space.
• The manifest is a documentation of everything that goes in

or out out of a module / closure.

function checkscope() {
var scope = "local scope";
function f() { return scope; }

// 'f' is a closure around 'scope'
return f;

}
var x = checkscope(); // x is a function
x(); // → "local scope"

5/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Example of manifest
{

"name": "mpat",
"version": "1.0.1",
"description": "",
"main": "webpack.config.js",
"scripts": {
"dev": "NODE_ENV=dev webpack-dev-server --content-base react_src --host 127.0.0.1 --port 8888",
"build": "NODE_ENV=production webpack --progress",

...
},
"author": "",
"license": "ISC",
"dependencies": {
"axios": "ˆ0.15.3",
"babel-core": "ˆ6.26.0",

...
"react": "15.3.1",

...
"redux": "ˆ3.7.2",

...
"webpack": "ˆ1.13.1",

}
}

6/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Modules, Node.js and the browser
Node.js + npm : a lot of very professional modules

• Node.js : Chrome’s JS interpreter, packaged as a python
interpreter

• npm : package manager, equivalent of pip in python or gem
in Ruby

What about the browser?
• A module management framework . . . there are many
• Require.js : import require.js, then a manifest, then

everything is loaded (2 script objects)
• webpack : a kind of compiler + linker that generates a big

chunk of JS
In the scope :

• ES6, not everywhere . . . sometimes translated into ES5 >
ES3

• babel to handle all dialects
• JSX to edit in HTML-like syntax

There is now a big cost of entry into a JS project : module
environment, packaging, dialects . . .

7/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Notion 2 : Compilation, Obfuscation, Minifier
The problem is less serious on the server side/node.js : use
require() or import
Many scripts to import into the HTML page -> 1 only
Large number of hierarchical dependencies

• Example of my last project : 655 module dependencies
• Order of loading
• Dependency additions, vulnerabilities
• Single loading

Reduce the size and the loading time
• Compress / Minify
• Remove the useless

Protect the code (bof)
Need a manifest that documents the module and its
dependencies : package.json
Many different systems, but it converges

8/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Notion 3 : Components and templates

A component is a coherent set of HTML + CSS + JS for a
function
More dependencies on other components
Some frameworks do as much as possible in JS, others
separate structure, content, style and code well
The HTML part can be seen as a template

9/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Notion 4 : Communication and asynchro-
nous code

As soon as a request goes through the Internet, the answer
comes later and you should not wait because waiting would
block other browser processes.
Callback method

10/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Async : Promise
function get(url) {// Return a new promise.

return new Promise(function(resolve, reject) {
var req = new XMLHttpRequest();
req.open('GET', url);
req.onload = function() {
if (req.status == 200) {
resolve(req.response);

// Resolve the promise with the response text
} else {
reject(Error(req.statusText));

// Otherwise reject with the status text
}};

req.onerror = function() { // Handle network errors
reject(Error("Network Error"));

}
req.send(); // Make the request

});
}

get('story.json').then(
function(response) { console.log("Success!", response); },
function(error) { console.error("Failed!", error); });

11/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Notion 5 : Binding
One-way vs two-way data binding

Make the link between model variables and views
There may be a need for a link in one direction and / or the
other

12/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Notion 6 : JS Dialects

JSX
• HTML-like markup to define the HTML in the JS
• Allows the UI to be described within the JS code
• Combines templating and JS
• Can be translated on the fly

TypeScript
• JS with variable and function types
• OO, enum, generics, any
• Complicated . . . but in Angular

CoffeeScript (losing speed)
All “can” be compiled in ES3 and ES5

13/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Notion 7 : Routing

Routing is usually on the server side
Map URLs of a server

• / routed to the intro
• /docs routed to a webspace with docs
• /restServ . . . routed to a REST service with urls like

/RestServ/obj1/obj2/param/param2
• /formResp . . . routed to a service that responds to an HTML

form (?par=val&par2=val2)
• It can be complicated, dynamic . . .

Angular provides routing between views

14/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Introduction to a few frameworks
Bootstrap :

• Origin : Twitter and the need for “responsive” (mobile, tablet,
desktop)

• One page, only predefined components
• CSS Framework

React + Redux :
• Origin : Facebook and their need to have plenty of

components active on the screen
• MV (c) multi component, multi thread
• A state and a binding update cycle
• Less framework and more library
• One-way binding
• React Native and React Navigation

Angular :
• Origin : Google
• Full MVC, multi component, multi views
• A rigid project structure (with CLI support)
• Two-way binding

D3.js : data visualization, origin : Stanford15/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Bootstrap
Content

CSS compatibility between browsers (reset of different
defaults)
12 columns grid system for layout
Multi-screen support (responsive design)
The mobile has priority over the desktop
Full of cool and easy to use widgets
Plugins (dialogs, tabs, carousel, tooltips . . .)

Load Bootstrap from a CDN

<link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css" rel="stylesheet"/>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no"/>

16/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Layout

17/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

How to use the grid
<div class="row">

<div class="col-md-4">
<!-- content -->

</div>
<!-- 8 columns remaining -->

</div>

col-xs-[num] no max size
col-sm-[num] up to 750px
col-md-[num] up to 970px
col-lg-[num] up to 1180px

<div class="row">
<div class="col-md-4 col-xs-6">

<!-- content -->
</div>
<div class="col-md-8 col-xs-6">

<!-- content -->
</div>

</div>

18/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Components

Existing Components

defines easy to reuse classes

Examples

19/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

http://getbootstrap.com/components/
http://getbootstrap.com/examples/

Introduction to a few frameworks
Bootstrap :

• Origin : Twitter and the need for “responsive” (mobile, tablet,
desktop)

• One page, only predefined components
• CSS Framework

React + Redux :
• Origin : Facebook and their need to have plenty of

components active on the screen
• MV (c) multi component, multi thread
• A state and a binding update cycle
• Less framework and more library
• One-way binding

Angular :
• Origin : Google
• Full MVC, multi component, multi views
• A rigid project structure (with CLI support)
• Two-way binding

D3.js : data visualization, origin : Stanford
20/43 IMT-TP-IDS-MM

../tp
../logo-IPP-small

React
Assumes DOM is slow (apparently true)
At each change, React recreates a rendering tree (in JS)
Makes a diff with the previous tree and applies the diff to the
DOM
Data flows from parent component to children by props
Component life cycle : component[Will|Did][Unm|M]ount()
As soon as it is necessary to modify data, use the state /
Redux
In theory, React is usable alone
In practice, use with Redux (or another state manager)
Management of the state of the component : setState()
(asynchronous and managed as an event)
It is possible to insert React in existing HTML and even
having lots of little bits of React in HTML, bits all connected
to some piece of the Redux store

21/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

React+Redux
React : the components
Redux : the data flow and the state

• Actions : React components that need to change something
call (dispatch) actions (like events)

• Reducers : actions are processed (asynchronously) by
reducers : state + action –> new state

• Store : the state and the reducers form the store (unique), to
which the components subscribe to have subsets of the state

Do not keep data out of the store
The state of the components is ephemeral, unlike the state
of the store
Do not try to change the DOM, the DOM will be modified at
the next change of state of the store
Do not try to understand how it works (poorly documented)
Do not modify a “props” (parameters of the component)
Do not reorder the objects in the state, this breaks the
optimizations
Yes, we must always copy objects even if it seems useless
The performances are very good despite everything

22/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

React and JSX
JSX is designed so that everything can be done in the JS,
even the HTML
Parametric content : insert variables / expressions between
{}
Loops / tables : build a JS chart
A component receives a list of parameters : props
and passes some props to subcomponents
An example of JSX :

export function BooleanInput({ label, label2, onChange,
value = '', placeholder = '' }) {

return (
<div className="boolean-input">
{label} {label &&
}
{label2} {label2 &&
}
<input type="checkbox"

placeholder={placeholder}
checked={value}
onChange={onChange}

/>
</div>

);
}

23/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

React example

iOS Calculator – https://github.com/ahfarmer/calculator –
Example to run
File structure

• package.json
• src / index.js that connects the HTML with the main

component
• the components
• in each component, render, propTypes, handleClick
• the logic

Initialized with create-react-app

24/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

https://github.com/ahfarmer/calculator

Redux : One-Way Binding
Tons of asynchronous components that all change the state in //
= hell to debug

The choice of Redux : component –> action –> reducer –>
store –> component

• The store is a single object, an array of model objects (MVC)
• An action is an event whose semantics belong to the

application, with parameters
• A reducer takes a type of action and a state / store and

makes a new state (copy). It is therefore necessary to have
one reducer per type of action existing in the application

Flow :
• Interaction in the DOM
• A listener JS reacts and launches an action (queuing wait)
• The actions are handled by the reducers and the state is

updated
• The DOM is updated from the state
• The starting DOM is not the same as the updated DOM

To note :
• The first choice of Flux was in the same direction (a store)
• There is an automatic competitor at Redux, MobX . . .
• In the Two-Way binding, there are listeners and updates in

both directions.

25/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

React Native and React Navigation

React Native
• extension of React to create native apps for major stores

(iOS, Android)
• uses native widgets/components when possible
• mostly achieves similar experience on all phones
• a server observes your working directory and feeds your

phone as you design and debug the app
• a React Native tool compiles the app for the target system,

removing the need for a server, then the target system
platform is used to compile the native app

React Navigation
• manages multiple pages with the same webapp (change

page, tabs, drawers, etc)

26/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Introduction to a few frameworks
Bootstrap :

• Origin : Twitter and the need for “responsive” (mobile, tablet,
desktop)

• One page, only predefined components
• CSS Framework

React + Redux :
• Origin : Facebook and their need to have plenty of

components active on the screen
• MV (c) multi component, multi thread
• A state and a binding update cycle
• Less framework and more library
• One-way binding

Angular :
• Origin : Google
• Full MVC, multi component, multi views
• A rigid project structure (with CLI support)
• Two-way binding

D3.js : data visualization, origin : Stanford
27/43 IMT-TP-IDS-MM

../tp
../logo-IPP-small

Design Pattern : Decorator @name

Function to add properties to an object
Used to modify the object, for example to add properties
To be used on a simple object, a function, a class . . .

function superhero(target)
target.isSuper = true;
target.power = "flight";

}
@superhero
class SuperMan() {}
console.log(SuperMan.isSuper) //true

28/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Design Pattern : Dependency Injection
Fragility of certain classes

export class Car {
public engine: Engine;
public tires: Tires;
constructor() {
this.engine = new Engine();
this.tires = new Tires();

}
...}

Stronger code : I can change the engine type without
modification of Car

export class Car {
public engine: Engine;
public tires: Tires;
constructor(public engine: Engine, public tires: Tires) {
this.engine = engine;
this.tires = tires;

}
...}

29/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Dependency Injection

Pattern Factory OK but heavier and not OO

createCar() {
let car = new Car(this.createEngine(), this.createTires());
car.description = 'Factory';
return car;

}

Simplification

export class Car {
constructor(public engine: Engine, public tires: Tires) {}

...}

30/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Usage of Dependency Injection
Service creation and declaration as injectable

import { Injectable } from '@angular/core';
import { HEROES } from './mock-heroes';
@Injectable()
export class HeroService {

getHeroes() { return HEROES; }
}

Declaration of use within the application

import { Component } from '@angular/core';
import { HeroService } from './hero.service';
@Component({...

providers: [HeroService],
...})

export class HeroesComponent { }

Use of the service

constructor(heroService: HeroService) {
this.heroes = heroService.getHeroes();

}

31/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Angular
Origin : Google (2009+)
JS Dialect : TypeScript
Claims to do as well as native web apps
A command line helps to create the structure :

• components, modules, services
• a node.js server monitors your files and recompiles

everything after every change
A component manages a page end / screen
A template is the HTML view on the component
A service can be a lot of things : logger (provides a
functionality), data (provides data), encrypt (provides
calculation)
Directives add if, for and switch to HTML
Decorators are used to indicate metadata for Angular
Dependency Injection simplifies reuse of elements
A life cycle to the Android for components
Can be compiled to “native” iOS and Android applications

32/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Template / HTML++

Expression :

{{hero.name}}

Statement :

<button (click)="onSave($event)">Save</button>
<button *ngFor="let hero of heroes">{{hero.name}}</button>
<div *ngIf="existsLetter">...</div>
<button [style.color]="isSpecial ? 'red' : 'green'">

<form #heroForm (ngSubmit)="onSubmit(heroForm)"> ... </form>

33/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Binding

from model to view :

{{hero.name}}
<button [disabled]="isUnchanged">...</button>

from view to model, through event :

(click)="add(hero.name)"
on-click="add(hero.name)"

both ways, for use in a form :

[(ngModel)]="hero.name"
bindon-ngModel="hero.name"

34/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Angular Routing
const routes: Routes = [
{ path: '', component: HomeComponent },
{ path: 'path/:routeParam', component: MyComponent },
{ path: 'staticPath', component: ... },
{ path: '**', component: ... },
{ path: 'oldPath', redirectTo: '/staticPath' },
{ path: ..., component: ..., data: { message: 'Custom' } }
]);

const routing = RouterModule.forRoot(routes);

<a [routerLink]="['/path', routeParam]">
<a [routerLink]="['/path', { matrixParam: 'value' }]">
<a [routerLink]="['/path']" [queryParams]="{ page: 1 }">
<a [routerLink]="['/path']" fragment="anchor">

35/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Component Life Cycle
ngOnChanges(changeRecord) { ... }

// Called after every change to input properties and
// before processing content or child views.

ngOnInit() { ... }
// Called after the constructor, initializing input
// properties, and the first call to ngOnChanges.

ngDoCheck() { ... }
// Called every time that the input properties of a component
// or a directive are checked. Use it to extend change detection
// by performing a custom check.

ngAfterContentInit() { ... }
// Called after ngOnInit when the component's or directive's content
// has been initialized.

ngAfterContentChecked() { ... }
// Called after every check of the component's or directive's content.

ngAfterViewInit() { ... }
// Called after ngAfterContentInit when the component's view has been
// initialized. Applies to components only.

ngAfterViewChecked() { ... }
// Called after every check of the component's view. Components only.

ngOnDestroy() { ... }

36/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Angular Component : typescript
import { async, ComponentFixture, TestBed } from '@angular/core/testing';
import { HeroesComponent } from './heroes.component';

describe('HeroesComponent', () => {
let component: HeroesComponent;
let fixture: ComponentFixture<HeroesComponent>;
beforeEach(async(() => {
TestBed.configureTestingModule({
declarations: [HeroesComponent]

})
.compileComponents();

}));
beforeEach(() => {
fixture = TestBed.createComponent(HeroesComponent);
component = fixture.componentInstance;
fixture.detectChanges();

});
it('should create', () => {
expect(component).toBeTruthy();

});
});

37/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Introduction to a few frameworks
Bootstrap :

• Origin : Twitter and the need for “responsive” (mobile, tablet,
desktop)

• One page, only predefined components
• CSS Framework

React + Redux :
• Origin : Facebook and their need to have plenty of

components active on the screen
• MV (c) multi component, multi thread
• A state and a binding update cycle
• Less framework and more library
• One-way binding

Angular :
• Origin : Google
• Full MVC, multi component, multi views
• A rigid project structure (with CLI support)
• Two-way binding

D3.js : data visualization, origin : Stanford
38/43 IMT-TP-IDS-MM

../tp
../logo-IPP-small

D3.js
Easily display data in a web page
Retrieve geographic data to draw on a map
Retrieve encrypted data to display in graphs
Display editable graphs
[Examples] (https ://github.com/d3/d3/wiki/Gallery)
All in JS, à la jQuery : we chain the calls which always
return the object

var svg = d3.select("svg"),
width = +svg.attr("width"),
height = +svg.attr("height");

var simulation = d3.forceSimulation()
.force("link", d3.forceLink().id(function(d) { return d.id; }))
.force("charge", d3.forceManyBody())
.force("center", d3.forceCenter(width / 2, height / 2));

d3.json("miserables.json", function(error, graph) {
if (error) throw error;
...

39/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Other frameworks

VueJS :
• by a former Google employee
• seems lighter in many ways, more progressive
• looks like Angular without TypeScript

Polymer.js :
• Google (again)
• Component library, not a complete framework
• Two-way binding
• Would look more like React

Meteor.js :
• integrated with PhoneGap / Apache Cordova
• like the others + dev server
• can integrate React, Angular . . .

Aurelia.js : (Microsoft)
Ember.js : by the author of jQuery (?)

40/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Which one?
If you work at Google : Angular
If you love TypeScript : Angular (or React)
If you love object-orientated-programming (OOP) : Angular
If you need guidance, structure and a helping hand :
Angular
If you work at Facebook : React
If you like flexibility : React
If you love big ecosystems : React
If you like choosing among dozens of packages : React
If you love JS & the “everything-is-Javascript-approach” :
React
If you like really clean code : Vue
If you want the easiest learning curve : Vue
If you want the most lightweight framework : Vue
If you want separation of concerns in one file : Vue
If you are working alone or have a small team : Vue (or
React)
If your app tends to get really large : Angular (or React)
If you want to build an app with react-native : React
If you want to have a lot of developers in the pool : Angular
or React
If you work with designers and need clean HTML files :
Angular or Vue
If you like Vue but are afraid of the limited ecosystem :
React
If you can’t decide, first learn React, then Vue, then
Angular.

41/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

How to choose
How mature are the frameworks / libraries?
Are the frameworks likely to be around for a while?
How extensive and helpful are their corresponding
communities?
How easy is it to find developers for each of the
frameworks?
What are the basic programming concepts of the
frameworks?
How easy is it to use the frameworks for small or large
applications?
What does the learning curve look like for each framework ?
What kind of performance can you expect from the
frameworks?
Where can you have a closer look under the hood?
How can you start developing with the chosen framework?
How old is the information on which I base my decision? (>
2 years == trash)
You have to identify the “hard” constraints of your project
There is no silver bullet
OK to choose with your heart, your tastes, . . .
OK to be wrong !
Do not spend too much time choosing.

42/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Summary of the lesson

JS libraries, history, jQuery
Common notions : modules, manifest, compilation,
components, async, binding, dialects, routing
Frameworks : Bootstrap, React, Angular, D3
Other frameworks, how to decide

43/43 IMT-TP-IDS-MM
../tp

../logo-IPP-small

