B JS Frameworks for the web

pdf

Telecom Paris
Slides prepared by Jean-Claude Dufourd

tp

1/lpgo-1PP-

http://jcdufourd.wp.mines-telecom.fr/

I htroduction

®m JS is a very fast changing environment, everything changes
in 2 years
B jQuery was the first framework, a ground breaker
® Other early frameworks have all died : prototype, mootools,
yui, dojo. ..
® Other functions have been integrated in frameworks
* link to a database, marshalling / unmarshalling
* responsive design
JS module management
compilation

i
P 1/lpgo-IPP-

N . jQuery

B Manage the differences between browsers
®m Develop faster, less verbose,
®m Facilitate DOM manipulations, CSS selectors
B Manage mobile screen/feature differences
® Add Ul sugar (including animations), through plugins
m A few tens of Kb
® CONS :
« QOpinion : horrible syntax : $
» Encourages spaghetti code that is hard to debug : e.g.
impossible to debug CSS if jQuery changes CSS on-the-fly
* It is easy not to follow good practices
+ No high level abstraction
* Opinion : No logic in the API, e.g. a return value can be a
single value or an array, depending on context
® PROS :
* Huge success, used everywhere
* Lots of very vocal fans

tp

1/lpgo-IPP-

I Ccommon Notions in Modern Libraries

Modules and manifest
Compilation, obfuscation, minifier
HTML+CSS+JS components
Communication and async code
Binding

JS Dialects

Routing

No ok~

tp

1/lpgo-IPP-

I Notion 1 : Modules and manifest

B Need for encapsulation : the notion of private in Java
m Closure :
» The closure is a function call.
» The variables and functions defined in a closure are not
visible outside.
* The return value of the closure makes variables and
functions accessible outside.
» The closure call parameters allow you to inject
dependencies that can remain hidden.
» The closure continues to exist as long as there is a pointer to
his space.
» The manifest is a documentation of everything that goes in
or out out of a module / closure.

function checkscope() {
var scope = "local scope”;
function f() { return scope; }

.,.,\.Ll.._.. Al

IMT-TP-IDS-MM go-IPP-:

Example of manifest

"name”: "mpat”,

"version”: "1.0.1",

"description”: "",

"main”: "webpack.config.js",

"scripts”: {
"dev"”: "NODE_ENV=dev webpack-dev-server --content-bag
"build"”: "NODE_ENV=production webpack --progress”,

o
"author”: "",
"license": "ISC",
"dependencies”: {
"axios": ""0.15.3",
"babel-core”: ""6.26.0",

"react”: "15.3.1".
6/43 IMT-TP-IDS-MM

I Modules, Node.js and the browser

® Node.js + npm : a lot of very professional modules

* Node.js : Chrome’s JS interpreter, packaged as a python

interpreter

* npm : package manager, equivalent of pip in python or gem

in Ruby

® What about the browser ?

* A module management framework . .. there are many

» Require.js : import require.js, then a manifest, then
everything is loaded (2 script objects)

+ webpack : a kind of compiler + linker that generates a big

chunk of JS

B |n the scope :
» ES6, not everywhere ... sometimes translated into ES5 >

B There is now a big cost of entry into a JS project : module
environment, packaging, dialects . ..

7/43

ES3

 babel to handle all dialects
» JSX 1o edit in HTML-like syntax

IMT-TP-IDS-MM

tp

1/lpgo-IPP-

I Notion 2 : Compilation, Obfuscation, Minifier

B The problem is less serious on the server side/node.js : use
require() or import
B Many scripts to import into the HTML page -> 1 only
B | arge number of hierarchical dependencies
« Example of my last project : 655 module dependencies
* Order of loading
+ Dependency additions, vulnerabilities
+ Single loading
B Reduce the size and the loading time
+ Compress / Minify
* Remove the useless
B Protect the code (bof)
® Need a manifest that documents the module and its
dependencies : package.json
B Many different systems, but it converges

tp

1/lpgo-IPP-

I Notion 3 : Components and templates

® A component is a coherent set of HTML + CSS + JS for a
function

® More dependencies on other components

B Some frameworks do as much as possible in JS, others
separate structure, content, style and code well

® The HTML part can be seen as a template

tp

1/lpgo-IPP-

Notion 4 : Communication and asynchro-
nous code

B As soon as a request goes through the Internet, the answer
comes later and you should not wait because waiting would
block other browser processes.

® Callback method

tp

1/lpgo-IPP-

function get(url) {
return new Promise(function(resolve, reject) {
var req = new XMLHttpRequest();
req.open('GET', url);
req.onload = function() {
if (reqg.status == 200) {
resolve(req.response);

} else {
reject(Error(req.statusText));

1}

req.onerror = function() {
reject(Error("Network Error"));

}

req.send();

1) -
IMT-TP-IDS-MM

_ Notion 5 : Bindina

One-way vs two-way data binding

® Make the link between model variables and views
B There may be a need for a link in one direction and / or the
other
2 ways data binding

o8-8

1 way data binding

Titre de l'annonce

Titre de I'annonce

i
3 1/lpgo-IPP-

I Notion 6 : JS Dialects

m JSX
* HTML-like markup to define the HTML in the JS
+ Allows the Ul to be described within the JS code
» Combines templating and JS
» Can be translated on the fly
B TypeScript
+ JS with variable and function types
* OO, enum, generics, any
« Complicated ... but in Angular
m CoffeeScript (losing speed)
® All “can” be compiled in ES3 and ES5

tp

1/lpgo-IPP-

I Notion 7 : Routing

B Routing is usually on the server side
B Map URLs of a server
* /routed to the intro
* /docs routed to a webspace with docs
 /restServ ... routed to a REST service with urls like
/RestServ/obj1/obj2/param/param2
 /formResp ... routed to a service that responds to an HTML
form (?par=val&par2=val2)
¢ It can be complicated, dynamic ...
B Angular provides routing between views

i
P 1/lpgo-IPP-

I ntroduction to a few frameworks

B Bootstrap :
* Origin : Twitter and the need for “responsive” (mobile, tablet
desktop)
« One page, only predefined components
+ CSS Framework
B React + Redux :
« Origin : Facebook and their need to have plenty of
components active on the screen
* MV (c) multi component, multi thread
* A state and a binding update cycle
* Less framework and more library
+ One-way binding
» React Native and React Navigation
® Angular :
+ Origin : Google
* Full MVC, multi component, multi views
* A rigid project structure (with CLI support)

» Two-way binding
tp

’

1/lpgo-IPP-

_ Rootstran

Content

B CSS compatibility between browsers (reset of different
defaults)

B 12 columns grid system for layout

B Multi-screen support (responsive design)

B The mobile has priority over the desktop

® Full of cool and easy to use widgets

B Plugins (dialogs, tabs, carousel, tooltips .. .)

Load Bootstrap from a CDN

<link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3,

<meta name="viewport"” content="width=device-width, initig

i
P 1/lpgo-1PP-

B L ayout

12 column row

col-fd-2

cokfhd-2

col-fid-2

cokhd-2

cokhd-2

col-hd-2

1/lpgo-IPP-

tp

=
=
%]
=}
o
=
i
=

How to use the grid
<div class="row">
<div class="col-md-4">
</div>

</div>

B col-xs-[num] no max size

B col-sm-[num] up to 750px
B col-md-[num] up to 970px
B col-lg-[num] up to 1180px

<div class="row">
<div class="col-md-4 col-xs-6">

</div>
<div class="col-md-8 col-xs-6">

18/43 i IMT-TP-IDS-MM
TS N/ ULV~

I Ccomponents

Existing Components

B defines easy to reuse classes

0 = = v 3+ D

<button type="button" class="btn btn-primary"=Primary</button>
<button type="button" class="btn btn-secondary">Secondary</button>
<button type="button" class="btn btn-success">Success</button>

Examples

i
P 1/lpgo-IPP-

http://getbootstrap.com/components/
http://getbootstrap.com/examples/

I ntroduction to a few frameworks

B Bootstrap :

* Origin : Twitter and the need for “responsive” (mobile, tablet,

desktop)
« One page, only predefined components
+ CSS Framework
B React + Redux :
« Origin : Facebook and their need to have plenty of
components active on the screen
MV (c) multi component, multi thread
* A state and a binding update cycle
* Less framework and more library
+ One-way binding
B Angular :
+ Origin : Google
+ Full MVC, multi component, multi views
 Arigid project structure (with CLI support)
+ Two-way binding
B D3.js : data visualization, origin : Stanford

tp

1/lpgo-IPP-

B Rcact

B Assumes DOM is slow (apparently true)

®m At each change, React recreates a rendering tree (in JS)

B Makes a diff with the previous tree and applies the diff to the
DOM

B Data flows from parent component to children by props

® Component life cycle : component[Will|Did][Unm|M]ount()

B As soon as it is necessary to modify data, use the state /
Redux

B |n theory, React is usable alone

B |n practice, use with Redux (or another state manager)

B Management of the state of the component : setState()
(asynchronous and managed as an event)

B |t is possible to insert React in existing HTML and even
having lots of little bits of React in HTML, bits all connected
to some piece of the Redux store

tp

1/lpgo-IPP-

I Rcact+Redux

B React : the components
B Redux : the data flow and the state
+ Actions : React components that need to change something
call (dispatch) actions (like events)
* Reducers : actions are processed (asynchronously) by
reducers : state + action —> new state
 Store : the state and the reducers form the store (unique), to
which the components subscribe to have subsets of the state

® Do not keep data out of the store

B The state of the components is ephemeral, unlike the state
of the store

® Do not try to change the DOM, the DOM will be modified at
the next change of state of the store

B Do not try to understand how it works (poorly documented)

® Do not modify a “props” (parameters of the component)

B Do not reorder the objects in the state, this breaks the
optimizations

-/

B Recact and JSX

m JSX is designed so that everything can be done in the JS,
even the HTML

B Parametric content : insert variables / expressions between
{}

B | oops / tables : build a JS chart

B A component receives a list of parameters : props

B and passes some props to subcomponents

B An example of JSX :

export function BooleanInput({ label, label2, onChange,
value = '', placeholder = '' }) {

return (
<div className="boolean-input">
{label} {label &&
}
{label2} {label2 &&
}
<input type="checkbox"
placeholder={placeholder?}

go-IPP-:

23/43 IMT-TP-IDS-MM 3

B Rcact example

| ButtonPanel

https://github.com/ahfarmer/calculator

B Redux: One-Way Binding

Tons of asynchronous components that all change the state in //
= hell to debug

B The choice of Redux : component —> action —> reducer —>
store —> component
 The store is a single object, an array of model objects (MVC)
* An action is an event whose semantics belong to the
application, with parameters
A reducer takes a type of action and a state / store and
makes a new state (copy). It is therefore necessary to have
one reducer per type of action existing in the application
B Flow :
* Interaction in the DOM
* A listener JS reacts and launches an action (queuing wait)
» The actions are handled by the reducers and the state is
updated
» The DOM is updated from the state
+ The starting DOM is not the same as the updated DO

i
P 1/lpgo-IPP-

\
T

I Rcact Native and React Navigation

B React Native
+ extension of React to create native apps for major stores
(I0S, Android)
* uses native widgets/components when possible
» mostly achieves similar experience on all phones
* a server observes your working directory and feeds your
phone as you design and debug the app
» a React Native tool compiles the app for the target system,
removing the need for a server, then the target system
platform is used to compile the native app
B React Navigation
* manages multiple pages with the same webapp (change
page, tabs, drawers, etc)

i
P 1/lpgo-IPP-

I ntroduction to a few frameworks

B Bootstrap :

* Origin : Twitter and the need for “responsive” (mobile, tablet,

desktop)
« One page, only predefined components
+ CSS Framework
B React + Redux :
« Origin : Facebook and their need to have plenty of
components active on the screen
MV (c) multi component, multi thread
* A state and a binding update cycle
* Less framework and more library
+ One-way binding
® Angular :
+ Origin : Google
+ Full MVC, multi component, multi views
 Arigid project structure (with CLI support)
+ Two-way binding
B D3.js : data visualization, origin : Stanford

tp

1/lpgo-IPP-

I Decsign Pattern : Decorator @name

® Function to add properties to an object
®m Used to modify the object, for example to add properties
B To be used on a simple object, a function, aclass ...

function superhero(target)
target.isSuper = true;
target.power = "flight";

by

@superhero
class SuperMan() {}
console.log(SuperMan.isSuper)

i
P 1/lpgo-IPP-

Design Pattern : Dependency Injection
Fragility of certain classes

export class Car {
public engine: Engine;
public tires: Tires;
constructor() {
this.engine = new Engine();
this.tires = new Tires();

Stronger code : | can change the engine type without
modification of Car

export class Car {
public engine: Engine;
public tires: Tires;
constructor(public engine: Engine, public tires: Tires
il IMT-TP-IDS-MM 3

I Decpendency Injection

Pattern Factory OK but heavier and not OO

createCar() {
let car = new Car(this.createEngine(), this.createTired

car.description = 'Factory';
return car;

3

Simplification

export class Car {

constructor(public engine: Engine, public tires: Tires

-}

i
P 1/lpgo-IPP-

Usage of Dependency Injection
Service creation and declaration as injectable

import { Injectable } from '@angular/core';
import { HEROES } from './mock-heroes';
@Injectable()
export class HeroService {

getHeroes() { return HEROES; }
3

Declaration of use within the application

import { Component } from '@angular/core';
import { HeroService } from './hero.service';
@Component({...

providers: [HeroService 1],

o)

export class HeroesComponent { }

IMT-TP-IDS-MM

N Angular

® Origin : Google (2009+)
m JS Dialect : TypeScript
® Claims to do as well as native web apps
B A command line helps to create the structure :
* components, modules, services
* anode.js server monitors your files and recompiles
everything after every change
B A component manages a page end / screen
®m A template is the HTML view on the component
B A service can be a lot of things : logger (provides a
functionality), data (provides data), encrypt (provides
calculation)
B Directives add if, for and switch to HTML
B Decorators are used to indicate metadata for Angular
® Dependency Injection simplifies reuse of elements
m A life cycle to the Android for components

B Can be comEiIed to “native” iOS and Android aiilicatio S | [
_ 1/lpgo-IPP-

I Template / HTML++

B Expression :
{{hero.name}}

® Statement :

<button (click)="onSave($event)">Save</button>
<button *ngFor="1et hero of heroes">{{hero.name}}</button>
<div *ngIlf="existslLetter">...</div>

<button [style.color]="isSpecial ? 'red' : 'green'">

<form #heroForm (ngSubmit)="onSubmit (heroForm)"> ... </form>

i
P 1/lpgo-IPP-

I Binding

B from model to view :

{{hero.name}}
<button [disabled]="isUnchanged">...</button>

® from view to model, through event :

(click)="add(hero.name)"
on-click="add(hero.name)"

B both ways, for use in a form :

[(ngModel)]="hero.name"
bindon-ngModel="hero.name"

i
P 1/lpgo-IPP-

Anqular Routing
const routes: Routes = [
path: '', component: HomeComponent },
path: 'path/:routeParam', component: MyComponent },
path: 'staticPath', component: ... },
path: 'xx', component: ... },
path: 'oldPath', redirectTo: '/staticPath' 3},
path: ..., component: ..., data: { message: 'Custom' }

)7

const routing = RouterModule.forRoot(routes);

<a [routerLink]="['/path', routeParam]">

<a [routerLink]="['/path', { matrixParam: 'value' }]1">
<a [routerLink]="['/path' 1" [queryParams]="{ page: 1 }
<a [routerLink]="['/path' 1" fragment="anchor">

]

IMT-TP-IDS-MM

ngOnChanges(changeRecord) { ...

ngOnInit() { ...

ngDoCheck() { ... }

ngAfterContentInit() { ... }

ngAfterContentChecked() { ... }

ngAfterViewInit() { ... }

36/43 IMT-TP-IDS-MM

pescript
import { async, ComponentFixture, TestBed } from '@anguls
import { HeroesComponent } from './heroes.component';

describe('HeroesComponent', () => {
let component: HeroesComponent;
let fixture: ComponentFixture<HeroesComponent>;
beforeEach(async(() => {
TestBed.configureTestingModule ({
declarations: [HeroesComponent]
1))
.compileComponents();
)
beforeEach(() => {
fixture = TestBed.createComponent(HeroesComponent);
component = fixture.componentInstance;

fixture.detectChanges();

1) -
IMT-TP-IDS-MM
S Eeea——

I ntroduction to a few frameworks

B Bootstrap :

* Origin : Twitter and the need for “responsive” (mobile, tablet,

desktop)
« One page, only predefined components
+ CSS Framework
B React + Redux :
« Origin : Facebook and their need to have plenty of
components active on the screen
MV (c) multi component, multi thread
* A state and a binding update cycle
* Less framework and more library
+ One-way binding
B Angular :
+ Origin : Google
+ Full MVC, multi component, multi views
 Arigid project structure (with CLI support)
+ Two-way binding
B D3.js : data visualization, origin : Stanford

tp

1/lpgo-IPP-

I D3 s

39/43

Easily display data in a web page

Retrieve geographic data to draw on a map

Retrieve encrypted data to display in graphs

Display editable graphs

[Examples] (https ://github.com/d3/d3/wiki/Gallery)
Allin JS, a la jQuery : we chain the calls which always
return the object

svg = d3.select("svg"),
width = +svg.attr("width"),
height = +svg.attr("height");

simulation = d3.forceSimulation()

.force("link", d3.forceLink().id(function(d) { retur
.force("charge", d3.forceManyBody())
.force("center”, d3.forceCenter(width / 2, height / 3

go-IPP-:

IMT-TP-IDS-MM

I Other frameworks

® VuedS :
* by a former Google employee
» seems lighter in many ways, more progressive
* looks like Angular without TypeScript
B Polymer.js :
» Google (again)
« Component library, not a complete framework
» Two-way binding
* Would look more like React
m Meteor.js :
* integrated with PhoneGap / Apache Cordova
* like the others + dev server
+ can integrate React, Angular ...
B Aurelia.js : (Microsoft)
B Ember.js : by the author of jQuery (?)

i
P 1/lpgo-IPP-

I \Which one?

If you work at Google : Angular

If you love TypeScript : Angular (or React)
If you love object-orientated-programming (OOP) : Angular
If you need guidance, structure and a helping hand :
Angular

If you work at Facebook : React

If you like flexibility : React

If you love big ecosystems : React

If you like choosing among dozens of packages : React

If you love JS & the “everything-is-Javascript-approach” :
React

If you like really clean code : Vue

If you want the easiest learning curve : Vue

If you want the most lightweight framework : Vue

If you want separation of concerns in one file : Vue

If you are working alone or have a small team : Vue (or

1/lpgo-IPP-

I How to choose

® How mature are the frameworks / libraries ?

® Are the frameworks likely to be around for a while ?

® How extensive and helpful are their corresponding
communities ?

B How easy is it to find developers for each of the
frameworks ?

® What are the basic programming concepts of the
frameworks ?

B How easy is it to use the frameworks for small or large
applications ?

B What does the learning curve look like for each framework ?

B What kind of performance can you expect from the
frameworks ?

® Where can you have a closer look under the hood ?

® How can you start developing with the chosen framework ?

® How old is the information on which | base my decision?(>

R
mmm i el
At
-) -) -) - . . Y i

B Summary of the lesson

m JS libraries, history, jQuery

® Common notions : modules, manifest, compilation,
components, async, binding, dialects, routing

® Frameworks : Bootstrap, React, Angular, D3

®m Other frameworks, how to decide

tp

1/lpgo-IPP-

