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Abstract Since the early days of physics, space has called for means to repre-
sent, experiment, and reason about it. Apart from physicists, the concept of space has
intrigued also philosophers, mathematicians and, more recently, computer scientists.
This longstanding interest has left us with a plethora of mathematical tools developed
to represent and work with space. Here we take a special look at this evolution by
considering the perspective of Logic. From the initial axiomatic efforts of Euclid,
we revisit the major milestones in the logical representation of space and investigate
current trends. In doing so, we do not only consider classical logic, but we indulge
ourselves with modal logics. These present themselves naturally by providing simple
axiomatizations of different geometries, topologies, space-time causality, and vector
spaces.
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1 Context

Throughout the centuries, physics has evolved in its way of looking at space, Jammer
(1993). From the initial tools necessary to measure the earth—geometry in the literal
sense—modern physics is now inventing tools for understanding the universe both at
microscopic and macroscopic granularities. Recently discovered phenomena such as
quantum-mechanical superposition (Loll et al. (2006)) and space-time causality need
to be taken into account.! But where did it all begin? Apparently the need of under-
standing space and laying down the foundations of how to represent it is quite old. If
today we are considering how one can find a logical theory of quantum-mechanical
superposition, it is because we have started long ago trying to define a theory for
geometry, as exemplified by Euclid’s success. In other words, it appears only natural
to pursue logical axiomatizations of space if we want to be able to reason and compute
quantities tied to it.

The present article does not claim to be a review of spatial logics—for which we
refer to Aiello et al. (2007)—rather it aims at offering a few highlights on the foun-
dations and recent developments in logic and space. The links with physics, some
already explored, some entirely open to investigation, are the leitmotiv of the current
presentation. But let us start by considering where it all may have started.

After an historical note about axiomatic geometry, we move to an insight on the
developments of modal logics of topology, and finally provide examples of specific
modal logics dealing with spatial domains and vector spaces.

2 Axiomatic, logical, and model-theoretic treatments of geometry

Not surprisingly, the first ever systematic (in today’s terminology axiomatic) devel-
opment of a mathematical discipline was Euclid’s Elements (see, e.g., Kline (1972);
Stillwell (2004, 2005); Hartshorne (1997) for historical accounts and modern exposi-
tions). Along with the notion of number, the basic geometric concepts of point, line,
circle, etc. are some of the most natural abstractions that Homo Sapiens has derived
from the surrounding physical world, and has been trying to understand since the
beginning of its contemplation of the world. Euclid’s seminal contribution, however,
was his novel treatment of geometry, not as a set of empirical observations and practical
methods for measuring distances, area of land, etc., but as an abstract mathematical
theory, which, while rooted in the perceived reality, had nevertheless its own, absolute
right of existence and development. And, it must have been a true stroke of a genius
that he formulated the celebrated fifth postulate® as such, rather than coming up with
a ‘proof” of it. After centuries of numerous futile and wrong attempts to prove the
postulate based on the others in Euclid’s ‘axiomatic system’, only in the beginning
of the nineteenth century the mathematical community reached the level of maturity

I See the Logic and Relativity article in this issue from the Hungarian school.

2 Ifa straight line crossing two straight lines makes the interior angles on the same side less than two right
angles, the two straight lines, if extended indefinitely, meet on that side on which are the angles less than
the two right angles.
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to assume, and soon afterwards prove, that it is conceivable that physical space may
actually not satisfy Euclid’s fifth postulate. That lead to the birth of non-Euclidean
geometries by Bolyai, Lobachevsky, Gauss, and others (see, e.g., Coxeter (1969); Eves
(1972); Meserve (1983)), who proved mathematically that each of these was equally
logically consistent with the classical Euclidean model of space, considered then to
be the one and only true abstraction of physical space. Only a century later came a
confirmation from Einstein’s relativity theory that some of these, inconceivable by
the immediate senses, ‘exotic’ models of geometric space not only have their right of
logical existence, but may actually be the true model of the physical (at least, cosmo-
logical) space. That discovery was an unsurpassed manifestation of the superiority of
the abstract, logical approach of mathematics over the empirical approach underpin-
ning the natural sciences, at least when it comes to comprehending such fundamental
physical concepts as space and time.

The discovery of non-Euclidean geometries was essentially the first application of
logical ideas to the study of space. By legitimizing the pluralism of possible geom-
etries, it gradually shifted the essence of geometry from study of (physical) space,
to study of models of (physical) space, and eventually to study of models of logical
theories of (physical) space, thus placing it in the scope of model theory—a branch
of mathematical logic studying the interplay between logic and mathematics. It was
shown by Bolyai, Lobachevsky, Euler, Poincaré, and others that, depending on the
acceptance, rejection, or replacement of Euclid’s fifth postulate by suitable alterna-
tives, a variety of natural alternative geometries evolve, incl., hyperbolic and elliptic
geometries, as well as absolute, affine, and projective geometries (see, e.g., Coxeter
(1969)). Each of these geometries can lay claim to model essential aspects and frag-
ments of the real, physical space, without pretending to capture it in any absolute
sense, nor in its entirety.

The axiomatic approach to geometry, conceived in Euclid’s work, and invigorated
by the emergence of non-Euclidean geometries, was only developed further at the
end of the nineteenth century, by a surge of axiomatic investigations of the founda-
tions of geometry by Peano, Pieri, Veblen, Pasch, Hilbert, and others, who analyzed
various axiomatic systems and the mutual relationships between the primitive notions
of Euclidean geometry. Since then, that trend has gradually abated, with the remark-
able exception of Tarski and his school (see further), and in more recent times it has
been followed by few researchers, notably in the sustained work of Pambuccian on
axiomatic aspects of Euclidean, hyperbolic, absolute, and other geometries; see, e.g.,
Pambuccian (1989, 2001a,b, 2004).

While Euclid’s work conceived the axiomatic idea, it (naturally) did not meet the
modern-day standards for logical and mathematical rigour. Only in the beginning
of the twentieth century, David Hilbert—one of the most influential mathematicians
of all times and the strongest proponent of the axiomatic method in mathematics—
recast Euclid’s work into a precise and rigorous modern treatise, Hilbert (1950), which
eventually put geometry on sound axiomatic foundations.

Another, initially unrelated, line of historical development was the analytic method
in geometry of space (see e.g, Stillwell (2004, 2005); Hartshorne (1997) for concise
popular expositions), going back to the coordinatization of the Euclidean plane and
space in the first half of the seventeenth century by René Descartes, who introduced
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coordinate systems, thus enabling the solution of purely geometric problems by using
purely algebraic methods. Later the algebraic perspective led to the emergence of
the modern view on geometry demonstrated in Klein’s Erlangen program, defining
geometry as a study not of figures, but of transformations, and classifying different
geometric structures and their theories not in terms of their shape or size, but rather by
means of the groups of transformations which preserve them, thus placing geometry
firmly on the abstract algebraic foundations.

The axiomatic method in geometry reached its logical maturity and met the alge-
braic and model-theoretic approaches in the seminal work of Alfred Tarski and his
students and followers in the 1920-1970’s (see Tarski (1959, 1967); Schwabhiuser
et al. (1983); Tarski and Givant (1999)). Tarski (1959) developed systematically
the logical foundations of elementary geometry, as “that part of Euclidean geom-
etry that can be formulated and established without the help of any set-theoreti-
cal devices”. Essentially, by “elementary geometry”, Tarski meant the elementary
(i.e., first-order) theory of Euclidean geometry, developed over a suitably expressive
first-order language. In particular, Tarski showed (following Veblen’s idea) that the
whole of elementary geometry can be developed axiomatically using just two geo-
metric relations, viz. betweenness and equidistance. He also demonstrated how the
elementary geometry of the real plane can be formally interpreted in the elementary
theory of the real-closed fields, which is the same as the elementary theory of the
field of reals, by exploiting the coordinatization of the Euclidean plane and space.
Furthermore, Tarski proved the completeness and decidability of the first-order theory
of the field of reals, thus obtaining an explicit decision procedure for the elementary
geometry; i.e., a general algorithmic method for deciding the truth of any statement
in Euclidean geometry that can be translated to the first-order theory of the field of
reals, by means of using a coordinate system in the plane (or in any finite-dimensional
Euclidean space R"). The logical core of Tarski’s decision method is his quantifier
elimination procedure for the first-order language of the field of reals R, which, applied
to any given sentence in the first-order language of R, produces a logically equiva-
lent quantifier-free sentence; i.e., a Boolean combination of polynomial equations and
inequalities. Subsets of the Euclidean space R" definable by such formulas are called
semi-algebraic sets. In particular, Tarski’s result implies that the (parametrically) first-
order definable relations in R” are precisely the semi-algebraic sets of R”. For a sketch
of an algebraic proof of this result, based on Sturm’s theorem; see, e.g., Hodges (1993).

Tarski’s original decision procedure is practically inefficient as it has non-elementary
complexity. More efficient decision procedures were developed later by Monk, Sol-
ovay’, Seidenberg, Collins, and others. Currently there are several well-developed and
applied automated theorem proving decision methods for the first-order theory of the
field of reals, and in particular, for the elementary geometry. Probably the practically
most popular decision method for the theory of real closed fields, and the first one
amenable to practical automation (and, in fact, implemented), was Collins’ method
of Cylindrical Algebraic Decompositions (CAD), based on an improved version of
Tarski’s quantifier elimination (see Collins (1998) for a recent survey on CAD).

3 Monk and Solovay found a triple exponential algorithm, later improved to double exponential by Solovay;
see, e.g., Feferman (2006).
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While being a dramatic improvement of Tarski’s original procedure, Collins’ CAD
algorithm is not the most efficient one. Currently some of the most efficient algo-
rithms for quantifier elimination can be found in Basu et al. (1996) and Basu (1999).
Other methods for automated reasoning in geometry include the Characteristic Set
Method of Ritt and Wu (Chou (1988)) and the Grobner Basis Method of Buchberger
et al. (1988). For an overview of automated reasoning in geometry see Chou and Gao
(2001) and for a detailed discussion on logical theories of fragments of elementary
geometry see Balbiani et al. (2007).

Coming to the present days, the impact of contemporary mathematical logic on
geometry of space is not so much by means of deductive systems and automated
reasoning, but mainly through model theory. One of the main problems studied by
classical model theory is the logical definability of functions and properties (sets
and relations) in a given mathematical structure by means of formulas in a suitable
(first-order) logical language. In particular, the characterization and study of sets and
relations in the field of real numbers definable in first-order logic has turned out to
be of fundamental importance for some of the main geometric applications of first-
order logic. Indeed, Tarski’s quantifier elimination and decision procedure for R”
were closely related to the study of the semi-algebraic sets as the first-order definable
subsets of R". Likewise important and fruitful has been the study of constructible
sets in algebraic geometry. In turn, these ideas have led to the recent model-theoretic
study of order-minimal (also known as o-minimal) structures—ordered structures in
which every first-order definable subset is a union of finitely many points and open
intervals. These structures share many good geometric properties with R”. Thus, the
study of o-minimal structures deeply generalizes real algebraic geometry. In particu-
lar, the recent discoveries that the extensions of the real field with exponentiation and
with analytic functions restricted to the unit hypercube are o-minimal lead to even
stronger and deeper applications of mathematical logic to geometric theory of space.
For further details see Haskell et al. (2000) and Macintyre (2003).

Another promising line of recent applications of logic to formal modeling, analy-
sis, and reasoning about space is through non-classical logic in general, and through
modal logic in particular. A rich variety of modal logics have recently been proposed
as alternative logical languages to first-order logic, because of their simpler syntax and
semantics. Moreover, unlike the general purpose first-order languages, modal logics
are more suited for specific applications, and most importantly have better computa-
tional behavior: very often they are decidable, in PSPACE or at most EXPTIME, as
opposed to the usually undecidable first-order counterparts. In particular, modal logics
for parallelism, orthogonality, incidence, affine, and projective geometries have been
introduced and studied in Balbiani et al. (1997); Balbiani (1998); Venema (1999);
Balbiani and Goranko (2002); for further details see Balbiani et al. (2007). Other
applications of modal logic to the study of space will be discussed in the next sections.

3 Modal logics of topology

The formalization of the concept of distance was one of the major goals of mathe-
maticians throughout the centuries. A modern way to formalize it is through metric.
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A further generalization of metric leads to the concept of neighborhood, which gives
rise to fopology—a branch of mathematics formed in the late nineteen/early twentieth
century, see e.g., Singer and Thorpe (1967). Alongside algebra and geometry, topol-
ogy became one of the fundamental branches of contemporary mathematics. Logicians
started to explore many exciting connections between logic and topology soon after
the emergence of topology. Already in 1938 Tarski showed that interpreting formulas
of intuitionistic logic, as open subsets of a topological space gives an adequate seman-
tics of intuitionistic logic—one of the first completeness results for intuitionistic logic,
Tarski (1938). In the mid forties of the twentieth century, Tarski in collaboration with
McKinsey gave the first topological interpretation of modalities by interpreting O as
the interior operator and < as the closure operator of a topological space. As a result,
they showed that the modal system S4 is sound and complete with respect to topo-
logical semantics, McKinsey and Tarski (1944). We recall that S4 is the fourth modal
system in the list of eight modal systems introduced by Lewis back in 1918, which
is considered as the beginning of the modern era of modal logic. It is axiomatized by
postulating
Op—p, UHp—00p, Opnrg) < (EpAlg)

as the axioms, and modus ponens (2—2=%) and necessitation (£-) as the rules of
inference. The modal system S4 has a close link with intuitionistic logic (this can
already be seen from Tarski’s topological interpretations; Tarski (1938); McKinsey
and Tarski (1944)), has a nice relational semantics (S4 is complete with respect to
reflexive and transitive frames; see, e.g., Blackburn et al. (2001)), is considered as
one of the basic systems for representing knowledge (read D¢ as ‘an agent knows
that ¢’; Fagin et al. (1995)), and has a very attractive computational complexity (the
decision problem of S4 is PSPACE-complete; see, e.g., Blackburn et al. (2001)). These
alongside the above topological completeness, made S4 one of the most studied modal
logics.

The topological completeness of S4 has two sides to it. We can view S4 as a simple
decidable formalism to talk about topology, or we can view topological spaces as a
nice mathematical tool to study S4 and its extensions.

In order to see how much of topology can be formalized in S4, we recall the
celebrated result of McKinsey and Tarski (1944) that S4 is the modal logic of any
Euclidean space. (In fact, the McKinsey-Tarski theorem is stronger than that, but this
is all we need for our purposes.) This is a very exciting and nontrivial theorem. Its
upside is that S4 is the logic of metrizable spaces, which capture the idea of distance
(metric). The downside, though, is that such an important topological concept as being
metrizable cannot be expressed in the basic modal language. In fact, neither are such
important topological concepts as being connected, compact, Hausdorff, and the list
goes on. A solution of this problem lies in extending the basic modal language ML
by additional modalities which allow more expressive power. This, of course, has to
be done carefully, because we would like to keep the resulting systems decidable, and
even computationally attractive. This has recently been pursued by several authors.
Shehtman enriched M L by the universal modality U (read U ¢ iff ¢ is true everywhere
in the model) and showed that in the enriched language the axiom
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Up—0Op)— (UpvU=p)

expresses connectedness, Shehtman (1999); Aiello and van Benthem (2002). Gabelaia
showed that if we further enrich M £ with the inequality modality [#], then the lower
separation axioms 7j and 77 also become expressible, Gabelaia (2001). Further results
in this direction (including the extension of ML by nominals) can be found in ten
Cate et al. (2009).

In order to see how helpful topological semantics can be for studying the landscape
of extensions of S4, we first note that topological semantics for S4 includes its rela-
tional semantics, which dominated the study of modal logic for decades. Indeed,
relational frames for S4 can be thought of as special topological spaces (see, e.g.,
Aiello et al. (2003)). In fact, topological semantics for S4 is more powerful than its
relational semantics because, as follows from Gerson (1975), there exist extensions
of S4 which are topologically complete, but relationally incomplete. In addition, most
extensions of S4 that play an important role in the study of the structure of extensions
of S4 turn out to be complete with respect to nice (classes of) topological spaces.
A landscape of spatial logics over S4 can be found in van Benthem and Bezhanishvili
(2007).

In order to establish interesting links with physics, we briefly recall that the modal
system S4.2, which is the extension of S4 by the axiom ¢Op — OO p, gives a modal
axiomatization of the Minkowskian space-time, which provides the geometrical basis
of Einstein’s special relativity theory. More specifically, according to Minkowskian
space-time, an event y comes after an event x if a signal can be sent from x to y at
a speed not exceeding the speed of light. If we interpret O as “it is the case now and
it always will be the case that”, then the resulting modal system is S4.2, Goldblatt
(1980). Moreover, a possible future of our universe that the expansion will eventually
force it to collapse to a singularity results in the modal system S4.1.2, which is the
extension of S4.2 by the axiom OO p — <O p. Further results on the axiomatization
of modal logics of different ‘natural’ regions of Minkowskian space-time can be found
in Goldblatt (1980); Shehtman (1983); Shapirovsky and Shehtman (2003, 2005).

The modal systems S4.2 and S4.1.2 play an important role in the interplay of modal
logic and topology. Indeed, as follows from Gabelaia (2001), S4.2 defines the class of
extremely disconnected spaces—an important class of topological spaces introduced
by Stone back in 1937. One of the most important extremely disconnected spaces is
the Stone-Cech compactification of the natural numbers, denoted by S (w). It turns out
that the modal logic of B(w) is S4.1.2. More precisely, if ©* = B(w) — w denotes
the remainder of (w), then it is shown in Bezhanishvili and Harding (2009) that the
modal logic of w* is S4 and that the modal logic of B(w) is S4.1.2. It is interesting to
point out that the proof involves an additional axiom of set theory which is not prov-
able in ZFC (Zermelo-Fraenkel set theory with the Axiom of choice). It still remains
an open problem whether the completeness of S4 with respect to w* and that of S4.1.2
with respect to S(w) can be derived within ZFC.

Modal logic is also a useful tool in the study of mathematical morphology—a theory
dedicated to the analysis of shape—and vector spaces, as we show next.
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4 Vector spaces and mathematical morphology

Mathematical morphology (MM) is a theory dedicated to the analysis of shape, spatial
information, and image processing. It was originally developed in the Paris School
of Mines by Georges Matheron and Jean Serra. The first developments were carried
out by Matheron while studying porous media (with applications to geostatistics), for
which he developed a theory of shapes and random shapes, associated with measures
based on topology and integral geometry, Matheron (1967, 1975). This naturally led
to the early applications in image processing, first for binary images, then for grey-
level and color images. Jean Serra (1982) provided an interesting optics point of view,
which led to the study of invariance of operators under translation and scaling, and
of properties such as local knowledge and (semi-)continuity. MM considers images
containing geometrical shapes with luminance (or color) profiles, which can be inves-
tigated by their interactions with other shapes and luminance profiles. This makes the
morphological approach especially relevant in the situations where image grey-levels
(or colors) correspond directly to significant material data, as in medical imaging,
microscopy, industrial inspection, and remote sensing.

MM relies on the concepts and tools from various branches of mathematics such
as algebra, lattice theory, topology, discrete geometry, integral geometry, geometrical
probability, and partial differential equations. In fact, any mathematical theory which
deals with shapes, their combination and evolution can contribute to MM.

When adopting a logical point of view, the algebraic framework in which the basic
structure is a complete lattice (L, <) is particularly important and relevant. We denote
the suprema and infima in L by \/ and /\, respectively. A dilation is a unary operator
8 : L — L commuting with suprema, and an erosion is a unary operator € : L — L
commuting with infima; that is, §(\/; x;) = \/; 8(x;) and e(A\; x;) = A, e(x;) for
each family (x;) of elements of L (finite or not). Visually, one can think of a dilation
of a shape as an enlargement of the shape. Dually, an erosion is a reduction of the
shape in size. These are the two basic operators from which many others are built.

Another important concept is that of adjunction. A pair of operators (¢, §) defines
an adjunction on (L, <) if for all x, y € L we have:

dx) =y & x < e

If a pair of operators (e, §) defines an adjunction, the following important properties
hold:

(i) & is a dilation and ¢ is an erosion,;
(i) &e < Id, where Id denotes the identity mapping on L, and /d < &4;
(ili) Sede = Sdeandeded = &6;thatis, the compositions of a dilation and an erosion
(defining morphological opening and closing) are idempotent operators.

The following representation theorem holds: an increasing operator § is a dilation if

Jde such that (¢, §) is an adjunction; the operator ¢ is then an erosion and e(x) =
V{y € L: 8(y) < x}. A similar result holds for erosion. Finally, let § and ¢ be two
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increasing operators such that 8¢ is anti-extensive and &8 is extensive.* Then (g, §)
is an adjunction (and hence § is a dilation and ¢ is an erosion). More details on the
algebraic framework can be found, e.g., in Heijmans and Ronse (1990); Ronse and
Heijmans (1991).

In a spatial domain, for instance in the lattice (F(R"), ©) of closed sets of R", it
is often useful to consider operators that are invariant under translation, in agreement
with the optics point of view. In such cases, it can be shown that there exists a set B,
called a structuring element, such that dilation and erosion are expressed as

§(X) = (x eR": ByNX £ 0)
and
e(X) = {x e R": By C X},

where B, denotes the translation of B at a point x (that is, x 4+ B), and B denotes
the operator symmetric to B with respect to the origin of space, Serra (1982). Similar
results hold for the lattice of functions defined on a spatial domain, in which case we
obtain nice physical interpretations. For instance, continuity expresses that if there are
small changes in the spatial representation, then the result of a transformation under-
goes only small changes; idempotence of filters such as openings, closings, and their
compositions means that once some parts of objects or background have been filtered
out, applying the same filter will have no more effect.’

The structuring element captures the notion of local information: the result of a
transformation at point x depends on the information contained in a neighborhood of
x defined by B.

This framework makes the theory applicable to many different contexts as soon as
a lattice structure can be defined: sets and functions (the most classical use of MM
relies on the lattice of powerset with set-theoretic inclusion, and on the lattice of func-
tions with the usual partial order), logic, and (bipolar) fuzzy sets, Bloch and Maitre
(1995); Bloch (2006, 2007, 2011). Note that all these formal settings are interesting
for dealing with physical space from either a quantitative point of view (sets and func-
tions), a semi-quantitative point of view, taking into account spatial imprecision (fuzzy
sets), or a qualitative and symbolic point of view (logic).

The idea of using MM in a logical framework was first introduced in Bloch and
Lang (2000). Since knowing a formula is equivalent to knowing the set of its models,
we can identify a formula ¢ with the set of its models [¢]), and then apply set-theoretic
morphological operations. Applying this idea to propositional logics has led to new
tools for knowledge representation and reasoning, such as revision, fusion, abduction,
and mediation Bloch and Lang (2000); Bloch et al. (2001, 2004, 2006b).

4 An operator  is said to be anti-extensive if v < Id where I d denotes the identity mapping, and extensive
ify > Id.

5 An operator v is idempotent if ¥y = 1; that is, the composition of v with itself is equal to ¥, and
thus applying ¥ several times is the same as applying it only once.
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By exploiting the strong similarity between the algebraic properties of MM opera-
tors and of modal operators, one can develop a modal morphologic, Bloch (2002).

In Sect. 3 we have recalled the interpretation of the S4 modalities O and < as
topological interior and closure. The relational semantics interprets O as necessity
and < as possibility on relational structures built of (possible) worlds linked by an
accessibility relation; see, e.g., Blackburn et al. (2001). In MM, the key is to define
the modal operators based on an accessibility relation as erosion and dilation:

Op =¢e(p) and O =65(p).

This can be done, as shown by Bloch (2002), by identifying the accessibility relation
and the structuring element (i.e. R(w, o) iff @’ € B,), thus obtaining a modal logic
built from morphological erosions and dilations which exhibits a number of interesting
theorems and rules of inference. Interestingly enough, the MM framework endows the
logic with additional properties that are useful for reasoning.

When dealing with physical spaces in general, and with vector spaces in particu-
lar, worlds can represent spatial entities, like spatial regions. Formulas then represent
combinations of such entities. For instance, if a formula ¢ is a symbolic representation
of a spatial region X, it can be interpreted as “the object we are looking at is in X.”
In an epistemic interpretation, it can represent the belief of an agent that the object is
in X. Using these interpretations, if ¢ represents some knowledge or belief about a
region X of the space, then Ogp represents a restriction of X: if we are looking at an
object in X, then Og is a necessary region for this object. Similarly, G¢ represents
an extension of X, and a possible region for the object. In an epistemic interpretation,
Og represents the belief of an agent that the object is necessarily in the erosion of X,
while Og represents the belief that it is possibly in the dilation of X.

For reasoning on vector spaces, and in particular for spatial reasoning, these modal
logics are very efficient since several spatial relations can be formally modeled, includ-
ing topological relations (e.g., adjacency, inclusion, part-whole, with nice links to
other logics of space), distances, and directional relations, Bloch (2002); Bloch et al.
(2006a). While the use of a structuring element allows reasoning on local spatial infor-
mation, these models of spatial relations allow reasoning at a more structural level. For
instance, two spatial entities are adjacent iff they are disjoint but the dilation of one of
them meets the other; i.e., o A = Land§(p) A ¥ I L, with ¢ and ¢ representing
the two spatial entities. As another example, the minimal distance between two spatial
entities can be expressed as d(¢, ¢) = min{n : §"(¢) A ¥ I/ L}, where §" denotes
the dilation using as a structuring element a ball of a distance of radius n (defined
in the spatial domain), or equivalently the composition of n dilations using a ball of
radius 1. In a similar way, the Hausdorff distance can be derived from dilations. Such
representations can be used in spatial reasoning, for instance to interpret a scene based
on the structural arrangement of the objects it contains, Bloch (2006). For example, if
a model of the scene is available, individual objects can be identified not only based
on their intrinsic properties, but also by checking the relations they share with other
objects. Spatial relations can also be used to guide the exploration of space, in a focus
of attention process, and for recognition and interpretation tasks.
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Another possibility is to look at MM as a set of operations in a vector space and
from there consider a vector-like logic. Arrow logic is such a formalism. It is a form of
modal logic where objects are transitions structured by various relations, rather than
nodes in a labeled graph, Venema (1996). In particular, there is a binary modality for
the composition of arrows and a unary modality for the inverse of an arrow. Such a
language naturally models a vector space which, in turn, is the most intuitive under-
lying model of MM, Aiello and van Benthem (2002). In fact, arrow models consist
of a ternary relation C, a binary relation R, and a unary relation I, which match the
definition of a vector space:

(i) (x,y,2)eCiffx =y + gz,
(i) (x,y) € Riffx = —y,
(i) xeliffx =e,

where e is the identity vector and x, y, z are any vectors. The interpretation of a dilation
operator in such a modal logic becomes the vector sum:

(w:3, v, w=v+v,veV@),veVH) =
w+v:veV(),v eV},

where v, v/, w are vectors and V is a valuation function from formulas to vectors.

A natural question here is how to axiomatize the resulting logic. We remark two
issues. First, the axiom x + (—x) = e poses a problem because it is not valid for
arbitrary subsets of the universe; second, the operation + must be defined for every
pair of elements. These issues can be overcome by augmenting the traditional arrow
logic with nominals (a technique coming from Hybrid Logic) and the universal modal-
ity (as we have seen in Sect. 3). This way we can define morphologic to be a hybrid
arrow logic. The basic axiomatization can be found in de Freitas et al. (2002), though
some interesting additions to capture MM are necessary, Aiello and Ottens (2007). The
obtained logic is a powerful tool to describe shapes and reason about them. However,
many fundamental questions remain unanswered:

(i) Is there a (convenient) finite axiomatization of arrow logic of the vector spaces
IR"?
(i) Can the concept of dimension of a vector space be captured in arrow logic?
(iii)) What about decidability and complexity of morphologics? Modal languages are
usually well-behaved in this respect. However, it is likely that it is possible to
encode the undecidable tiling problem in the arrow logic of the two-dimensional
Euclidean plane.

5 Conclusions

Logic has influenced our study and understanding of the geometry of space in var-
ious ways, enriching and supplementing each other, including: methodologically, as
an axiomatic method; mathematically, as a theory of models; and computationally, as
methods and algorithms for automated reasoning. Each of these has hardly exhausted

@ Springer
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its potential, and we have all reasons to anticipate more powerful and exciting appli-
cations of logic to physics of space to be discovered in the time to come.
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