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Abstract

Cortex surface modeling is important in several do-
mains including for solving the inverse problem in
EEG and MEG. Whereas MRI can be used to build
such a model, problems arise due to the partial vol-
ume effect that makes the cortex surface disappear in
the foldings.

To solve this problem we use a model, based on cel-
lular complexes, that has good topological properties.
This model allows to represent any object which is the
combination of volumes, surfaces and curves in a dis-
crete space. We define homotopic deformations on
such a model by adapting the notion of simple points
to our model.

We use this homotopic deformable model to seg-
ment the corter surface and to preserve the spheric
topology of the surface during the deformation process.
The model 1s initialized from the external brain surface
and is then deformed towards the minimum value of
an energy function that pushes the surface inside the
foldings.

1 Introduction

Magnetic Resonance Imaging (MRI) can be used
to build models of head structures (brain, skull, scalp,
etc.). These models are important in several domains,
including for solving the inverse problem in MEG and
EEG [2, 4, 8]. The cortex is of great importance in
this problem and to have a good representation of the
cortex surface is necessary. Problems arise due to the
cortical topology and the high inter-individual vari-
ability [7]. The cortical ribbon presents a lot of fold-
ings and on MRI images the cortex surface disappear
in the foldings because of partial volume effect (figure
1b). This makes the surface segmentation a difficult
problem.

To solve this problem we introduce a new model
that allows for the representation of structures thin-
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ner than the voxels. This model is based on cellu-
lar complexes and is presented in section 2. Then we
show that we can use homotopic deformations on such
a model. This is applied to the segmentation of the
cortex surface from 3D MR images in section 3, where
an initial surface represented according to this model
is deformed towards the desired result by preserving
homotopic properties.

cortex

cortex surface

(@ (b) ©

Figure 1: Representation of thin surfaces: (a) Seg-
mented and classified brain image (b) Zoom on the
grayed part (c) Brain volume without the cortex sur-

face.

2 Cellular complex as a basis for de-
formable model

The need to introduce structures thinner than the
voxels in an image and the necessity to work on a space
with good topological properties can be solved simul-
taneously and integrated in one model. The modeling
of an image based on cellular complexes [6] allows the
representation of any object that is the combination of
volumes, surfaces and curves in a discrete space, and
avoids the well-known connectivity paradox.



2.1 Cellular complexes

To avoid the connectivity paradoz in 3D images we
need a new structure with good topological proper-
ties. Kovalevsky [6] proved that every finite topologi-
cal structure is an abstract cellular complex. He intro-
duced a new representation of images based on cellular
complexes and free from topology paradoxes. This is
the representation we will use for modeling the cortex.

In 3-dimensional binary images a scene is repre-
sented by two sets of voxels O and O, the first one
containing the object points the second constituted
of background points. To use a new representation
that is close to the original rectangular grid and free
from topological paradoxes, we represent the set E
of all the elements that are an intersection of two
voxels. We have four types of elements in E called
cells: cubes, faces, edges and points. The dimen-
sion dim(c) of a cell is 3 (resp. 2, 1, 0) for cubes
(resp. faces, edges, points). The cells are linked
with a connectivity relation fg C E X E such that
(¢, ") € fr < N’ # 0 and dim(c’) # dim(c").
For example a face has ten neighbours: two cubes,
four lines and four points (figure 2).

Figure 2: The different cells constituting the cellular
complexe.

It is now possible to represent thin structures such
as the cortex surface (figure 1c) and to use the good
topological properties of the model to define homo-
topic deformations.

2.2 Homotopic deformations

There is no unique definition of deformations that
preserve topology in the literature. In the discrete 3D
topology framework, this notion is usually defined as
the preservation of connected components and tunnels
of both the object and the background [5, 9]. Tunnels
are characterized according to the notion of continu-
ous deformation of loops (i.e closed path). There is a
tunnel into an object if it exists a loop in the object
that cannot be continuously deformed in a point with-
out crossing the background. For example a sphere
has no tunnel and a torus has one tunnel. Continuous
deformation of loops is an equivalence relation. The
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number of tunnels is the number of equivalence class
of unreductible loops. '

For classical images, it is necessary to adapt the
notion of continuous deformation to the discrete case.
This leads to a local characterization of simple points
that are the points that can be removed from the ob-
ject without changing the topology [1].

The local characterization allows fast computation
of simple points and can be used for homotopic de-
formations [7]. In order to adapt the notion of sim-
ple points to cellular complex we introduce the simple
cells. A cell is simple if and only if it can be removed
without changing the topology (i.e. number of con-
nected components and number of tunnels) of the ob-
ject nor the topology of the background. We show in
section 2.3 that the notion of simple cell depends only
on the cell neighborhood and therefore can be used
iteratively to deform the whole model.

2.3 Deformation of a cellular complex
based model

In order to define homotopic deformation for our
model, we need to adapt the notion of path and con-
tinuous path deformation. A path on a cellular com-
plex is a sequence $i, S, ..., sy of cells where s; and
s;+1 are neighbors. The notion of deformation for a
path is based on notion of elementary deformation of a
path. A path deformation is a sequence of elementary
deformations that are applied to the path. In order to
define an elementary path deformation for our model,
we uses the fact that there are only four different con-
figurations of three cells that are mutually neighbor
(figure 3). In these configurations any cell can be con-
tinuously deformed towards the union of the two oth-
ers. Therefore if it exists two paths I' = v;.51.52.53.72
and IV = 7;.51.53.y2 where 4; and 7, are paths and
$1, S9, 83 are mutually neighbors, then the object com-
posed by the cells of T can be continuously deform in
the object composed of the cells of TV.

Therefore, a path deformation is a continuous de-
formation that is used to define loop deformation.
Hence, the definition of the number of tunnels and
of homotopy are similar to the continuous case.

Figure 3: Four configurations of mutually neighbor
cells.

Starting from the definition of homotopic deforma-
tion for cellular complex based models we proved that



the simple cells can be locally characterized. A cell
is simple if and only if his neighborhood contains ex-
actly two connected components, one for the object
and one for the background. This local property is
easy to compute and can be used to remove (resp.
add) cells from (resp. to) the model without changing
its topology. By iteratively removing or adding simple
cells, we obtain an homotopic deformation of a cellular
complex based model.

3 Segmentation of the cortex surface

To segment the surface of the cortex we initialize a
cellular based deformable model on the external brain
surface (figure 4a). This model is then deformed by
iterative removing of simple cells towards the inner
part of the cortex gyri (figure 4b and 4c).

(a)

Figure 4: (a) Initial model, (b) Intermediate step, (c)
Final segmentation.

3.1 Initialization of the model

To extract the brain from MR images, we use the
method proposed by Geraud [3]. This method is based
on mathematical morphology operators. The result is
a binary image of the brain (figure 5). To initialize
the model we must decide which cells are part of the
object and which are part of the background. We set
all the cubes according to the corresponding voxel in
the mask. Any other cell (face, edge or point) is part
of the object if and only if an object cube belongs to
its neighborhood.
3.2 Guiding the deformations

In order to guide our deformable model from the
outer brain surface toward the inside of the cortex
gyri, we make a few assumptions about the cortex:

o The cortex has a spherical topology. This impor-
tant assumption allows us to limit the possible
deformations of our model. The spherical topol-
ogy is imposed by the brain segmentation process
and preserved during the deformations.

o The cortex width is almost constant. This as-
sumption is important to be able to detect the
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(b)
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Figure 5: (a) Initial MR image, (b) Brainmask.
(shown on one slide of the 3D volume).

cortex surface where it is not seen in the image be-
cause of partial volume effect. If we suppose that
the cortex width is equal to cw (about 3mm), we
can say that in the place where the cortex surface
could be, there must be a cortex structure of size
2% cw (figure 8). To use this property to guide our
model, we must be able to detect the cortex loca-
tion. This is done with an image that gives, for
each voxel, a membership value to the cortex. To
build this image, we perform a classification of the
brain image with the k-means algorithm, then we
extract the cortex label and apply a mean filter to
account for imprecision on the cortex delination
(figure 6).

Figure 6: Membership to the cortex (Lcortec)-

e The location of the cerebrospinal fluid (csf) in-
side the brain is a good indicator of the cortex
surface location. The brain is immersed into the
csf and the csf goes into the cortex gyri. There-
fore, we can use the csf inside the gyri to guide our
model. The location of the csf can be computed
with mathematical morphology using watershed

[3] (figure 7).



Figure 7: Cerebrospinal fluid location (ftesy).

3.3 Segmentation algorithm

To deform our model, we must choose, among the
simple cells, which ones can be removed to push the
model towards the gyri. These cells are then removed
and the process is iterated until there is no more cell
to remove. Since there is a finite number of cells the
algorithm always terminates. But it could be very
long because the number of cells is important and, in
order to preserve the topology, only a small number
of cells are removed on each iteration. The way we
decide to remove a simple cell s is different according
to its dimension :

e If sis aline or a point it is only used for topology
preservation. So s is removed if it cannot generate
a long 1D structure (i.e. containing more than
two lines).

e If s is a cube it is removed if its membership to
the cortex is too low (i.e. feorter(s) < tcorter
where t.orter 1S a parameter of the algorithm). In
this way we dig into our model where the gyri are
large enough to avoid partial volume effect.

e If s is a face, it is removed according to the as-
sumptions we have done before about the cortex.
These hypotheses are expressed as cost functions
that are combined together in a final cost function
C(s). Except the topology, we have two hypothe-
ses about the cortex, which are represented by the
two functions Ceorter(s) and Ceyp(s):

— Crortez () represents the assumption that
the cortex width cw is constant. cw is a
parameter of the algorithm. Therefore, we
need to verify that there is enough grey mat-
ter on both sides of the face s. This is
achieved by computing the average pticorter
on a distance cw on both sides of the face
(figure 8).

Background

Face to delete

Figure 8: Verification that the face to delete is on the
cortex surface according to the cortex width.

— Coesy(s) is used to guide our model with the
location of the csf, we compute it as the
mean value of pcs; of the two cubes that
are neighbors of s.

Ceortez(8) and Cg,yf(s) are combined in the final
cost function C(s) according to a weight param-
eter w: C(s) = w.Ceortex(s) + (1 — w).Cesy(s).
The face is removed if C(s) > to5¢ Where tcoq 1S
a parameter of the algorithm.

3.4 Results

The figure 9 shows the result of the segmentation
algorithm on a subpart of the cortex. It displays the
membership to the cortex superimposed with the bor-
der of the final model (in dark lines). On these images
we show only the faces of the border that are perpen-
dicular to the view plane. The border of the model
seems to be in several pieces but it is not the case,
the whole border is 3D connected and topologically
equivalent to a sphere.

The model has been succesfully guided towards the
desired result. Both the constant cortex width and
the csf location assumptions are necessary to have a
good segmentation. The choice of the parameters was
empiric. The most difficult parameter to choose is the
threshold of the cost functions, it represent a compro-
mise between the quality (smoothness) of the surface
and the amount of gyri detected. The location of the
final surface in the gyri is good. However, when the
cortex structures are too large (according to cw), the
surface presents two or more parallel parts (see on the
upper-right of figure 9b). On the other hand, when
the structures are too small they are not detected.
The errors of detection in the large structure could be
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Figure 9: Final segmentation. Zoom on three orthog-
onal slices. (a) coronal, (b) sagital, (c) axial.

avoided by the introduction of a cost function based
on the proximity of the inner parts of the surface.
The resulting surface is not smooth. This is because
we do not impose any intrinsic regularisation on the
surface exept the topology preservation. To avoid this
it is possible to add cost functions based on the surface
normals or curvatures. This is left for future work.

3.5 Conclusion

The cellular complex based deformable model is an
original tool for image processing. It can be used for
all the applications that need to represent objects that
are composed of truly 2D surfaces mixed with vol-
umes. The good topological properties of the model
allows to easily deform it according to intrinsic cri-
teria (topology, curvature, etc.) as well as to image
processing based criteria.

This model has been used for the segmentation of
the cortex surface. In this case the topology of the
cortex is know a priori and can be preserved during the
deformation process. The ability to have surfaces and
volumes in the same model has been used to represent
the cortex surface inside the gyri.

Our future work will be to add some regularization
cost functions to make the detected surface smoother.
This functions will be based on the approximate cal-
culation of the normals and curvatures of the surface.
The final result will be used to build a current sources
model for solving the inverse problem in EEG/MEG.
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