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Fuzzy Models of Spatial Relations,
Application to Spatial Reasoning

Isabelle Bloch

8.1 Introduction

Spatial relations are an important component of image content, that proved to be use-
ful for recognition of individual objects and for image understanding. Indeed, spatial
relations provide structural information about the scene, which is often more stable
that individual object characteristics, can help disambiguating objects of similar ap-
pearance, and is often available as prior knowledge. A typical example is anatomy,
where relations between anatomical structures are described in anatomical textbooks
or dedicated web sites, and can be used to drive the interpretation of medical images.
This will be illustrated on magnetic resonance images (MRI) of the brain, for seg-
menting and recognizing internal brain structures. This is a typical example where
shape and appearance information may not be sufficient for recognition, in particular
in pathological cases, while using structural knowledge is relevant and helps solving
the problem. Similar examples can be found in understanding aerial and satellite
images.

One important characteristic of spatial relations is that they often have a clear
intuitive meaning in natural language, but crisp mathematical models are often to
restrictive, not robust enough, and do no model the intrinsic imprecision attached to
the linguistic descriptions of the relations. Fuzzy models are better suited, and allow
accounting for imprecision both in the relations and in the objects. This was already
mentioned in [21].

My work on fuzzy models of spatial relations was initiated while I was visiting
Lotfi Zadeh’s lab in Berkeley, where I spent a few months in 1995 and 1997, enjoying
the stimulating environment and fruitful discussions, with researchers from different
fields of fuzzy sets theory.

The main approach I proposed to model fuzzy spatial relations relies on mathe-
matical morphology [32], because of its strong algebraic framework, which allows
developing consistent models in different settings (from purely quantitative ones on
sets, to purely qualitative ones in various logics), the fuzzy sets setting being a mid-
way [8]. Another feature is that different types of representations can be proposed,
expressing relations as numbers, fuzzy numbers, intervals, distributions, or fuzzy
regions of space.
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8.2 Mathematical Morphology to Model Spatial Relations

Spatial relations include set theoretical and topological relations (inclusion, intersec-
tion, connection, adjacency...), metric ones (distances, relative direction...), and more
complex ones (“between”, “along”, “parallel to”, “aligned”...). Note that this classi-
fication extends the one of [21] and the hierarchy proposed in [25]. These relations
can be binary, ternary (such as “between”), or n-ary (alignment of a series of objects
for instance). Some of them can be crisply defined when objects are crisp (such as
the Hausdorff distance between two well defined objects), and need to be extended
to the fuzzy case (i.e. when the objects are imprecisely defined or known). Other
ones are intrinsically vague (“close to”, “to the right of”, “between”...), and are then
best modeled using fuzzy sets.

The main idea in the proposed models is to make use of morphological operations,
in particular dilations, using appropriate structuring elements. This idea comes from
the fact that several relations in the crisp case can be converted into algebraic expres-
sions involving set theoretical and morphological operations, which are then easy to
extend to the fuzzy case, using fuzzy mathematical morphology. Let us give a few
examples:

• adjacency between two crisp objects can be expressed by the fact that the two
objects do not intersect, but as soon as a dilation is applied to one of them, inter-
section occurs. This is translated by a conjunction (using a t-norm) of a degree of
non intersection of two fuzzy sets and a degree of intersection of the dilation of
one fuzzy set and the other;

• the minimal distance between two crisp objects is equivalent to the minimal size
of the dilation that has to be applied to one object so that it meets the other. Again
this easily extends to the fuzzy case by using fuzzy dilations.

Direct algebraic expressions have been proposed for vague relations, using simi-
lar operations. For instance the region of space which is to the right of another
object is defined as the dilation of this object by a fuzzy structuring element repre-
senting the semantics of the relation (high membership functions in the horizontal
direction, which decrease when going away of this direction). This is illustrated
in Figure 8.1. If ν denotes the fuzzy set representing the spatial relation, and μ
the reference object (fuzzy set in the spatial domain S ), then the degree of satis-
faction of the relation is given by the dilation of μ by the structuring element ν:
∀x ∈ S , δν(μ)(x) = supy∈S C[ν(y− x),μ(y)], where C denotes a fuzzy conjunc-
tion, and more specifically a t-norm. Details on mathematical morphology and the
associated properties can be found in [9, 13, 27]. Assessing to which degree another
object is to the right of the reference object is then performed by comparing it to the
dilation result, for instance using a fuzzy pattern matching approach [19]. Details
can be found in [4]. This is an example where we have a direct representation of
the relation in the spatial domain, from which we can derive evaluations as num-
bers, intervals, distributions, etc. An example of spatial representation of the relation
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“between” is displayed in Figure 8.1 too. Here the reference objects are the two
lungs segmented in a medical image (illustrated on one slide). The region between
the lungs was used in [26] to guide the segmentation of the heart in non-contrasted
3D CT images.

Fig. 8.1. Left: fuzzy structuring element representing the semantics of “right” in the spatial
domain. Membership values are represented by grey levels (0 = black, 1 = white). Middle:
region to the right of the red square. The membership at each point is the degree of satisfaction
of the relation at that point. Right: region “between” the lungs.

A review on fuzzy spatial relations can be found in [7], and one on relative di-
rections in [15], while technical details, along with examples, on several original
proposals based on mathematical morphology can be found e.g. in [4, 5, 10, 14, 18,
29, 33, 34].

The main advantages of this approach is that the obtained definitions have good
formal properties, provide results that fit the intuitive meaning of the relations, and
are robust to the parameters defining the fuzzy structuring elements (in the sense that
a fine tuning is not necessary). Moreover, having a common framework for defining
several types of relations allows for their combination (see Section 8.4).

8.3 Instantiation of Spatial Relations Models in Various
Settings: Towards Spatial Reasoning

Mathematical morphology, in particular its part dealing with deterministic increas-
ing operators, relies on the algebraic framework of complete lattices [22, 31, 32].
Examples of such lattices are the powerset of a set, endowed with inclusion, func-
tions, with the usual partial ordering, partitions, fuzzy sets, formulas in propositional
logics, graphs and hypergraphs... A direct consequence is that the proposed spatial
relations can be expressed in all these settings [8, 12]. In particular, it is interest-
ing to have a symbolic expression of relations, in a logical framework (for instance
by considering a formula as the logical representation of a spatial entity, whose
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models can be sets or fuzzy sets), to benefit from the reasoning tools inherited from
the logics. This applies in propositional logics, but also in modal logics, where a
structuring element gives rise to an accessibility relation, and the modalities � and
� correspond to erosion and dilation, respectively [6]. Spatial relations can then be
directly expressed in this logic. For instance, if ϕ and ψ are formulas representing
two spatial entities, saying that the first one is a non tangential part of the second
one can be simply expressed by: �ϕ → ψ , or equivalently ϕ → �ψ . Similarly in
description logics, dilation and erosion are considered as binary predicates [24], and
interesting links can be established with concept lattices [2] for reasoning purpose.
Finally, the developed morphological framework deals with the two components of
spatial reasoning (representation of spatial entities and their relations, and reasoning
on them), as illustrated next.

8.4 Spatial Reasoning: Example of Model-Based Recognition
and Image Understanding Based on Spatial Relations

Spatial reasoning can be defined as the domain of spatial knowledge representation,
in particular spatial relations between spatial entities, and of reasoning on these en-
tities and relations. This field has been largely developed in artificial intelligence,
in particular using qualitative representations based on logical formalisms. In image
interpretation and computer vision it is much less developed and is mainly based on
quantitative representations. Our work has shown that semi-quantitative formalisms,
using fuzzy sets, have many advantages. A typical example in this domain concerns
model-based structure recognition in images, where the model represents spatial en-
tities and relationships between them. For both spatial knowledge representation and
reasoning, spatial relationships then constitute an important part of the knowledge
we have to handle. Imprecision is often attached to spatial reasoning in images, and
can occur at different levels, from knowledge to the type of question we want to
answer. The reasoning component includes fusion of heterogeneous spatial knowl-
edge, decision making, inference, recognition. Two types of questions are raised
when dealing with spatial relationships:

1. given two objects (possibly fuzzy), assess the degree to which a relation is
satisfied;

2. given one reference object, define the area of space in which a relation to this
reference is satisfied (to some degree).

In order to answer these questions and address both representation and reasoning
issues, we rely on three different frameworks and their combination: mathematical
morphology [32], fuzzy set theory [35], and formal logics and the attached reasoning
and inference power. The association of these three frameworks for spatial reason-
ing allows answering two important requirements: expressiveness and completeness
with respect to the types of spatial information we want to represent [1].
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As an illustration, let us consider the example where we would like to seg-
ment and recognize brain structures in a 3D MRI image, based on an anatomical
model, which includes structures and their spatial relations. The usual description is
given in a linguistic form, from which we can derive computational models relying
on ontologies and graphs, and where spatial relations can be learned from exam-
ples [3, 11, 17, 20, 23, 24]. The model is then used for guiding the recognition. We
summarize here a few approaches we have developed. Details can be found in the
mentioned references.

The first approach uses a model graph and the image to segment is represented as
a graph too, for instance from an over-segmentation of the image. The segmentation
and recognition process is then formalized as a graph matching problem [16, 30].

In the second approach, a sequential segmentation of the internal brain structures
is performed [11, 17]. The segmentation and the recognition are achieved at the same
time. Each segmentation uses the spatial information encoded in the model, and
more specifically the spatial relations to the previously segmented structures. This
information allows restricting the search domain around the structure, in which a de-
formable model yields the segmentation result. The reasoning can rely on an ontol-
ogy, where spatial relations are expressed based on morphological operators [23, 24],
and on logical formalisms [2, 6]. In this approach, there is no initial segmentation of
the image, but it raises questions on the order of segmentation of the different objects
and on how to avoid the propagation of potential errors. These questions have been
addressed in [20] by optimizing a segmentation path in the graph, based on saliency
and structural information, and by allowing backtracking on the defined path to avoid
error propagation.

Another approach was proposed in [28], which is global and uses a constraint
network encoding all spatial relations that should be satisfied by the structures. Each
anatomical structure is linked with a region of space which satisfies all constraints

Fig. 8.2. Segmentation and recognition of a few brain structures from 3D MRI in a patho-
logical case (left) and in a normal one (right), obtained with the sequential method. Thanks
to the spatial relations, which remain stable even in presence of a pathology, the tumor does
not prevent the correct segmentation of the normal structures, even if they are strongly de-
formed. Only one slide is displayed, but the relations are modeled and computed in 3D and
the segmentation is performed in 3D too. (PhD thesis of Geoffroy Fouquier [20].)
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in the network. Hence the problem is expressed as a constraint satisfaction problem
(CSP). Since it is hard to solve this problem directly, only the bounds of the domain
of each variable (i.e. structure to be segmented) are modified by the process and
sequentially reduced using specifically designed propagators derived from the spatial
constraints. In the reduced domain around the structure, the final segmentation is
obtained by a minimal surface algorithm.

A typical segmentation and recognition result is shown in Figure 8.2 for a patho-
logical case and a normal one, obtained with the sequential method. Another ex-
ample is illustrated in 3D in Figure 8.3, where results have been obtained with the
global CSP method.

Fig. 8.3. 3D view of segmentation and recognition results obtained with the global CSP
method for the following structures: caudate nuclei, putamen, lateral ventricles, thalami, third
ventricle, accumbens nuclei and sub-thalami. (PhD thesis of Olivier Nempont [28].)
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