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1. Introduction     
A fully polarimetric synthetic aperture radar (SAR) is a device that is able to transmit and 
receive both orthogonal (horizontal and vertical) components of an electromagnetic wave 
(Touzi et al., 2004). Its signals include the magnitude and phase information, rendered as 
complex variables. Many classification algorithms have been proposed for SAR images 
(Cloude & Pottier, 1997; Ferro-Famil et al., 2001; Hoekman & Vissers, 2003; Kersten et al., 
2005; Lee et al., 1994; Lee et al., 1999, Lee et al., 2004), that can be grouped into three main 
types (Chen et al., 2003): 1) algorithms based on image processing techniques, 2) algorithms 
based on a statistical model, 3) algorithms based on the scattering mechanism of the 
electromagnetic waves. Our interest is in the first type, since such algorithms permit a 
general approach to the images, potentially after investigating the physical properties of 
natural media.  
In a previous work (Alberga et al., 2006), several ways of representing polarimetric SAR 
data (Cloude & Pottier, 1996; Cameron et al., 1996; Cloude & Pottier, 1997; Freeman & 
Durden, 1998) have been analyzed and their usefulness for land cover classification 
compared. The classifiers used were the minimum distance classifier, the maximum 
likelihood classifier and a neural network - the Multi-Layer Perceptron (MLP), trained by 
the Back-Propagation (BP) learning rule. The MLP outperformed the other two classifiers. In 
addition, the MLP does not need any a priori knowledge on the statistics of the input data, 
thus it can be applied to any possible polarimetric observable, permitting an unbiased use of 
the classification results (Benediktsson, et al., 1990). For these reasons, the MLP is used also 
in this work. 
The accuracy of the classification of a given polarimetric representation (i.e., set of 
polarimetric parameters) was taken in (Alberga et al., 2006) as a measure of the usefulness of 
that set and compared with the accuracies obtained using other representations of the data. 
The substantial equivalence of the parameters in these terms was shown. However, no 
attempt was made to take advantage of the complementary information provided by the 
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different parameters nor was their fusion performed in order to improve the classification 
performance. This is the scope of the present research. 
Papers on polarimetric data fusion can be rarely found in the literature. In (Mascle et al., 
1997; Le Hégarat-Mascle et al., 1998), an unsupervised classification is performed on each 
image separately and the results are fused using a strategy based on belief functions (Shafer, 
1976; Smets, 1990). 
In this paper, classification results coming from several sets of polarimetric parameters are 
fused following different strategies (SMART, 2004), two based on the belief function 
framework (Shafer, 1976; Smets, 1990) and one based on fuzzy theory (Dubois et al., 1999). 
After decision combination on pixel level, as a final step of the fusion module, a spatial 
regularization is performed. 
In Section 2, the sets of polarimetric parameters under consideration are described, and the 
classifier used is presented in Section 3. The main aspects of the belief function theory are 
underlined in Section 4. The applied fusion approaches are detailed in Section 5. Section 6 
presents the experimental data and the characteristics of the analyzed scene, while Section 7 
reports on the results of data fusion and on their comparison with the classification results 
of each set of polarimetric parameters. Finally, Section 8 is devoted to conclusions, followed 
by acknowledgements and references.  

2. Investigated polarimetric parameters 
Fully polarimetric radars can transmit and receive both orthogonal components of an 
electromagnetic wave (Touzi et al., 2004). Thus, its vector nature is taken into account 
ensuring that complete scattering information carried by radar echo signals may be used for 
target detection and identification. Within this framework, different representations exist of 
the scattering interactions, such as, e.g., the 2 x 2 scattering matrix [S] or the higher order 
ones, the coherency and covariance matrices. 
In the field of terrain classification, the choice of a given representation has been related to 
considerations on both the statistics of the data and the physics of the scattering 
mechanisms. In particular, the use of incoherent parameters (i.e., those derived from the 
second order matrices) has become predominant with respect to that of the coherent ones 
related to the [S] matrix. For multi-look data represented as covariance or coherency 
matrices, Lee et al. (Lee et al. 1994) defined a distance measure for the membership of a pixel 
to a class based on the complex Wishart distribution and this measure could be incorporated 
in several classification algorithms (Ferro-Famil et al., 2001; Lee et al. 1999). Accordingly, 
only second order representations were considered when operating these classifiers (Ferro-
Famil et al., 2001; Lee et al. 2004); not much attention was paid, until now, to coherent 
parameters. 
Different viewpoints are adopted when choosing a coherent or incoherent representation: in 
the first case, the hypothesis is made that the scattering interaction within a resolution cell 
involves only one or few point scatterers. Their phase can then be measured and analyzed or 
taken into account when deriving new parameters. Moreover, in the case of independent 
scattering mechanisms, these may be singularly recognized (coherent target decomposition 
theorems perform just this separation). Given their definition, the reliability of coherent 
methods is higher when dealing with man-made artifacts, which correspond better to such a 
scenario. Thus, in our specific experimental case, we expect good classification performance 
of coherent representations especially for urban areas or other targets with a “stable” 
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behavior. On the contrary, incoherent methods perform immediately an averaging of the 
returned signals that yields the loss of the direct reference to the phase of the elementary 
targets. However, they provide a statistically sounder description of the behavior of 
”dynamic” natural environments. For these environments, target decomposition theorems 
may be applied and permit to recognize different scatterers. Namely, they separate the 
responses of different mechanisms considered as “average” ones (e.g., within forested areas 
they can distinguish between distributed volumes and surface scatterers). 
Since coherent representations are better suited to targets approximating ideal point scatterers 
(as it happens in urban areas) and incoherent ones to randomly distributed targets (forests or 
fields), it can be expected that their use would provide complementary information that, by 
classification applications, could be better exploited by means of a fusion approach.  
The representations reported in the following subsections have been taken into account in 
order to benefit from the different types of information they provide as well as because they 
are the most often used and known. 

2.1 First and second order matrices 
When a horizontally or vertically polarized wave is incident upon a target, the backscattered 
wave can have contributions in both horizontal and vertical polarizations. Thus, the 
backscattering of the target can be completely described by a scattering matrix: 

 [ ] ⎥
⎦

⎤
⎢
⎣

⎡
=

vvvh

hvhh
SS
SS

S .  (1) 

In other words, the four complex elements of the scattering matrix describe the 
transformation of the polarization of the incident wave to the polarization of the 
backscattered wave. For monostatic configurations (the ones in which the receive antenna is 
co-located with the transmit antenna), the scattering matrix becomes symmetric, i.e., Shv =Svh. 
The real and imaginary parts of the three complex terms of the scattering matrix provide six 
variables in total that can be reduced to five independent parameters by normalization with 
respect to a given phase term. For our tests, we normalize with respect to the phase of the hh 
term and the results of the classification, performed using this representation, are indicated 
as cl1 in the remaining part of the chapter. 
Real systems involve scatterers situated in dynamic environments and subject to space 
and/or time variations (i.e., non-deterministic scatterers). This causes the electromagnetic 
waves to be partially polarized and thus prevents the scattering process from being 
described by a single matrix [S]. Hence, averaging processes are needed to cope with the 
statistical variation of the polarization. The covariance and coherency matrices, the 
definition of which includes such averaging, take into account these variations and permit 
their description. 
In the monostatic case, the 3 x 3 covariance matrix has the form: 
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with its elements derived from the ones of the scattering matrix. By definition, the 
covariance matrix is Hermitian positive semidefinite, hence, its symmetric elements are 
complex conjugates and only nine independent parameters are necessary in order to 
completely characterize it. For classification, these nine parameters (the three real main 
diagonal elements and the real and imaginary parts of the three non-redundant off-diagonal 
elements) have been given as input to the classifier. In the following, the MLP output results 
based on the covariance matrix elements are denoted as cl2. 
Alternatively, an incoherent representation is provided by the coherency matrix, which is 
defined as: 
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A direct interpretation of the measured values is possible, e.g., in terms of the scattering 
model to be adopted (and this depending, in turn, on the surface roughness). The 
predominance of one [S] matrix term over the other is connected to the type of scattering on 
the illuminated surface (Ulaby et al. 1982; Born & Wolf, 1985; Curlander & McDonough, 
1991). More precisely, |Shh|>|Svv| when the incident beam is scattered according to the 
Fresnel model, valid for almost flat surfaces, whereas the case of |Shh|<|Svv| is verified for 
scattering from rough surfaces described by the Bragg model. 

2.2 Target decomposition theorems 
Target decomposition (TD) theorems permit to identify different scattering mechanisms 
corresponding to sets of theoretical models (Cloude & Pottier, 1996; Corr & Rodrigues, 2002; 
Moriyama et al., 2004). This further means that these methods intrinsically perform a 
classification, since they recognize and weight the contributions of different model targets in 
a scene. 
We have applied here the principal decomposition theorems: the Pauli and the Cameron 
decomposition, as examples of the coherent methods (that operate on the scattering matrix), 
and the Freeman decomposition, as an example of the incoherent ones (based on the 
covariance and coherency matrices). 
The classification results corresponding to the Pauli decomposition are referred to as cl3. By 
means of the set of the Pauli matrices, it is possible to write a generic matrix  
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where a, b, c and d are complex numbers. The first decomposition term represents single 
scattering from a plane surface or a sphere, the second and third term correspond to double-
bounce scattering from diplane reflectors with a relative orientation of 45°, and the fourth 
term - to a scatterer that rotates every incident polarization by 90°. As it causes [S] to be non-
symmetric, the fourth term disappears in reciprocal backscattering cases.  
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The Cameron decomposition (Cameron et al., 1996) (cl4) is a more generalized example of 
the model fitting seen with the previous decomposition. A generic matrix [S] (not only in 
the monostatic case) can be characterized by its tendency of being more or less symmetric 
according to the reciprocity rule and it can be split into two terms representing reciprocal 
and non-reciprocal scattering mechanisms. The reciprocal term represents a target which is 
more or less symmetric with respect to an axis in the plane orthogonal to the radar line-of-
sight and, again, a distinction can be made between the most and the least dominant 
symmetric target components.1 Thus, the decomposition follows the scheme (Cameron et al., 
1996): 
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The degrees of reciprocity and symmetry are evaluated in terms of projection angles of the 
scattering vectors onto the corresponding subspace and subsets via proper projection 
operators. As SAR data are calibrated in order to fulfill reciprocity constraints, the basic 
distinction among scatterers made by this method is based on their geometrical symmetry. 
For this reason, only the decomposition of the [S] matrix into its most dominant and least 
dominant symmetric terms, [ ]max

symS  and  [ ]min
symS , has to be performed. 

The principle behind incoherent decomposition theorems consists in modeling the scattering 
interaction so that the received power may be expressed as sum of contributions due to 
different basic mechanisms. As seen above, similar modeling based on the [S] matrix yields 
normally combinations of terms where typical scatterers, like spheres and diplanes, may be 
recognized. In (Freeman & Durden, 1998), another method is presented, less bound to pure 
mathematical models and more to real scatterers. The Freeman decomposition (cl5) 
describes the scattering as due to three physical mechanisms: first-order (surface) scattering, 
s, a double-bounce scattering mechanism (corner reflector), d, and canopy (or volume) 
scattering from randomly oriented dipoles, v. According to this model, the measured power 
P may be finally expressed as (Freeman & Durden, 1998): 

  vdshvvvhh PPPSSSP ++=++= 222 2 ,  (5) 

with the three decomposition terms being related via a system of linear equations to the 
covariance matrix elements. 

                                                 
1 Note the difference in the use of the word ``symmetry'' when referred to scattering 
matrices and to targets. According to the Cameron decomposition, scattering matrices which 
are symmetric due to the reciprocity constraint may describe targets which are 
geometrically more or less symmetric in the plane orthogonal to the radar line-of-sight (in 
the case of a helix, a symmetric scattering matrix represents a target which is not 
geometrically symmetric). 
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2.3 Entropy/α analysis 
A generic coherency matrix may be diagonalized and decomposed by determining its 
eigenvalues and eigenvectors (Cloude, 1986; Cloude & Pottier, 1996; Cloude & Pottier, 1997). 
Using this decomposition, the different relevance of each scattering mechanism (within a 
given resolution cell) is expressed by means of its eigenvalues. Indeed, while the 
eigenvectors discriminate the presence of different scattering mechanisms, the eigenvalues 
underline their intensity. A quantity that measures the randomness of these scattering 
processes is the polarimetric scattering entropy, H: 
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The three λi are the calculated eigenvalues, conventionally ordered such that 0 ≤ λ3 ≤ λ 2≤ λ1, 
and Pi represents the appearance probability of each contribute. H ranges from 0 to 1: H = 0 
stands for a deterministic scattering process (the coherency matrix has only one non-zero 
eigenvalue), while H = 1 indicates a degenerated eigenvalues spectrum, typical of random 
noise processes (the coherency matrix has three identical eigenvalues). 
To estimate the relative importance of the different scattering mechanisms, the polarimetric 
anisotropy (A) has been introduced: 
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A medium entropy means that more than one single scattering mechanism contributes to 
the backscattered signal, but it is not clear how many additional mechanisms are present 
(one or two). In this case, a high A states that only the second scattering mechanism is 
important, whereas a low A indicates a remarkable contribute also of the third one. 
Finally, a further parameter, the α angle, may be derived from the coherency matrix 
eigenvectors, which is associated to the type of scattering mechanism and can vary in the 
range [0, π/2]. α = 0 stands for isotropic surfaces, α = π/2 for isotropic diplanes or helices. 
Low values of α represent all-anisotropic scattering mechanisms with Shh different from Svv. 
The boundary between anisotropic surfaces and diplanes is represented by the case α = π/4, 
which describes a horizontal dipole. An average α  angle is normally used in polarimetric 
SAR data analysis. Henceforth, the classification results of the H/α /A parameters are 
referred to as cl6.  

3. Classification algorithm  
The neural network classifier chosen in this work is the Multi-Layer Perceptron architecture, 
with one hidden layer, trained by the Back-Propagation learning rule. The MLP is a fully 
connected feed-forward neural network, composed of nodes arranged in layers. It can be 
used to perform every non-linear input-output mapping, such as classification functions 
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(Hertz et al., 1991), or more complex tasks such as the approximation of continuous 
functions (Funahashi, 1989). For this purpose, it is necessary to submit the MLP to a training 
phase that searches the optimum set of weights minimizing a cost measure, usually given by 
the mean square error between estimated and expected outputs. This training phase, 
performed by the well-known BP learning rule (Hertz et al., 1991), requires a set of input-
output examples. In this context, the input examples are obtained by a supervised procedure 
that identifies on the mono- or multi-band image, and for each class of interest, a 
corresponding region of points. Consequently, the output examples are given by the class 
labels j, j=1, 2, …, n (n being the number of classes), represented by n-dimensional Boolean 
vectors. The MLP dimension to be used is related to the current classification problem. In 
particular, the number of MLP input nodes corresponds to the number of polarimetric 
features under investigation, whereas the number of output nodes is set equal to the 
number n of classes identified on the images. The performance of each trained MLP is 
estimated on an independent test data set. 
The same MLP classification procedure is applied to each of the six sets of polarimetric 
parameters described in Section 2, and the classification results are referred to as cl1 - cl6 
(Table 1). The results are good for some sets and exhibit lower performances for other sets, 
in terms of global accuracy (see Section 7). However, the overall accuracy does not 
completely describe the behavior of the classifier. Looking more precisely at the 
performances for each class, it appears that even a globally good set of parameters can lead 
to classification results for a particular class which are worse than the ones obtained using 
another set of parameters. The main reason is that classes may be well separated in some 
polarimetric representations and not in other ones, and there is no single set of parameters 
that separates correctly all classes. These observations advocate for a fusion of all 
classification results obtained on the different sets of polarimetric parameters. An important 
contribution of this paper is to show how this fusion can be performed using the belief 
function theory. 
 

Classification Corresponding set of parameters 
cl1 scattering matrix 
cl2 covariance matrix 
cl3 Pauli decomposition 
cl4 Cameron decomposition 
cl5 Freeman decomposition 
cl6 H/α /A parameters 

Table 1. Set of parameters used to obtain each classification 

4. On belief functions 
Belief function theory or Dempster-Shafer (DS) evidence theory has been already widely 
used in satellite image processing (Mascle et al., 1997; Le Hégarat-Mascle et al., 1998; 
Cleynenbreugel et al., 1991; Tupin et al. 1999; Milisavljević & Bloch, 2003). DS theory allows 
representing both imprecision and uncertainty, using plausibility and belief functions 
derived from a mass function. The mass of a proposition A is a part of the initial unitary 
amount of belief that supports that the solution is exactly in A. It is defined as a function m 
from 2Θ into [0, 1]. Θ is the decision space (frame of discernment) and it is a set of N possible 
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solutions, e.g., classes Ci, i = 1, 2, ..., N (Θ = {C1, C2,…, CN}), while the power set, denoted 2Θ, 
consists of 2N subsets of Θ: 

 { }{ }Θ∪∅=Θ ,...,,,...,,,2 2121 CCCCC N ,  (9) 

meaning that it contains not only single hypotheses (singletons) of Θ, but also all possible 
unions of the singletons, called compound hypotheses or disjunctions. Thus, in this 
formalism, any combination of possible decisions from the decision space can be quantified 
rather than considering only the singletons of Θ (Shafer, 1976; Smets, 1990). This is one of 
the main advantages of the DS approach, as it leads to a very flexible and rich modeling, 
able to fit a large class of situations, occurring in image fusion in particular. Another 
advantage of this method over the probabilistic ones is in allowing an easy way of 
representing the state of a total ignorance by means of the so-called vacuous basic belief 
assignment: m(Θ) = 1, m(A) = 0, for all A ≠ Θ. The basic difficulty that some other theory, 
such as probabilistic, faces in these cases is the inability of distinguishing between lack of 
belief and disbelief (Shafer, 1976).  
In image processing, mass functions may be derived at three different levels: the most 
abstract level, an intermediate level, and the pixel level. At the pixel level, which is the most 
interesting here, mass assignment is inspired from statistical pattern recognition. The most 
widely used approach is as follows: masses on simple hypotheses are computed from 
probabilities or from the distance to a class center (Appriou, 1993;  Denœux, 1995; Appriou, 
1998). Then a global ignorance m(Θ) is introduced as a discounting factor, often as a constant 
on all pixels (Lee & Leahy, 1990). In most cases, no other compound hypothesis is 
considered, and this drastically under-exploits the power of DS. The mass assignment in 
(Bloch, 1996) is based on a reasoning approach where knowledge about the information 
provided by each image is used to choose the focal elements (i.e., subsets with non-zero 
mass values). A similar reasoning is used in (Milisavljević & Bloch, 2001). However, in the 
case of large numbers of classes, this process would become too tedious, and unsupervised 
methods are needed, such as (Mascle et al., 1997) for SAR imaging or (Ménard et al., 1996) 
for fusion of several classifiers. 
If we have evidence issued from M sources, modeled in terms of previously defined mass 
functions, these masses are combined applying Dempster’s rule of combination (Shafer, 
1976; Smets, 1993). This rule has two main forms, normalized (Shafer, 1976) (by imposing 
m(∅) = 0), and unnormalized (Smets, 1993), corresponding to the closed-world and the 
open-world assumptions, respectively. For mj being the mass function associated with 
source j (j = 1, 2, ..., M), the unnormalized Dempster’s rule of combination is: 
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hence preserving the mass assignment to the empty or zero set, that indicates the strength of 
the possibility that “something else” happens (either the full set is not an exhaustive set of 
hypotheses or there is some contradiction between the sources, e.g., some of them are not 
reliable). 
Dempster’s rule of combination is commutative and associative. Also, it behaves in a 
conjunctive way, meaning that when more sources are combined, mass is more focalized 
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(thus imprecision decreases) while conflict behaves in a disjunctive way (increases) (Bloch, 
1996).  
Sources under combination have to fulfill the condition of being independent in the 
cognitive sense (Shafer, 1976; Smets, 1993). This is related to the notion of distinctness, 
meaning “no double counting” of pieces of evidence (Dempster, 1967). In case of non 
distinct pieces of evidences, other combination rules should be employed, such as the 
cautious rule proposed in (Denœux, 2008). In our experiments, we assume independence 
and distinctness. 
From a mass function, one can derive a belief function, being the degree of minimum or 
necessary specific (Smets, 1993) support for A: 
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and a plausibility function, as the degree of maximum specific support for A: 
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After combination, the final decision is usually taken in favor of a simple hypothesis using 
one of several rules (Denœux, 1995; Denœux, 1997): e.g., the maximum of plausibility 
(generally over simple hypotheses), the maximum of belief, the pignistic decision rule 
(Smets & Kennes, 1994), etc. For some applications, such as humanitarian demining, it may 
also be necessary to give more importance to some classes (e.g., mines, since they must not 
be missed) at the decision level. Then maximum of plausibility can be used for the classes 
that should not be missed, and maximum of belief for the others (Milisavljević et al., 2003; 
Milisavljević & Bloch, 2005). 
Not many papers can be found dealing with fusion of polarimetric data. In (Mascle et al., 
1997), the main idea is to perform unsupervised classification on each image of a 
polarimetric data set separately. The intersections of the obtained classes define the set of 
discernment and the initial classes can be expressed as disjunctions of some of these 
intersections. This allows determining automatically both the singletons and the interesting 
disjunctions. This paper also shows the interest of using a fusion approach and of combining 
data from several polarimetric images. In (Le Hégarat-Mascle et al., 1998), the idea is to 
introduce neighborhood information as a mass function, so as to take a spatial regularity 
constraint into account and to consider it as a source of information.  

5. Fusion 
5.1 Fusion strategies 
Fusion strategy no. 1 - including a global discounting factor (F1):  
Some of the classification results in this work differentiate well two classes and some others 
do not. In addition, the overall reliability of each of the classification results is different. This 
fact should be taken into account in the fusion process so that the more reliable classification 
results influence the fusion result more than the less reliable ones. These are cases in which 
DS theory may be successful so it is our first choice of fusion approaches.  
A first, simple method would consist in considering each of the classification results cl1 - cl6 
as one information source. The focal elements would be simply the classes, using the 
outputs directly as mass functions. As no confidence values are provided but only decision 



 Sensor and Data Fusion 

 

286 

images, the mass would assume only values 0 or 1. This approach would inevitably result in 
a high conflict after the combination. Moreover, only the classes detected by all classifiers 
would be obtained as resulting focal elements, so no good result could be expected. This 
shows the interest of really using belief function theory or any other theory that takes into 
account the specificities of the classifiers, disjunctions of classes and ignorance (mass 
assigned to the full set, Θ).   
In our first fusion strategy, we still consider each classifier output as one information source, 
but the focal elements are the singletons and Θ. The definition of m(Θ) takes into account 
both the fact that some classes are not detected (thus it should be equal to 1 at points where 
0 is obtained for all detected classes) as well as global errors. We propose to use a 
discounting factor γ (Xu et al., 1992) equal to the overall accuracy of a classification result, 
i.e., the sum of the diagonal elements of the confusion matrix, divided by the cardinality of 
the training areas. This discounting is applied to all masses defined as in the previous, 
straightforward approach. Then, if the output value of classification result clk (k = 1,2,...6) is Ci 
at a given pixel, the masses for that pixel and that classification output are assigned as follows: 

 kik Cm γ=)( ,  (13) 

 kkm γ−=Θ 1)( .  (14) 

Note that this strategy explicitly uses the confidence matrix, which should be computed on 
the training areas for each classification output. Hence, at each step of the fusion, the focal 
elements are always singletons and Θ. After assigning masses by all classification outputs in 
the above way, the DS fusion is performed. Decision rule can be maximum of belief, of mass 
or of pignistic probability (all being equivalent in this case). This approach is very easy to 
implement and models in a simple way the fact that classification outputs may not give any 
information on some classes and may be imperfect. Results are explained by the conjunctive 
behavior of the Dempster’s rule of combination.  
Fusion strategy no. 2 - including class-dependent discounting factors (F2):  
As a second alternative, we propose to use the confusion matrices for defining more specific 
discounting for each class. This approach is close to the one proposed in (Mercier et al., 2005; 
Mercier et al., 2008). Each output of the classifier is still one information source, and the focal 
elements are the singletons and Θ. From the confusion matrix computed from classifier 
output clk (k = 1,2,...6) and from the training areas, we use the diagonal coefficients confk(i,i) 
for discounting. Thus, if the output value of clk is Ci at a given pixel, the masses for that pixel 
and that classifier output are assigned as follows: 

 ),()( iiconfCm kik = ,  (15) 

 ),(1)( iiconfm kk −=Θ .  (16) 

In comparison with the previous method, the richness of the information provided by a 
classifier output is better exploited as the class-dependent classification accuracy is used 
instead of a global accuracy of the classifier. 
Fusion strategy no. 3 - fuzzy fusion (F3):  
In order to compare the previous methods with a fuzzy approach, we have tested a simple 
method, where for each class we choose the best classification results, and combine them 
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with a maximum operator (possibly with some weights). Then a decision is made according 
to a maximum rule. The choice is made based on the confusion matrix for each classification 
result, by comparing the diagonal elements in all matrices for each class. This approach is 
interesting because it is very fast. It uses only a part of the information, which could also be 
a drawback if this part is not chosen appropriately. Some weights have to be tuned, which 
may need some user interaction in some cases. Although it may sound somewhat ad hoc, it is 
interesting to show what can be obtained using the best parts of all classifier outputs. 
In a next step, in order to take more benefit from the information and to avoid the ad hoc 
tuning of the weights, we use for each class all the classifier outputs. If the value of 
classification result clk at a given pixel is Ci, it participates in the combination for that class 
discounted by the corresponding diagonal element of the confusion matrix, confk(i,i). Such 
discounted classifier outputs are combined using a maximum operator. The decision is 
made again applying a maximum rule. Thus, in this approach, all classification results that 
have the same class as output participate in the combination performed for that class, 
discounted by their accuracy for that class.  
Finally, we develop a third fuzzy fusion strategy, where for each class we use again all the 
classifier outputs. As in the previous strategy, if clk output at a given pixel is Ci, this classifier 
participates in the combination for that class discounted by the corresponding diagonal 
element of the confusion matrix, confk(i,i). In addition, even if the output of classification 
result clk at a given pixel is Cj, j ≠ i, it participates in the combination for class Ci if the 
confusion between the two classes, expressed by confk(i,j) in the confusion matrix, is high 
enough (above a threshold). In that case, this element of the confusion matrix is used for 
discounting the classifier output prior to combination per class using a maximum operator. 
The decision is again made using a maximum rule. Since the results obtained in this way 
make the largest use of the information and are the best of the three strategies proposed in 
this subsection, this fuzzy strategy is used here. Note that this approach takes into account 
the fact that if the decision is Cj, the true class is possibly Ci, to some degree. 
The actual list of classification results used for each class in our application is detailed in 
Subsection 7.3. 

5.2 Spatial regularization 
Spatial regularization is the final step in our fusion approach, applied to the output of each 
of the proposed strategies. Namely, it is very unlikely that isolated pixels of one class can 
appear in another class. Hence, several local filters have been tested, such as a majority filter, 
a median filter, or morphological filters, applied on the decision image. A Markovian 
regularization approach on local neighborhoods was tested too. All these filters give similar 
and good results, and improve results of the previous fusion steps (see Section 6). A recently 
proposed approach (Bloch, 2008) could be used as well, by integrating spatial information 
directly in the definition of mass functions. 

6. Data and experimental approach 
For the tests presented here, we have used single-look complex data of the area of 
Oberpfaffenhofen, Germany, acquired by the E-SAR airborne sensor of the German 
Aerospace Centre (DLR) during a measurement campaign in October 1999 (see Table 2). The 
data consist of L-band scattering matrices measured in the hv-basis. The size of the data set 
is 1000 x 4050 pixels (in range and azimuth, respectively).  
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Noise removal and speckle reduction are obtained by means of simple boxcar filtering with 
fixed window dimensions. The averaging window adopted for all sets of parameters is 5  x 
11 pixels (in range and azimuth, respectively). In this way, data processing could be 
performed following a consistent approach, i.e., choosing the same averaging window size 
to define the covariance and coherency matrices or to filter data derived from coherent 
methods.  
The imaged area is situated approximately 25 km South-West of the city of Munich and 
includes several interesting features: the DLR centre, the former Fairchild Dornier airplane 
factory and the airfield shared by the two firms (see Figure 1). Not far from them, a small 
lake and the village of Gilching are located. Other important man-made structures are the 
motorway and the railway line stretching across the image. The vegetation patches consist 
of coniferous and mixed forests, meadows and crops.  
A common classification procedure has been adopted for all the polarimetric parameters 
(Alberga et al., 2006). At first, a set of seven ground cover classes has been defined: “water”, 
“houses”, “roads”, “trees”, “grass”, “field 1” and “field 2”. For each of them, separated areas 
of training and test samples have been identified having a comparable number of pixels (at 
this scope, aerial photographs and a cartographic map have been used as complementary 
sources of information). Then, the training pixels from each class have been fed into the 
classifiers to perform the training stage. As a following step, all the data have been classified 
using the MLP. Finally, the test samples have been used to measure the classification 
performance. The fusion of the results has been performed at this stage, according to the 
three strategies described in Section 5 and providing a re-assignment of the pixels. 
 

 
Fig. 1. Backscattered intensity image and regions of interest: [1] “water”, [2] “houses, [3] 
“roads”, [4] “trees”, [5] “grass”, [6] “field 1”, [7] “field 2”.  

The class “roads” has been defined using only the runway of the airport, so it refers to a 
relatively wide asphalt surface. Regarding the class indicated as “houses”, it is related to 
areas with family houses surrounded by gardens (often including trees). In other words, it 
represents an impure class, characterized by the presence of different scattering 
components: flat surfaces, dihedrals, volumes (surrounding vegetation), and rough surfaces 
(ground). 
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Flight date 6/10/1999 
RF-band L 

Centre frequency 1.3 GHz 
Wavelength 23 cm 
Bandwidth 100 MHz 

Range resolution 1.5 m 
Azimuth resolution 0.89 m 

Table 2. Main data and E-SAR system parameters 

7. Results 
In the following, different measures are used to assess the classification accuracy, based on 
the confusion matrices obtained on the test areas (note that the columns and the rows in the 
confusion matrices correspond to the ground-truth map and to the classification output 
map, respectively): 
• κ coefficient, as a measure of the quality of the classified map compared to a randomly 

generated map: 
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where N is the total number of pixels in the confusion matrix, r is the dimension of the 
confusion matrix, conf(i,i) is the number of pixels on the main diagonal, i.e., in row and 
column i of the confusion matrix, conf(i,+) is the total number of pixels in row i, and 
conf(+,i) is the total number of pixels in column i of the confusion matrix; 

• overall accuracy γ, i.e., the percentage of correctly classified pixels: 
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• user’s accuracy (UA), being the probability that a given pixel will appear on the ground 
as it is classified, so for class j, it can be defined as: 
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UAj ,  (19) 

• producer’s accuracy (PA), i.e., the percentage of a given class that is identified correctly 
on the map, being for class j calculated as: 
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),(
jconf
jjconf

PAj +
= .  (20) 

Figures 2-4 contain images of classification results cl1 - cl6, which are inputs for the fusion 
module. The accuracy estimates obtained for each of the classification results are given in 
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Table 5. The use of the covariance matrix leads to the best overall accuracy. This confirms 
the capability of incoherent observables to describe complex scenarios better than coherent 
ones. Indeed, the Freeman decomposition has the second best overall performance. The 
limits of the H/α /A parameters are bound to their definition: neither of the three 
parameters expresses an intensity or a power measurement but they directly provide a 
semantic interpretation of the type and statistical behavior of the imaged targets. At the class 
level, again, the Freeman decomposition provides some of the best PA and UA values but 
then also some coherent representations yield specific class maxima, indicating the 
capability of the given model to describe the typical target of that class. 
 

 
 

Fig. 2. MLP classification results: left - [S] matrix (cl1), right - covariance matrix (cl2). 
 

 
 

Fig. 3. MLP classification results: left - Pauli decomposition (cl3), right - Cameron 
decomposition (cl4) 
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Fig. 4. MLP classification results: left - Freeman decomposition (cl5), right - H/α /A (cl6). 

Besides the fusion results, the fusion module provides confidence and stability images too. 
At each pixel, the confidence image contains the confidence degree of the decided class, 
while the stability image represents the difference between the confidence in the decided 
class and the confidence in the second most possible class. Examples of these two images are 
shown in Figure 8. 

7.1 Results with F1 
Here, we provide the results obtained using the method F1 (Subsection 5.1). The values of 
the discounting factors γ, corresponding to the six classification results cl1 - cl6 are given in 
Table 3. For each classification result, this factor is calculated as the normalized sum of the 
diagonal elements of the confusion matrix obtained on the training areas (i.e., the overall 
accuracy).  
 

Classification result cl1 cl2 cl3 cl4 cl5 cl6 
γ 0.66 0.84 0.66 0.71 0.77 0.55 

Table 3. Discounting factors for F1 

Figure 5 shows the result of fusion using the F1 approach and spatial regularization. Table 5 
indicates that F1 outperforms the best classification results in most of the cases. The only 
exceptions are UA for “roads” and PA for “grass”. The overall accuracy improvement with 
respect to the single representations ranges from 13% to 37% but the main advantage of the 
fusion approach lies in the fact that, at class level, all features are recognized with good PA 
and UA. For example, the low PA of “water” using the [S] matrix elements or of “field 1” 
using the H/α /A parameters have been largely compensated by means of the information 
provided by the other representations. 

7.2 Results with F2 
The discounting factors for the method F2, described in Subsection 5.1, are given in Table 4.  
They correspond to the diagonal elements of the confusion matrices obtained on the training 
areas, for each of the six classification results. 
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Fig. 5. Results of F1 before (left) and after (right) spatial regularization 
 

Classification result → 
Class ↓ 

cl1 cl2 cl3 cl4 cl5 cl6 

water 0.23 0.70 0.50 0.48 0.59 0.55 
houses 0.70 0.89 0.68 0.83 0.86 0.57 
roads 0.84 0.80 0.84 0.74 0.74 0.42 
trees 0.89 0.98 0.89 0.88 0.92 0.87 
grass 0.70 0.80 0.59 0.71 0.66 0.63 
field 1 0.84 0.89 0.78 0.82 0.80 0.17 
field 2 0.41 0.81 0.31 0.54 0.82 0.67 

Table 4. Discounting factors for F2 

According to Table 5, F2 provides better results than the best individual classification in 
most of the cases. However, there are only half of the classes for which this fusion method 
outperforms the previous one. Hence, regardless the specificity of the class discounting 
(varying depending on the class), no clear advantage is obtained by this type of fusion. An 
overall discounting factor for a given classification result (as for F1) seems to be sufficient. 
Figure 6 shows the result of the F2 fusion.   

7.3 Results with F3 
As explained in Subsection 5.1, with this approach we take into account the fact that for 
some classifier outputs, there exist pairs of  classes  whose  confusion  is  quite  strong. Thus, 
even if clk does not give class Ci as its output but class Cj, we include that classification result 
in the combination for class Ci if the corresponding coefficient of the confusion matrix 
obtained on the training data, confk(i,j) has a value higher than some threshold.  
The following classifier outputs have been used, all discounted by the corresponding 
coefficients in the confusion matrices: 
• for “water”: all six classification results in case of “water”, plus “grass” and “roads” for 

cl3, “field 1” and “roads” for cl6 and “roads” for cl2, cl4 and cl5; 
• for “houses”: all six classification results in case of “houses”, plus “trees” for cl3 and cl4; 
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Fig. 6. Results of F2 before (left) and after (right) spatial regularization 

 
Fig. 7. Results of F3 before (left) and after (right) spatial regularization 

• for “roads”: all six classification results in case of “roads”, plus “field 1” and “water” for 
cl1 and cl6, and “water” for cl3, cl4 and cl5; 

• for “trees”: all six classification results in case of “trees” and “houses”; 
• for “grass”: all six classification results in case of “grass”, plus “water” for cl1 - cl5, 

“field 1” for cl6, and “field 2” for cl1, cl2 and cl4; 
• for “field 1”: all six classification results in case of “field 1”, plus “roads” and “grass” 

for cl6, “grass” for cl3 and “field 2” for cl1; 
• for “field 2”: all six classification outputs in case of “field 2” and “grass”, plus “roads” 

and “field1” for cl6. 
Table 5 shows that F3 provides results similar to F1. Note that the typical sources of 
confusion (i.e., the classes characterized by reciprocal PA and UA) are also those whose 
intensity is roughly comparable (e.g., “water” and “grass” or “houses” and “trees”). Thus, it 
seems that the radiometric information finally plays the most relevant role in the definition, 
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and hence classification, of a feature. Fig. 7 presents the result of F3 fusion. Confidence and 
stability images for this type of fusion are shown in Fig. 8. 
 

                 
Fig. 8. Confidence (left) and stability (right) image for F3 

  cl1 cl2 cl3 cl4 cl5 cl6 F1 F2 F3 
γ  0.68 0.73 0.64 0.65 0.71 0.49 0.86 0.84 0.86 
κ  0.62 0.68 0.58 0.59 0.66 0.41 0.84 0.81 0.84 

water 0.25 0.60 0.43 0.40 0.61 0.51 0.75 0.53 0.74 
houses 0.72 0.90 0.71 0.82 0.92 0.66 0.94 0.93 0.95 
roads 0.72 0.70 0.72 0.59 0.71 0.32 0.85 0.90 0.85 
trees 0.88 0.92 0.83 0.85 0.92 0.87 0.99 0.99 0.99 
grass 0.80 0.60 0.57 0.68 0.52 0.54 0.68 0.69 0.66 
field 1 0.84 0.62 0.79 0.69 0.54 0.05 0.89 0.92 0.91 

 
 
 

P
A 

field 2 0.42 0.70 0.25 0.43 0.70 0.60 0.83 0.80 0.83 
water 0.73 0.84 0.62 0.59 0.79 0.62 0.96 0.99 0.95 

houses 0.86 0.81 0.80 0.83 0.81 0.70 0.96 0.97 0.96 
roads 0.52 0.92 0.67 0.56 0.85 0.35 0.89 0.75 0.89 
trees 0.70 0.85 0.69 0.75 0.89 0.69 0.93 0.90 0.94 
grass 0.54 0.49 0.39 0.49 0.54 0.50 0.69 0.66 0.68 
field 1 0.84 0.78 0.76 0.84 0.77 0.17 0.90 0.86 0.89 

 
 
 

U
A 

field 2 0.45 0.44 0.37 0.34 0.37 0.25 0.62 0.66 0.63 

Table 5. Results on the test data  

8. Conclusion 
In this chapter, three strategies for fusion of land cover classification results of polarimetric 
SAR data are proposed, two of them based on belief function theory and one based on fuzzy 
sets theory. As a final step of each of the fusion strategies, spatial regularization is 
performed. The proposed fusion strategies are applied to the outputs of a neural network 
classifier, corresponding to six different sets of polarimetric parameters as input. The values 
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of the different polarimetric parameters are extracted from single-look complex data of the 
area of Oberpfaffenhofen, Germany, acquired by the E-SAR airborne sensor of the German 
Aerospace Centre.  
The proposed fusion strategies do not need statistical independence of their input 
information. Each of the strategies uses the confusion matrices obtained on the training data 
set as means for estimating the accuracy of each of the classification results and for weighing 
them prior to their fusion.  
The test data set, different from the training data set, is used to compare the classification 
accuracy of the fusion results with the single representation classification results. The results 
obtained by each of the three fusion strategies show a significant improvement of the 
classification accuracy of the separate classification results.  
The general improvement of the classification accuracy indicates the complementary nature 
of the information provided by the analyzed polarimetric representations. Although their 
classification performance is comparable, different characteristics of the scene are enhanced 
by each set of observables, so their fusion effectively takes advantage of their whole 
information content. 
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