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Sensor Fusion in Anti-Personnel Mine Detection
Using a Two-Level Belief Function Model

Nada Milisavljevićand Isabelle Bloch

Abstract—A two-level approach for modeling and fusion of anti-
personnel mine detection sensors in terms of belief functions within
the Dempster–Shafer framework is presented. Three promising
and complementary sensors are considered: a metal detector, an
infrared camera, and a ground-penetrating radar. Since the metal
detector, the most often used mine detection sensor, provides mea-
sures that have different behaviors depending on the metal content
of the observed object, the first level aims at identifying this con-
tent and at providing a classification into three classes. Depending
on the metal content, the object is further analyzed at the second
level toward deciding the final object identity. This process can be
applied to any problem where one piece of information induces
different reasoning schemes depending on its value. A way to in-
clude influence of various factors on sensors in the model is also
presented, as well as a possibility that not all sensors refer to the
same object. An original decision rule adapted to this type of ap-
plication is proposed, as well as a way for estimating confidence
degrees. More generally, this decision rule can be used in any sit-
uation where the different types of errors do not have the same
importance. Some examples of obtained results are shown on syn-
thetic data mimicking reality and with increasing complexity. Fi-
nally, applications on real data show promising results.

Index Terms—Belief functions, confidence degrees, Demp-
ster–Shafer method, discounting factors, humanitarian mine
detection, sensor fusion, mass assignment, sensor clustering.

I. INTRODUCTION

DESPITE the great efforts and motivation of research teams
around the world, there is no single sensor used for hu-

manitarian mine detection that can reach the necessarily high
detection rate in all possible scenarios. As a result, a very attrac-
tive approach to finding a solution is in taking the best from sev-
eral complementary sensors. One of the most promising sensor
combinations consists of an imaging metal detector (MD), a
ground penetrating radar (GPR), and an infrared camera (IR).
Here we propose a method of combination that can be easily
adapted for other sensors and their combinations.

Since reliability and detection capabilities of any sensor are
strongly scenario-dependent, it is important to characterize each
of the sensors under combination. In other words, the ways for
modeling the influence of various factors on sensors and on re-
sults of their combination have to be investigated, with the aim
of obtaining fusion results as good as possible.
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The choice of an adequate combination method has to be care-
fully done. The level of fusion mainly depends on the types and
similarityofsensorstobefused.Forexample, fusion ismostoften
done at a pixel-level if the data to be fused are images acquired by
the same camera but in different spectral bands [1], [2], or by pas-
sive IR and millimeter-wave cameras [3]. However, there are also
some attempts to fuse data from similar sensors (or even the same
one)atahigher, feature[4]ordecision[5] level.Ontheotherhand,
fusion of dissimilar sensors, as it is the case here, has to be done at
a higher-level, not because of different physical phenomena they
detect, but because of a difference in resolution, problems of reg-
istration,etc.Note thatonly the literatureon fusionofminedetec-
tionsensors is reviewedhere,buta lotofwork isalsodoneoneach
sensorseparately,asshown in [6]. It iswell-known that there isno
universal approach for information fusion and that the choice of
a particular one strongly depends on the problem itself [7]–[9].
Most of the efforts made in the field of fusion of dissimilar mine
detection sensors are based on statistical approaches [10]–[12].
Theyprovideexcellentresultsforaparticularscenario,butignore,
orbrieflymentionthatoncemoregeneralsolutionsare lookedfor,
several important problems have to be faced in this domain of ap-
plication [13]. Namely, the data has the following characteristics:

1) they are not numerous enough to allow for a reliable sta-
tistical learning, as shown in [14], [15]; for instance, to es-
tablish that the probability of detection is 99.6% (set by the
United Nations as the rate at which a mine-free area can
be considered safe) with a confidence of 98.1%, more than
1000 samples of each type of mine are needed;

2) they are highly variable depending on the context and con-
ditions;

3) they do not give precise information on the type of mine
(ambiguity between several types).

In addition, it is impossible to model every object (neither mines
nor objects that could be confused with them).

Therefore, we propose an approach based on belief functions
(BFs) in the framework of Dempster–Shafer (DS) theory [16],
[17], since ignorance, uncertainty and ambiguity can be appro-
priately modeled in this framework. Although the requirement
of 99.6% detection probability is still often mentioned, it is
quite controversial and has been suffering from various critics
in the demining community with respect to its justification and
how realistic it is. As a result, it disappeared recently from the
mine action standards, which now states“no error” until some
depth is determined in function of the scenario, future land use,
etc. There is no probabilistic interpretation behind this standard,
hence, using a nonprobabilistic approach, such as belief func-
tion, does not raise any inconsistency. To our knowledge, there
are just two attempts for applying DS theory to this problem
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[18], [19]. Both works treat an alarm as a mine, and not as an
object that could be a mine, as well as a false alarm. In addition,
in [18], beliefs are obtained classically, as probabilities [20], so
this method faces the same problem as statistical ones: the lack
of a sufficient amount of training data. In [19], the efficiency of
the proposed method is estimated using real data containing a
few mines and no placed false alarms, hence, the obtained re-
sults do not show how the method deals with false alarms.

The lack of training data is partly compensated by available
knowledge on mine detection sensors, on well-known mine
laying principles, on mines themselves, as well as on objects
that each of these sensors confuses with mines. Consequently,
our main motivation for exploring possibilities of modeling
the mine detection problem in the framework of BFs (with its
nonprobabilistic interpretation) is to be able to easily include and
model this partial knowledge by exploiting different features of
BF theory without any statistical information on the data or on
noise. In this domain of application, we have not met any similar
approach yet.

Another important aspect of the work presented here is linked
to the fact that mistakes are not allowed in case of humani-
tarian mine detection. In our opinion, it is not possible to reach
the highest possible level of detection no matter which fusion
method is chosen, simply because it is not possible to predict
everything in all real situations where mines can be found. Be-
cause of that, our idea is to give to the deminer as much infor-
mation as possible, starting from processed data of separate sen-
sors up to the possible conclusions, but the final decision has to
be left to the deminer. Accordingly, the result of this DS model
should be an ordered list of guesses what a currently observed
object could be, together with the confidence in these results.
Similar ideas of leaving the final decision to the deminer can
be found in the literature [18], but the approach presented here
goes one step further. Namely, we allow the deminer to influence
the modeling and the combination process. Indeed, his knowl-
edge, experience as well as some of his observations that simply
cannot be detected by any sensor are precious, and have to be
included in the reasoning process in order to obtain significant
improvements in detection and false alarm rates.

For the considered sensors, there is no criterion which allows
to tell that the object is a mine, it can be just the opposite. Con-
sequently, our results show how expectable it is that an object is
not a mine, or that it is either a mine or something else. This point
should not be understood as a drawback of the method. It should
not be forgotten that mines must not be missed, so detecting that
something is not a mine and that it is a mine or something else
seems to be the safest approach to this complex problem.

The contribution of this paper is twofold: first, a methodolog-
ical contribution in the sense that the paper proposes formal
models for dealing with important problems in fusion, such as
fusion of sensors having different reliabilities, or providing in-
formation on different physical objects, which have a more gen-
eral impact than the treated application; secondly, an adaptive
contribution in the field of humanitarian mine detection. In the
following, based on characteristics of the three analyzed mine
detection sensors and on general directions for applying the DS
approach, explained above, the appropriate choice of measures
and of respective mass assignment for each of the sensors is dis-

cussed. The identity of the object under observation is analyzed
at two levels. The idea behind the two-level approach is that it
allows to simplify the problem since the sensors behave differ-
ently depending on the metal content and, therefore, the pieces
of knowledge and information to be modeled are different. The
general scheme of this two-level approach is described in Sec-
tion II. The choice between three types of object corresponding
to different degrees of metallic content is done at the first level,
explained in Section III. At the second level, discussed in Sec-
tion IV, the object is analyzed in more detail, taking into ac-
count the specificity of the chosen type, with the final aim of
classifying the object into a mine or a friendly (nondangerous)
object. The masses assigned by the chosen measures are com-
bined using Dempster’s rule [16], [17], [21] in unnormalized
form, which has the advantage of providing a natural measure of
conflict. Two main reasons can explain the conflict: either some
sources of information are not completely reliable, or they do
not refer to the same object. The first aspect is solved using dis-
counting factors [16], [21], [22], and the second by combining
only pieces of information referring to the same object. An orig-
inal decision rule is proposed, in order to overcome limits of
classical rules for this type of problems. Finally, the presented
method is illustrated on some examples in Section V and on real
data in Section VI.

Although the proposed approach was initially dedicated to a
specific application, some questions are raised that are more gen-
eral,andthemethodologicalsolutionsweproposetoanswerthese
questions can be used in many other applications. This is the case
for the two-level approach, for the two ways of solving conflict,
for the decision rule, as will be seen mainly in Sections II and IV.

II. TWO-LEVEL APPROACH

The two-level approach is motivated by the characteristics of
the sensors and their different behavior depending on the metal
content of the observed object. These characteristics are briefly
summarized here (more details can be found in [23]). A stan-
dard GPR detects any buried object as long as its dielectric con-
stant differs from the one of the soil, IR detects thermal con-
trast between the object and the soil, while MD detects metal.
GPR and IR are strongly influenced by various environmental
factors, such as moisture, temperature of the soil, time of the
day, etc., and some of these factors are difficult (even impos-
sible) to quantify. The behavior of MD is quite independent of
the environment, as long as the soil is not ferrous. Therefore,
the large variety of objects that can be detected can be classified
on the basis of their metal content. Furthermore, in the scope
of humanitarian demining, mines are classified in three types
[24]: metallic, low-metal content, and nonmetallic. In this clas-
sification, a metallic mine is the one made almost completely of
metal, except e.g., handles, while a mine with low metal con-
tent has metal only in small parts, e.g., in the fuse. The same
type of classification of objects is adopted in this paper, so we
subdivide objects into MO (metallic object), LMO (low-metal
content object), and NMO (nonmetallic object) types. GPR and
IR responses are not significantly influenced by the metal con-
tent of an object. On the contrary, the information that can be
extracted from the MD regarding the true nature of an object
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Fig. 1. Two-level approach.

(whether it is a mine or a friendly object) importantly changes
between MO, LMO, and NMO cases. That is why we decide to
split our analysis into two levels (see Fig. 1).

At the first level, we want to determine whether an object is
MO, LMO, or NMO, hence, which kind of information can be
expected from MD regarding the true nature of the object. This
classification could be done based on MD alone, but we cannot
know for sure how much we can rely on it within some scenario,
so at this point, the responses of the other two sensors have to
be taken into account as well. This is detailed in Section III.

Then, at the second level, the object is further analyzed (this
analysis depends on the metal content) in order to decide about
the final object identity (a mine or a friendly object). In case of
ambiguity between different types, several possibilities among
MO, LMO, and NMO are investigated. As an output of this
level, an ordered list of guesses about the true object identity
is given, together with confidence degrees. The second level is
discussed in detail in Section IV.

The idea of having two levels comes from the fact that one
type of information induces different types of processing of the
other pieces of information depending on its values. Two levels
are indeed sufficient if only one type of information leads to
different processing, as is the case in this application. Although
this idea came from the specificities of the metal detector, it
should be noticed that it can be applied to any problem where
we have such situations. It is general in this sense. Extensions
to more than two levels are possible. For instance, if after the
first branching issued from the analysis of this particular infor-
mation, it appears that another piece of information leads also
to several ways of reasoning or to several processing branches,
then another level should be added, and so forth. This can be
seen as a process similar to decision trees, but in the framework
of belief functions.

III. FIRST LEVEL—THE CHOICE BETWEEN MO,
LMO, AND NMO

A. Description

All three sensors considered here give images, so the mea-
sures that can tell the most about the absolute and/or relative
amount of metal that an object contains are the following:

1) area of the object on the MD image;

2) strength of the MD response (ratio between the maximum
value of pixels in the image and the image scale);

3) ratio between the object area on the MD image and on the
GPR image (ignored if GPR area is 0);

4) ratio between the object area on the MD image and on the
IR image (ignored if IR area is 0).

The interest of the first measure is obvious, but the others de-
serve some justification. If the area of the object on an MD
image is small, the strength of the response could still be high in
case of a high metal content object which has, e.g., a long cylin-
drical shape, of which the top is seen in the image. However, if
the strength of the MD response is not high, the area could still
be large, indicating that something might be wrong with the am-
plification of the signal. Then, if the area of the object in the MD
image is large and the strength of the MD response is high, this
area could still be much smaller than the one seen by GPR or
IR, meaning that the percentage of metal is small.

Based on these four measures, we model the problem related
to the first level in the BF framework. These measures provide
beliefs about the object with respect to the three classes, MO,
LMO, and NMO. Note that this assumes that the classes are
crisp, which corresponds to the usual way of reasoning in hu-
manitarian demining. Each measure gives rise to a mass func-
tion having LMO, NMO, and MO as focal elements. No other
disjunction is taken into account in the present version of the
model.1 The full set, , is taken
as a focal element only for the two comparison measures to ac-
count for cases in which the area on the MD image is larger
than the area in the IR, or the GPR. The numerical represen-
tation of mass functions assumes that we can assign numbers
that represent degrees of belief. The general shapes and tenden-
cies are derived from the knowledge we have and its modeling.
There certainly remain some arbitrary choices, which might ap-
pear as a drawback of the method, however, it is not necessary to
have precise estimations of these values, and a good robustness
is observed experimentally. This can be explained by two rea-
sons: first, the representations are used for rough information,
hence do not have to be precise themselves, and secondly, sev-
eral pieces of information are combined in the whole reasoning
process, which decreases the influence of each particular value
(of individual information). Therefore, the chosen numbers are
not crucial. What is important is that ranking is preserved, as
well as the shape of the functions, and these are derived from
knowledge. These comments apply to all functions proposed for
mass assignments in this paper.

Masses are assigned, as illustrated in Figs. 2 and 3. Namely,
if there is no response of the MD, or if the detected area is very
small, then the highest mass assigned by the MD area measure
(Fig. 2) should be assigned to NMO. If the area is quite large, it is
almost certain that the object is MO. For some moderate areas,
it can be expected that the object is LMO. The exact range of
areas corresponding to each type of objects depends on the par-
ticular situation at hand, the types of mines that can be expected,
etc. The reasoning is similar for modeling the strength of MD

1This simple model was sufficient in our experiments. More complex models
where soft boundaries between classes are taken into account could also be de-
veloped, but they are not useful in our context.



272 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 2, MAY 2003

Fig. 2. Masses assigned by MD area measure.

Fig. 3. Assigned masses by comparing MD and GPR areas.

response. Ideas behind modeling the two area comparison mea-
sures (shown in Fig. 3 for MD and GPR) are the following:

1) if MD area is negligible when compared to GPR (or IR)
area, such an object might be NMO;

2) if MD area is significantly smaller than GPR (or IR) area,
the object is likely LMO;

3) if MD and GPR (or IR) areas are similar, the object is MO;
4) if MD area is quite larger than the other two, ignorance

about the type of object is high, so the mass should be
mainly assigned to .

The deminer is included in the reasoning process by ex-
pressing his opinion regarding the sensors and, accordingly,
the importance of each of the four measures via discounting
factors [16], [21], [22]. Since there are only four measures at
the first level that all involve either MD alone or comparison of
MD data with GPR or IR data, the deminer’s opinion regarding
the sensors and regarding the importance of measures can be
treated as one factor for each measure. The deminer expresses
his opinion about the importance of each measurethrough
a number , on a scale that he predefines. The highest
number corresponds to the highest importance of the measure,
inducing the smallest discounting. These factors modify masses
as follows:

1) for any subset , and any measure, new masses,
, are computed from the initial ones, , as

(1)

2) for the full set:

(2)

Masses assigned by the four measures are combined by Demp-
ster’s rule in unnormalized form [16], [17], [21]

(3)

where and are masses assigned by measuresand after
discounting, and their focal elements are and

, respectively. Since Dempster’s rule is commu-
tative and associative, it can be applied repeatedly, until all mea-
sures are combined, and the result is independent of the order
used in the combination. The measures under combination have
to fulfill the condition of being cognitively independent [21],
which is weaker than the notion of statistical independence re-
quired in the probabilistic case. Measures are cognitively inde-
pendent if each of them assigns masses without any direct link
to the others. This is the case in the proposed model.

If there is no intersection between some focal elements
and , the resulting mass is assigned to the empty set. Since the
only disjunction among focal elements that is taken into account
at this level is the full set, the mass of the empty set indicates
that one measure gives masses to one singleton, and some other
measure to another singleton. A high mass on the empty set
corresponds to a high conflict among measures, and therefore
to more difficulty to distinguish between the singletons.

Finally, a good indicator for deciding which path to follow at
the second level (see Fig. 1) is the mass of the empty set. If there
is a singleton which has a higher mass than the others
and than the empty set, i.e.,

(4)

the path corresponding toshould be followed. Otherwise, we
should group singletons. For each of the three possible combina-
tions, masses assigned to corresponding subgroups by measure

are calculated from the masses given to each of the singletons
of the subgroup separately

(5)

where and are singletons that are grouped together. After
calculating these new masses, measures are combined using
Dempster’s rule (3). Then, if for some of these three combi-
nations the mass of the empty set is lower than the other two
resulting masses and if the masses of the two focal elements are
well-distinguished, the path with the higher mass has to be fol-
lowed. If the focal element with the higher mass consists of two
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TABLE I
STARTING ANALYSIS

singletons, then these two paths should be followed in parallel.
If the empty set has a significant mass in all analyzed cases, then
all three paths should be followed in parallel. This idea is illus-
trated in the following example.

B. Example of Ambiguity Between the Three Types of Objects

It can happen that the data collected by the three sensors result
in ambiguity between the three types of objects. A way to deal
with such situations is illustrated using the following values for
each of the four measures:

1) MD area is 20 cm
2) strength of MD response is 0.4;
3) ratio of MD and GPR areas is 0.7;
4) ratio of MD and IR areas is 0.8.

assuming that the deminer gives equal and maximum impor-
tance to each measure (no discounting).

1) Starting Analysis: , and : The
focal elements are , and . Masses are
assigned for each measure2 as given in Table I, where measure

is MD area, —MD response, —ratio of MD
and GPR areas, and —ratio of MD and IR areas. In the
last row of this table, named, the masses resulting from the
combination of the measures by Dempster’s rule (3) are shown.
The highest mass is assigned to the empty set, indicating that
the conflict between measures is too high. Therefore, we group
the singletons.

2) First Case of Grouping: and
: Here, the focal elements are and
. For every measure, the new mass of subset

can be found from (5). Masses assigned for
each of the measures are shown in Table II, as well as the
masses after combination. In this case, the focal elements are
very well distinguished, and the resulting mass of the empty
set is very low.

3) Second Case of Grouping: and
: This time, the focal elements are

and . The new masses of the subset are
calculated using (5) and given in Table III. They do not change
much when compared with the starting case, since NMO
does not have significant masses. Therefore, we can expect
similar combination results as for the starting case. Indeed, the

2Masses are rounded on two digits, and small values are not truncated but
preserved in order to avoid multiplications by zero during combination.

TABLE II
FIRST CASE OFGROUPING, fLMO;MOg AND fNMOg

TABLE III
SECOND CASE OFGROUPING, fLMO;NMOg AND fMOg

resulting masses, given in the last row of Table III, are the same
as the ones shown in Table I.

4) Third Case of Grouping: and
: Logically, it does not make sense to group MO

and NMO together, and LMO separately, but for other appli-
cations, where unsupervised clustering may be required, all
cluster possibilities should be checked. Nevertheless, as in the
previous subsection, this case does not differ significantly from
the starting one, since very low masses are assigned to NMO.

C. Final Remarks Regarding the First Level

In the example given above, the lowest mass of the empty set
is obtained when LMO and MO are grouped together, so these
two paths should be followed.

Note that the values for each measure are chosen so that it is
not sure at all if it could be a LMO or MO, so obtained results
are in accordance with the analyzed situation. Also, it shows the
power of this grouping and of keeping masses unnormalized: it
is easy to check that if at the starting case, Dempster’s rule in
normalized form were applied, the mass of MO would be very
high when compared with the other two, so that this case would
be chosen, i.e., LMO case would be discarded.

There are two ways to deal with ambiguous situations such
as the one shown here, when more than one path is chosen to be
followed, i.e., 1) to follow all the chosen paths in parallel, or 2)
to have additional paths for ambiguities. Both ways introduce
additional problems. The first one calls for a particular proce-
dure for merging the results, while the second means that for
each of the possible combinations of paths, a set of measures
and adequate modeling have to be carefully chosen. Here, we
choose the first solution for the two following reasons; 1) the
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TABLE IV
THE FOCAL ELEMENTS IN THE FRAME OF DISCERNMENT AT THESECOND LEVEL.

problem of merging the results can be simplified by the fact that
the real aim is to distinguish between mines and friendly ob-
jects (giving much more importance to mines, since they must
not be missed); this means that as long as the final choices rep-
resent a mine (nonmetallic, metallic, circular, asymmetric,),
they should receive the highest importance, 2) modeling of addi-
tional paths for ambiguities will be much more natural once MO,
LMO, and NMO are treated not as crisp, but as fuzzy classes,
which is not addressed here.

IV. SECOND LEVEL—CLASSIFICATION INTO MINES

OR FRIENDLY OBJECTS

The analysis continues in (at least) one of the three directions,
LMO, NMO, or MO. Taking into account that all three sensors
give images, that around 90% of the mines have an elliptical
(regular) top surface (circular, but seen as elliptical under some
burial angle), and that the major goal of our humanitarian demi-
ning efforts is to distinguish between a mine and a nondangerous
(friendly) object (stones, cans, etc.), the frame of discernment is
defined for each case as follows:

1) for MO: , where
MMR denotes metallic mine of regular shape, MMI
metallic mine of irregular shape, MFR metallic friendly
object of regular shape, and MFI metallic friendly object
of irregular shape;

2) for LMO: ,
with: LMMR (low-metal content mine of regular shape),
LMMI (low-metal content mine of irregular shape), etc.;

3) for NMO:
.

Some measures are the same for all three cases, so we use sim-
plified notations sometimes, such as

1) FR for denoting any friend (regardless its metallic con-
tent) of regular shape (either MFR, LMFR or NMFR, de-
pending whether MO, LMO, or NMO is analyzed);

2) FI for any friend of irregular shape (MFI, LMFI or
NMFI);

3) MR for any mine of regular shape (MMR, LMMR or
NMMR);

4) MI is any mine of irregular shape (MMI, LMMI or
NMMI);

5) for any frame of the discernment at this level.

A. Choice of Measures and Modeling the Resulting Masses

While the measures of MD are function of the metal content
of the observed object, the measures of IR and GPR remain the
same. These measures are (Table IV)

1) for both GPR and IR:

i) area, assigning masses to and the full set,
due to the fact that whenever the area is too small or
too large, it is quite certain that such an object is
not a mine, while whenever the area is within some
range corresponding to expected sizes of mines, the
object can be a mine or anything else as well;

2) elongation, giving masses to and
the full set;

3) ellipticity, that also assigns masses to
, and ;

4) for GPR alone:

i) burial depth, assigning masses to and
;

ii) depth dimension (height) of an object, again giving
masses to , and the full set.

Regarding MD, there is no measure when the object is NMO.
For the other two cases, its measures are

1) both for LMO and for MO:

i) burial depth or comparison of burial depth with
GPR (which one is taken into account depends on
whether this sensor disagrees or agrees with GPR,
respectively), assigning masses to and
the full set;

2) for MO alone—same as for both GPR and IR:

i) area, assigning masses to and the
full set;

ii) elongation, giving masses to
and the full set;

iii) ellipticity, that assigns masses to
and the full set too.

In the following, we present a model for each of the measures,
based on the bibliographic survey as well as on the single-sensor
trials within the Belgian HUDEM project. Note that the pro-
posed equations for mass assignments are only examples illus-
trating the required tendencies. The numbers and parameters in
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these mass functions are not really important. What is impor-
tant is the general shape of these functions, as mentioned also
in Section III-A.

1) Ellipse Fitting Mass Assignment:We apply an ellipse fit-
ting algorithm using the randomized Hough transform [25], [26]
on thresholded images of the sensors. The mass for the subset
of regular shapes assigned by this measure indicates how well
this shape fits an ellipse:

(6)

where is the part of object area that belongs to the fitted
ellipse as well, is the object area, is the ellipse area. The
subtraction of 5 pixels is introduced to include the limit case of
an ellipse with just 5 pixels, where we cannot judge about the
shape at all, so ignorance should be maximum. In case of MD,
this equation makes sense only for MO case.

The mass of irregular subset is the larger value of two values,
the percentage of ellipse area that does not belong to the object
and the percentage of object area that does not belong to the
fitted ellipse:

(7)

Again, this equation is used regardless the metal content for IR
and GPR, while for MD it makes sense only when the object is
MO.

The full set gets the remaining mass:

(8)

2) Elongation Mass Assignment:Here, a thresholded image
of the object is used as input too. First, the center of gravity of the
image is calculated, and then we compute the following quan-
tities; 1) minimum and maximum distance of bordering pixels
from the center of gravity, and the ratio between them (ratio1)
(if the center of gravity is not inside the boundary, this does not
make sense, and ratio1 is set to 0), and 2) second moments, and
from them the ratio of minor and major axis of the obtained
quadratic form (ratio2). The mass value for the regular subset is
the smaller of the two ratios:

min (9)

while the mass of the irregular subset is the absolute value of
their difference

(10)

The full set takes the rest

max (11)

Note that the method could be applied to edges as well, but the
influence of noise on the position of the center of gravity would
be much larger.

3) Area/Size Mass Assignment:When a preliminary infor-
mation about the expected size of mines is available, a range of
areas of detected object that could be a mine, but something else

Fig. 4. Illustration of mass assignments for area/size.

as well, can always be predicted, taking into account possible
deformations because of some burial angle. Outside that range,
it is much more expectable that objects are friendly. Therefore,
masses are modeled as:

(12)

(13)

where the approximate range of expectable mine areas is from
to , as illustrated in Fig. 4 for cm and

cm . The parameter is usually set to a value
closed to 1 (here we took 0.98). Taking it not exactly equal to
1 allows to have non zero values for the complement function,
which avoids to exclude completely solutions (since mass func-
tions are combined using product operators, having zero some-
where is very strong).

4) Burial Depth Mass Assignment:This measure is useful
in case of GPR regardless the metallic content of the object. On
the contrary, the depth comparison measure has to be ignored
if GPR and MD disagree about the depth position of the object,
because it means that they do not refer to the same object. If that
is the case, in order not to lose the depth information extracted
by MD, its own burial depth measure has to be introduced, mod-
eled in the same way as for GPR.

Similarly to area/size of mines, there is a range of burial
depths where it is more expectable that mines can be buried.
When a GPR starts to sense something on these small depths,
mass should be assigned to the full set, since it can be either
a mine or something else. At higher depths, it is far more
likely that the detected object is something else but mine.
Corresponding masses are (see Fig. 5):

(14)

(15)

The parameter has the same meaning as before. The parameter
defines the speed of decreasingness of the function. It depends

on the expected range of the depth, and has to be tune for each
application, depending on the historical context, the type of soil,
the type of mines expected in the concerned area, etc. (here we
have chosen ).
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Fig. 5. Example of mass assignments for depth.

Fig. 6. Masses assigned for depth dimension.

5) Depth Dimension Mass Assignment:Once again, some
range of depth dimensions or heights of object exists, where it is
more expectable that an object is a mine (but it can be something
else as well), while some too small or too large objects are quite
surely nondangerous, as shown in Fig. 6.

6) Mass Assignment for Comparison of GPR and MD Depth
Information: If there is an agreement between the depth di-
mension of the object detected by GPR, and the depth posi-
tion of metal detected by MD, the object can be anything from
our frame of discernment. Otherwise, the object should not be a
mine. Accordingly, masses are assigned as follows (whereis
the depth position detected by MD, measured from the top level
detected by GPR, andis the height of the object detected by
GPR):

1) in case of LMO:

i) for

(16)

(17)

ii) otherwise:

(18)

(19)

Fig. 7. Assigned masses for MD and GPR depth comparison.

2) in case of MO:

(20)

(21)

The mass assignment for LMO differs from the one in case of
MO within the GPR region because the small metallic piece
can be anywhere within the interval detected by GPR. In case
of MO, the maximum value is given to the mass of the full set
when the position of metal detected by MD is in the middle of
the depth interval extracted by GPR, i.e., when (see
Fig. 7).

B. Discounting Factors

The behavior of each of the three sensors is strongly scenario-
dependent, referring to

1) the quality of the acquired data;
2) the reliability of each of the sensors under particular

weather conditions, type of soil, etc.;
3) the types of objects under analysis.

These are the main reasons for including discounting factors
[16], [21], [22] in the model, and they become very important at
the second level. They are presented in detail in [23] for objects
with high metal content, so we just briefly describe them here.

Discounting factors consist of three types of parameters:

1) : confidence level of sensorin its assessment when
judging measure(varying from 0 for not confident at all
to 1 for completely confident);

2) : level of importance of measureof sensor , varying
from 1 to , where is the scale for parameters;

3) : deminer’s confidence into opinion of sensor, varying
from 1 to , where is the scale for parameters.

Discounting and combination do not commute, so it has to be
pointed out when each of the discounting parameters is used.
Firstly, and are used to discount masses assigned
by measureof sensor , and that is done for all measures of that
sensor. Then we combine the measures per sensor. After that, the
resulting masses are discounted using parameters,
before combining the sensors.

Discounting of masses is done as given by (1) and (2), where
is replaced by either or .
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Fig. 8. Confidence in GPR in function of estimated depth.

1) Calculating :
a) Area/Size:Shape is much more sensitive than area

to data corruption. Besides, as long as area is moderately
corrupted, it does not affect mass assignments significantly.
Therefore, it is not needed to apply discounting to this measure,
so we do not do it for IR and MD. Still, since GPR does not
detect well shallowly buried or very deeply buried objects, we
model this confidence level as a function of the extracted depth
information (Fig. 8)

(22)

b) Ellipse fitting: The confidence of a sensor in masses
assigned by ellipse fitting measure is a function of the shape
itself. The larger the mass difference between regular and irreg-
ular sets, the larger the confidence in the assessment

(23)

(24)

(25)

c) Elongation: Similarly, the confidence level in estima-
tion of elongation is

(26)

(27)

(28)

d) Comparison of GPR and MD depth information
: This measure is not discounted since it can indicate

that the two sensors should be analyzed separately.
e) GPR depth dimension, : This confidence level is

defined as a function of the extracted depth (Fig. 8)

(29)

f) Burial depth: In case of GPR, this factor also depends
on the burial depth itself

(30)

We do not discount this factor in case of MD since its reliability
is quite independent of environmental conditions.

2) How to Estimate ?: The deminer’s confidence in a
sensor depends on factors that affect reliability of that sensor,
such as environmental conditions, time of the day, moisture,
etc. His confidence might be also biased by his trust in each of
the sensors.

The idea is that, for each sensor, the deminer gives a number
describing his belief in its reliability, where the higher the

number, the larger the confidence. The values he gives have to
be rescaled, so he has to provide his scale as well (as detailed
in [23]).

3) Estimating : There are several open possibilities for
these parameters:

1) their choice can be again left to the deminer (how impor-
tant to him each of the measures is);

2) their values can be preset for each of the predictable cases
(e.g., MO, LMO, etc.);

3) they can be at the beginning chosen all the same, and
after combination of masses, their values can be tuned
depending on which subset has the highest mass [23].

Because of lack of additional information, we adopt the first
possibility in this paper.

It should be noted that this way of using discounting factors
can be applied to any situation where we have some gradual
confidence in the measures and where the user has to give his
own input. This happens in many domains, as for instance in
medical imaging in diagnosis support systems.

C. Combination

The combination is performed using Dempster’s rule without
normalization (3). The mass assigned to the empty set expresses
the level of conflict between the pieces of information that have
been combined. Two main causes of the conflict can be advo-
cated: either there are several objects and the sensors do not pro-
vide information on the same object, or some sources of infor-
mation are not completely reliable. The possibility that sensors
do not refer to the same object is addressed here. It is a major
improvement over our initial work [23], [27]. Unreliability is
modeled as discounting factors, the choice of which has been
addressed in Section IV-B.

After assigning masses for each measure of each sensor, a first
check is performed, to see whether GPR and MD agree about
the depth position of the object:

1) if that is the case, we check if that depth is reachable by
IR (because the detectability of IR decreases quite signif-
icantly with depth):

i) if it is, we continue and analyze all the sensors to-
gether;

ii) if it is not, IR is analyzed separately;
2) if that is not the case, we check which one of them detects

an object placed closer to the surface, and check whether
it is close enough to the surface to be seen by IR;

i) if it is, IR is grouped together with that sensor;
ii) if it is not, all sensors refer to different objects and

have to be analyzed separately.
Then, the fusion of measures per sensor is done (3), and in-

ternal conflicts of each sensor are analyzed. There is no MD
measure for NMO, and for LMO just one exists, so for these
two types of objects only internal conflicts of GPR and IR can
be analyzed.

If the internal conflict of a sensor is high, its data are cor-
rupted by noise, occlusion etc., so they should be discounted.
We cannot know for sure which part of information is more af-
fected by this corruption than others. Still, discounting is per-
formed on each measure, since it is modeled in such a way that
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its influence is proportional to the level of ambiguity and uncer-
tainty of the information, as shown in the previous subsection.

After discounting the sensors that have high internal conflicts,
the fusion of sensors (plus the measure on the depth information
comparison in cases of LMO and MO) is performed, according
to the way the sensors were clustered at the beginning. Note that
performing the combination in two steps (first for all informa-
tion extracted from one sensor and then between sensors) is con-
sistent because of the associativity of Dempster’s rule: if there
is no discounting, the result is the same as for direct global com-
bination. What still can happen is that even if the sensors were
not clustered into subgroups, the conflict after fusion is high. In
other words, although it seemed quite possible that they refer
to the same object, they actually do not. For example, although
IR could reach some depths of 5 cm, where GPR and MD de-
tect something, it actually detects something nonmetallic on the
surface. In that case, clustering again takes place, but this time
in an unsupervised manner [28], toward finding the combina-
tion of the sensors where the conflict among the sensors is the
lowest and goes down to the algebraic sum of internal conflicts
of the sensors. To illustrate the idea, letand be two sensors.
The mass of the empty set resulting from their combination (3)
is

(31)

where the first three terms correspond to the algebraic sum of
the internal conflicts. The last term is equal to 0 if and only if all
focal elements of sourceare consonant with all focal elements
of sources (i.e., they have never an empty intersection).

D. Decision

After clustering and combination of sensors (3), the resulting
masses are found for each of the clusters. On the basis of these
masses, final conclusion about the true identity of each object
under analysis has to be made for every cluster. Usual decision
rules rely on beliefsBel, plausibilitiesPl [16] and pignistic prob-
abilities [29], defined as follows:

for any subset

(32)

(33)

for any singleton

(34)

Unfortunately, a decision rule based on any of these three func-
tions does not lead to fruitful conclusions, since there are no
focal elements containing mines alone [23], [27]. Namely, after
combination of the measures at the second level, the resulting
focal elements are:
and . Beliefs and plausibilities are3 :

(35)

(36)

(37)

(38)

where denotes mines and denotes
friendly objects . Pignistic probabilities (34)
are computed only for singletons, thus we have to derive proba-
bilities for and using standard probabilistic equations. For
MR and MI, we find

(39)

(40)

Since , the pignistic probability for is equal to
the sum of and

(41)

The pignistic probability for is found in the similar way:

(42)

(43)

hence

(44)

Note that the following relations are always true:

(45)

(46)

(47)

so the decision would always be made in favor of.
Since in case of any ambiguity, far more importance has to

be given to mines, we propose to define guesses, , where
, in the following way:

(48)

3For the sake of simplicity, we assume that masses are normalized in this
illustration.
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(49)

(50)

The guess value of a mine is the sum of masses of all the focal
elements containing mines, no matter whether they are regular
or irregular, the guess of a friend is the sum of masses of all the
focal elements containing nothing else but friends (again, either
regular or irregular), and the guess of something else is equal to
the mass of the empty set. Note that the guess of a mine is equal
to its plausibility, while the guess of a friend is equal to its belief,
which reflects the fact that we have to be cautious in deciding

. In other words, the introduced guesses are but a cautious way
for estimating confidence degrees.

Once guesses for the three types of objects are found, they are
ordered and this list, together with confidence degrees, is given
as the final result.

If more than one path is followed at the second level, each
of the paths results in one ordered list of guesses, for each of
its clusters. The problem of merging the results does not have a
unique solution. The one that we adopt in this paper is as fol-
lows:

1) if all the followed paths result in the same number of
clusters, and sensors are clustered in the same way, for
each of the clusters, the final guesses are the ones obtained
in the path where the guess of a mine is the highest. Let

be the guess of in path . We choose the path
such that

(51)

The final guesses are . This
set is then ordered and provided as the final result;

2) if the number of clusters is not the same for all paths, we
choose the one with the highest number of clusters as the
final result (since it is a result of the finest analysis, and
since it is safer to claim, in case of ambiguity, that there
is more than one object although there could be actually
only one);

3) if the number of clusters for all the paths is the same,
but sensors are not clustered in the same way, most likely
something went wrong, so the safest is to claim complete
ignorance and serve results of analysis of each of the sen-
sors separately.

The decision rule we proposed here can be applied in any situ-
ation where the classes have not the same importance, and where
the classification errors do not have the same cost depending on
their type. For instance, our decision rule applies to any problem
where non detection is worse than false alarm (as here), or the
contrary. Again this may happen in many problems, like med-
ical diagnosis.

V. FIRST RESULTS

At this time, we do not have real data on which all the features
of the proposed approach can be illustrated. We have results on
real data, as presented in [30], but only a part of the model ap-
plied in that case, due to some particularities of the analyzed
data set (they will be presented in Section VI). Since the aim of

this paper is to propose a complete model dealing with a large
range of cases (that actually occur in reality), we have chosen
to illustrate all aspects of the method on synthetic experiments.
These experiments are drawn from real observations (measure-
ments) of each of the sensors separately.

For the sake of simplicity, we give similar examples for MO,
LMO and NMO cases, clearly stating what applies for each of
them.

Only the second level is illustrated here, since the number of
interesting combinations of the two levels is very large. The first
level has been illustrated in Section III.B. These experiments are
ordered by increasing difficulty, in order to introduce progres-
sively the types of problems our approach is able to solve. The
first example discusses an ideal case for this problem, i.e., the
object is a mine, and it is seen correctly and equally by all three
sensors. The next case is more complex: each sensor senses a
different physical object, and all objects differ in shape, allowing
for a possibility to cluster the sensors. This case leads directly
to the third, final example, which is the most difficult one, dis-
cussing what happens if the sensors see different objects but of
a similar shape. Here we only deal with the classification step.
We assume that the preliminary steps of detection of objects in
suspect areas is already done. The noise of sensors is involved in
these steps only, and is therefore not subject to tests in this work.
We only assume that we have objects on which measurements
are performed in order to classify them into friend or mine.

A. Ideal Example

We can imagine the situation where an object is buried at a
depth where mines can be expected (5 cm), its area is similar to
the one of mines (120 cm), its depth dimension is as for smaller
mines (5 cm). Three different cases are analyzed in parallel, i.e.,
that this object is:

1) an elliptical MO, seen approximately equally by all three
sensors, and MD and GPR agree about its depth position;

2) or an elliptical LMO, seen approximately equally by IR
and GPR, while MD detects a small object, of which posi-
tion is in agreement with depth interval detected by GPR;

3) or an elliptical NMO, seen approximately equally by GPR
and IR.

The masses are given in Table V and no discounting is
included yet. The measures are indicated according to
notations introduced in Section IV.B, while we note

, and
. For the MO case, all measures should be

taken into account, for the LMO case the last three should be
ignored, and for NMO case the last four should not be taken
into account.

The first check, performed on measures extracted from each
of the sensors, shows that MD and GPR agree about the depth,
and that this depth can be reached by IR. Therefore, the fol-
lowing step consists in combining the measures per sensor. The
obtained masses are given in Table VI (the last column is valid
just for the MO case).

Since the internal conflicts of the sensors are not significant,
there is no need for their discounting, and in the next step, we
fuse:
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TABLE V
EXAMPLE 1, MASSESASSIGNEDPER MEASURE BEFORE ANY

CHECKING AND DISCOUNTING.

TABLE VI
RESULTING MASSES FOREXAMPLE 1, SEPARATE SENSORS.

1) for MO, the three sensors as well as the remaining mea-
sure on depth comparison between MD and GPR;

2) in the case of LMO, IR, and GPR as well as the measure
on depth comparison between MD and GPR;

3) in the case of NMO, IR, and GPR.
Table VII contains the resulting masses. The resulting conflict
does not exceed the algebraic sum of the internal conflicts of the
sensors, meaning that these sensors indeed refer to the same ob-
ject. The first guess is that this object is either MR or FR. This
is in accordance with the envisaged situation. Note that the re-
sulting masses for LMO and NMO cases are almost identical,
due to the fact that the only differing measure between the two
cases, i.e., depth comparison of MD and GPR, is almost com-
pletely ignorant about the identity of the object.

Guesses (48), (49), and (50) are similar for all the paths (see
Table VIII), and the first guess is that the object is a mine.

TABLE VII
RESULTING MASSES FOREXAMPLE 1, AFTER SENSORFUSION

TABLE VIII
GUESSES FOREXAMPLE 1

B. Example Where Shapes Differ

Here, GPR sees some object from 5 cm to 10 cm of depth. In
LMO and MO case, MD detects something at the depth of 30
cm, and for MO case, that is a rectangular shape with area of 10
cm . GPR detects an elliptical shape of area equal to 120 cm,
while IR senses an X-like shape the area of which is 10 cm. At
first, masses are assigned as given in Table IX.

A strong discrepancy in depth information between MD and
GPR is detected during the first check, so these two sensors
are grouped separately. Since the GPR response is closer to the
soil surface, IR is grouped with it. As a result, we have two
clusters, one containing IR and GPR, and another containing
MD. Thus, the measure on MD and GPR depth comparison has
to be ignored and the burial depth measure is introduced for MD.
Measures of this sensor in case of MO assign masses as given in
Table X, of which only burial depth measure remains in case of
LMO. Therefore, this measure is the only source of information
when judging about the identity of this LMO object (see the
first column of Table XII). It tells that this object has a metallic
part on 30 cm of depth, and the first guess is that it is a friendly
object. In MO case, the fusion of MD measures gives results as
shown in the second column of Table XII. The internal conflict
of MD in this case is high, so the masses are discounted (Table
XI). Their fusion leads to the results given in the last column of
Table XII. Calculated guesses, given in Table XV, show that this
object is most likely friendly.

Regarding IR and GPR cluster, we firstly fuse measures per
sensor, as shown in the first two columns of Table XIII. Mea-
sures of IR have a relatively strong internal conflict, so we dis-
count the IR measures (Table XIV) and then fuse them again (the
third column of Table XIII). The next step is to fuse discounted



MILISAVLJEVIĆ AND BLOCH: SENSOR FUSION IN ANTI-PERSONNEL MINE DETECTION 281

TABLE IX
STARTING ASSIGNEDMASSES, EXAMPLE 2

TABLE X
MASSESASSIGNEDPER MEASURE FORMD, EXAMPLE 2, NO DISCOUNTING

TABLE XI
DISCOUNTEDMASSESFROM TABLE X

IR and nondiscounted GPR, and the result of this combination
is given in the last column of Table XIII. The mass of the empty
set (0.5) is much higher than the algebraic sum of internal con-
flicts of the two sensors (0.164), hence these sensors do not refer
to the same object. As a final result, we conclude that the three
sensors refer to three different objects:

• GPR object: 1) MR, 2) FR, 3) MI, 4) FI, 5) something else;
• MD object: 1) F (R or I), 2) M (R or I), 3) something else;
• IR object: 1) FI, 2) FR, 3) MI, 4) MR, 5) something else,

TABLE XII
RESULTING MASSES FORMD, EXAMPLE 2

TABLE XIII
RESULTING MASSES FORGPRAND IR, EXAMPLE 2

or, simpler:

• GPR: 1) mine, 2) friendly object, 3) something else;
• MD: 1) friend, 2) mine, 3) something else;
• IR: 1) friendly object, 2) mine, 3) something else.

Obtained results are in agreement with the imagined situation.
The importance of introducing a burial depth measure for MD if
it is in disagreement with GPR can be seen: it is the simplest and
safest way for treating such cases when MD detects something
different than GPR and IR, it is the only source of information
in case of LMO, and it can give a complementary information
about the true object identity in MO case.

The usefulness of providing confidence values (guesses,
Table XV) together with the ordered lists is also shown here:
for MD, the difference between first and second guesses for
LMO path is much narrower than in the case of IR. Without
confidence values these two cases seem the same, which could
be a dangerous mistake.

This example proves that any available measure, even not di-
rectly involved in the final decision, can provide useful informa-
tion toward disambiguating some situations. For example, the
focal elements for ellipticity and elongation are:

and , meaning that the two shape measures cannot distin-
guish between mines and friendly objects. Nevertheless, they
help detecting the conflict between sensors, hence determining
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TABLE XIV
MASSESASSIGNEDPER IR MEASUREAFTERDISCOUNTING, EXAMPLE 2.

TABLE XV
GUESSES FOREXAMPLE 2.

that the sensors do not refer to the same object. Namely, if the
shape measures are not included in this example, the following
GPR and IR measures remain (see Table IX): GPR area, depth
and height, and IR area. For any of them, the focal elements are

and , thus there is no conflict resulting from their
combination. In other words, without the shape information, we
would not be aware that GPR and IR do not detect the same
object, that, again, could have serious consequences in human-
itarian demining reality.

C. Example With Several Objects of a Similar Shape

If everything remains the same as in the previous case, ex-
cept that shapes and areas seen by GPR and IR are similar, it
would not be possible to split these two sensors, so it would not
be possible to notice that they do not refer to the same object!
Unfortunately, this is not a drawback of the model, but of the
choice of sensors, so there is nothing that can be done to avoid
this misinterpretation. The only way to cope with this problem
is that in case that IR and GPR are grouped together and MD
separately, we claim that the exact position of the object seen
by IR and GPR is somewhere between the soil surface and the
lowest surface level detected by GPR. This makes sense since
GPR does not see objects on the soil surface and just below it,
so we cannot be sure whether the upper level detected by GPR
is really the highest level of the object.

VI. PRELIMINARY RESULTS ONREAL DATA

In this section, we present results that have been obtained on
real data, provided by TNO Physics and Electronics Laboratory
(The Hague, The Netherlands), within the Dutch HOM-2000
project. These data include IR, GPR and MD images, obtained
on a sand lane containing 21 mines and 7 friendly objects. After
the processing of each type of data, 42 regions are obtained, 28
corresponding to regions containing the actual objects, and 14
for which clutter produced alarms. This means that finally we
have to recognize 21 mines and 21 false alarms.

On these data, MD measures are unfortunately not sufficient
to allow to use the first level of our approach. Therefore only the
second level could be applied. Moreover, shape and area mea-
sures are not available on GPR and MD data in these experi-
ments due to a coarse data acquisition step in one of the surface
dimensions. However, the results still show the interest of our
approach, and the improvement obtained by fusion.

When using A-scan and C-scans measures, the following re-
sults are obtained:

1) 19 mines are detected, and two are missed (due to the
sensitivity of the used sensors, and not due to the method
proposed here);

2) Six placed false alarms are correctly recognized, and 1 is
wrongly classified as a mine;

3) Eight clutter alarms are classified as, and six are
wrongly classified as mines.

If we compare these results to the ones obtained on each
sensor separately, significant improvement can be observed:

1) from IR only we get six more non detected mines and one
more false alarm,

2) from MD only we get three more false alarms and one
more non detected mine,

3) from GPR only we get four more false alarms.
This shows that the fusion using the proposed approach al-

lows to improve the mine detection rate, while decreasing the
false alarm rate.

When using B-scan measures, the results are exactly the same
for the mines and for the false alarms. But the number of false
alarms due to objects increases while the one for clutter de-
creases, keeping the global false alarm rate constant.

VII. CONCLUSION

We presented a method for modeling and fusion of mine de-
tection sensors in terms of belief functions within the Demp-
ster-Shafer framework. A two-level approach is introduced. At
the first level, the object under analysis is classified according
to its metal content. Based on that classification, at the second
level the chosen type is analyzed in detail, with the goal of deter-
mining whether the object is a mine or a nondangerous, friendly
object. Measures that can be extracted from each of the sensors
are presented and modeled. Since importance of each measure,
the confidence of the sensors in their assessments regarding each
of the measures, as well as the deminer’s opinion about the re-
liability of each of the sensors depend strongly on the scenario,
discounting factors are included in the model in order to account
for these parameters. Guess functions are introduced as a way
of making decisions in this extremely sensitive and dangerous
problem of humanitarian demining. It avoids problems encoun-
tered with classical decision rules for this application. Several
examples are given, based on synthetic data, showing that the
proposed model is promising.

The two-level approach described here is a logical basis to
explain the complexity of the mine detection problem. The pre-
sented theory is general, and can be easily adjusted depending
on specificities of particular data sets. This will be tested in de-
tail in our future work, when the proposed approach will be ap-
plied on additional sets of real data. First results on some real
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data have already been obtained [30], but only a part of the
model applied in that case.

Furthermore, the paper proposes formal models for dealing
with important problems in fusion, such as different reliability
among the sensors and possibility that different sensors provide
information on different physical objects, which have a more
general impact than the humanitarian mine detection applica-
tion.

Note that there are possibilities to integrate the two levels in
one, but such an approach has some drawbacks [31]. In future,
we will work on comparing the two approaches with the aim of
improving them as well as of developing a model which takes
the best of each of them.

Several aspects of our model apply more generally, such as
the multi-level approach, in case a piece of information induces
different processing (in a decision-tree like manner), the two
ways to deal with conflict (discounting and clustering), and the
decision rule which allows to take into account the possible dif-
ferent importance of each type of error.
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[23] N. Milisavljević, I. Bloch, and M. Acheroy, “Characterization of mine
detection sensors in terms of belief functions and their fusion, first re-
sults,” inProc. 3rd Int. Conf. Information Fusion (FUSION 2000), vol.
II, Paris, France, 2000, pp. ThC3.15–ThC3.22.

[24] E. Banks, Ed.,Antipersonnel Landmines—Recognising and Disarming,
London-Washington: Brassey’s, 1997.

[25] R. A. McLaughlin, “Randomized Hough Transform: Improved Ellipse
Detection With Comparison,” Univ. Western Australia, CIIPS, Tech.
Rep. TR97-01, 1997.
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[30] N. Milisavljević, S. P. van den Broek, I. Bloch, P. B. W. Schwering, H.
A. Lensen, and M. Acheroy, “Comparison of belief functions and voting
method for fusion of mine detection sensors,” inProc. SPIE Conf. De-
tection Remediation Technologies Mines Minelike Targets VI, vol. 4394,
Orlando, FL, 2001, pp. 1011–1022.
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