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Sensor Fusion in Anti-Personnel Mine Detection
Using a Two-Level Belief Function Model

Nada Milisavljevicand Isabelle Bloch

Abstract—A two-level approach for modeling and fusion of anti- The choice of an adequate combination method has to be care-
personnel mine detection sensors in terms of belief functions within fully done. The level of fusion mainly depends on the types and
the Dempster—Shafer framework is presented. Three promising gjmjjarity of sensorsto be fused. For example, fusionis mostoften

and complementary sensors are considered: a metal detector, an : . . .
infrared camera, and a ground-penetrating radar. Since the metal done ata pixel-levelifthe datato be fused are images acquired by

detector, the most often used mine detection sensor, provides mea-the same camera butin different spectral bands [1], [2], or by pas-
sures that have different behaviors depending on the metal content sive IR and millimeter-wave cameras [3]. However, there are also
of the observed object, the first level aims at identifying this con- some attempts to fuse data from similar sensors (or even the same
tent and at providing a classification into three classes. Depending one)atahigher, feature [4] or decision[5] level. Onthe other hand
on the metal content, the object is further analyzed at the second fusi f dissi ,'I i th h h be d '
level toward deciding the final object identity. This process can be 'USIONOTAISSIMIlar Sensors, as I'tISt ecasehere, has tobe done at
applied to any problem where one piece of information induces @ higher-level, not because of different physical phenomenathey
different reasoning schemes depending on its value. A way to in- detect, but because of a difference in resolution, problems of reg-
clude influence of various factors on sensors in the model is also jstration, etc. Note that only the literature on fusion of mine detec-
presented, as well as a possibility that not all sensors refer to the 45y sensors is reviewed here, butalotofworkis also done on each
same object. An original decision rule adapted to this type of ap- ! . .
plication is proposed, as well as a way for estimating confidence sepsorseparately, as Shown In [ﬁ]' Itlswell-known thatthert.e ISho
degrees_ More g(:_\r]era_”yl this decision rule can be used in any Sit- Un|Versa| approach for |nf0rmat|0n fUSIOH and that the Ch0|ce Of
uation where the different types of errors do not have the same a particular one strongly depends on the problem itself [7]-[9].
importance. Some examples of obtained results are shown on syn-Most of the efforts made in the field of fusion of dissimilar mine
thetic data mimicking reality and with increasing complexity. Fi-  yetection sensors are based on statistical approaches [10]-[12].
nally, applications on. real data} show pror.msmg results. Theyprovide excellentresultsforaparticularscenario, butignore,
Index Terms—Belief functions, confidence degrees, Demp- o pyiafly mention thatonce more general solutions are looked for,
ster-Shafer method, discounting factors, humanitarian mine . . . .
detection, sensor fusion, mass assignment, sensor clustering. Se_ver_al important problems have to be faced !n this doma'n O_f ap-
plication[13]. Namely, the data has the following characteristics:

1) they are not numerous enough to allow for a reliable sta-
|. INTRODUCTION tistical learning, as shown in [14], [15]; for instance, to es-
ESPITE the great efforts and motivation of research teams  tablish thatthe probability of detectionis 99.6% (setby the
around the world, there is no single sensor used for hu-  United Nations as the rate at which a mine-free area can
manitarian mine detection that can reach the necessarily high be considered safe) with a confidence of 98.1%, more than
detection rate in all possible scenarios. As a result, a very attrac- 1000 samples of each type of mine are needed,
tive approach to finding a solution is in taking the best from sev- 2) they are highly variable depending on the context and con-
eral complementary sensors. One of the most promising sensor ditions;
combinations consists of an imaging metal detector (MD), a 3) they do not give precise information on the type of mine
ground penetrating radar (GPR), and an infrared camera (IR).  (ambiguity between several types).
Here we propose a method of combination that can be eagdityaddition, it is impossible to model every object (neither mines
adapted for other sensors and their combinations. nor objects that could be confused with them).

Since reliability and detection capabilities of any sensor are Therefore, we propose an approach based on belief functions
strongly scenario-dependent, itis important to characterize eggiFs) in the framework of Dempster—Shafer (DS) theory [16],
of the sensors under combination. In other words, the ways far7], since ignorance, uncertainty and ambiguity can be appro-
modeling the influence of various factors on sensors and on fgtately modeled in this framework. Although the requirement
sults of their combination have to be investigated, with the aigf 99.6% detection probability is still often mentioned, it is
of obtaining fusion results as good as possible. quite controversial and has been suffering from various critics
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[18], [19]. Both works treat an alarm as a mine, and not as anssed. The identity of the object under observation is analyzed
object that could be a mine, as well as a false alarm. In additiat,two levels. The idea behind the two-level approach is that it
in [18], beliefs are obtained classically, as probabilities [20], sdlows to simplify the problem since the sensors behave differ-
this method faces the same problem as statistical ones: the laolly depending on the metal content and, therefore, the pieces
of a sufficient amount of training data. In [19], the efficiency obf knowledge and information to be modeled are different. The
the proposed method is estimated using real data containingemeral scheme of this two-level approach is described in Sec-
few mines and no placed false alarms, hence, the obtainedtren Il. The choice between three types of object corresponding
sults do not show how the method deals with false alarms. to different degrees of metallic content is done at the first level,
The lack of training data is partly compensated by availabéxplained in Section Ill. At the second level, discussed in Sec-
knowledge on mine detection sensors, on well-known miti®n IV, the object is analyzed in more detail, taking into ac-
laying principles, on mines themselves, as well as on objectsunt the specificity of the chosen type, with the final aim of
that each of these sensors confuses with mines. Consequenthssifying the object into a mine or a friendly (nondangerous)
our main motivation for exploring possibilities of modelingobject. The masses assigned by the chosen measures are com-
the mine detection problem in the framework of BFs (with itbined using Dempster’s rule [16], [17], [21] in unnormalized
nonprobabilistic interpretation) is to be able to easily include aridrm, which has the advantage of providing a natural measure of
model this partial knowledge by exploiting different features afonflict. Two main reasons can explain the conflict: either some
BF theory without any statistical information on the data or osources of information are not completely reliable, or they do
noise. In this domain of application, we have not met any similaot refer to the same object. The first aspect is solved using dis-
approach yet. counting factors [16], [21], [22], and the second by combining
Another important aspect of the work presented here is linkedly pieces of information referring to the same object. An orig-
to the fact that mistakes are not allowed in case of humaiial decision rule is proposed, in order to overcome limits of
tarian mine detection. In our opinion, it is not possible to readassical rules for this type of problems. Finally, the presented
the highest possible level of detection no matter which fusionethod is illustrated on some examples in Section V and on real
method is chosen, simply because it is not possible to predilstta in Section VI.
everything in all real situations where mines can be found. Be-Although the proposed approach was initially dedicated to a
cause of that, our idea is to give to the deminer as much infapecific application, some questions are raised that are more gen-
mation as possible, starting from processed data of separate seal, and the methodological solutionswe proposetoanswerthese
sors up to the possible conclusions, but the final decision hagjigestions can be used in many other applications. Thisis the case
be left to the deminer. Accordingly, the result of this DS modébr the two-level approach, for the two ways of solving conflict,
should be an ordered list of guesses what a currently obser¥ecthe decision rule, as will be seen mainly in Sections Il and IV.
object could be, together with the confidence in these results.
Similar ideas of leaving the final decision to the deminer can
be found in the literature [18], but the approach presented here
goes one step further. Namely, we allow the deminer to influenceThe two-level approach is motivated by the characteristics of
the modeling and the combination process. Indeed, his knowhe sensors and their different behavior depending on the metal
edge, experience as well as some of his observations that simgantent of the observed object. These characteristics are briefly
cannot be detected by any sensor are precious, and have tsuramarized here (more details can be found in [23]). A stan-
included in the reasoning process in order to obtain significasiéird GPR detects any buried object as long as its dielectric con-
improvements in detection and false alarm rates. stant differs from the one of the soil, IR detects thermal con-
For the considered sensors, there is no criterion which allotvast between the object and the soil, while MD detects metal.
to tell that the object is a mine, it can be just the opposite. CoBPR and IR are strongly influenced by various environmental
sequently, our results show how expectable it is that an objecfastors, such as moisture, temperature of the soil, time of the
notamine, or thatitis either amine or something else. This poiddy, etc., and some of these factors are difficult (even impos-
should not be understood as a drawback of the method. It shosildle) to quantify. The behavior of MD is quite independent of
not be forgotten that mines must not be missed, so detecting ttiet environment, as long as the soil is not ferrous. Therefore,
something is not a mine and that it is a mine or something elge large variety of objects that can be detected can be classified
seems to be the safest approach to this complex problem.  on the basis of their metal content. Furthermore, in the scope
The contribution of this paper is twofold: first, a methodologef humanitarian demining, mines are classified in three types
ical contribution in the sense that the paper proposes fornfia4l]: metallic, low-metal content, and nonmetallic. In this clas-
models for dealing with important problems in fusion, such asfication, a metallic mine is the one made almost completely of
fusion of sensors having different reliabilities, or providing inmetal, except e.g., handles, while a mine with low metal con-
formation on different physical objects, which have a more getent has metal only in small parts, e.g., in the fuse. The same
eral impact than the treated application; secondly, an adapttype of classification of objects is adopted in this paper, so we
contribution in the field of humanitarian mine detection. In theubdivide objects into MO (metallic object), LMO (low-metal
following, based on characteristics of the three analyzed minentent object), and NMO (nonmetallic object) types. GPR and
detection sensors and on general directions for applying the IBresponses are not significantly influenced by the metal con-
approach, explained above, the appropriate choice of measuesd of an object. On the contrary, the information that can be
and of respective mass assignment for each of the sensors isek¢racted from the MD regarding the true nature of an object

Il. TwoO-LEVEL APPROACH
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IR MD GPR ‘ 2) strength of the MD response (ratio between the maximum
[ rhemner value of pixels in the image and the image scale);

3) ratio between the object area on the MD image and on the
GPR image (ignored if GPR area is 0);

4) ratio between the object area on the MD image and on the
IR image (ignored if IR area is 0).

|
| first level
_

. nNmo | second level The interest of the first measure is obvious, but the others de-

| I serve some justification. If the area of the object on an MD
Mine,l Minei Mine, image is small, the strength of the response could still be highin
Friend Friend Friend case of a high metal content object which has, e.g., along cylin-

.\\\ L P
* The final decision is ©
left to the deminer!

drical shape, of which the top is seen in the image. However, if
the strength of the MD response is not high, the area could still
be large, indicating that something might be wrong with the am-
Fig. 1. Two-level approach. plification of the signal. Then, if the area of the object in the MD

image is large and the strength of the MD response is high, this
- . . . . area could still be much smaller than the one seen by GPR or
(whether it is a mine or a friendly object) importantly change . :

. . , meaning that the percentage of metal is small.
between MO, LMO, and NMO cases. That is why we decide to
Based on these four measures, we model the problem related

Sp'lal\tt?ﬁé ?i?;l{;llselln\t;et\\’/vvgr!?:ﬁlzg:fm?g v]\-/)r;ether an obiect to the first level in the BF framework. These measures provide
! 1Ct Boliefs about the object with respect to the three classes, MO,

MO, LMO, or NMO, henc_e, which kind of information can beLMO, and NMO. Note that this assumes that the classes are

expected from MD regarding the true nature of the object. Thé%p which corresponds to the usual way of reasoning in hu-

classification could be done based on MD alone, but we Canrﬁ?gni:[arian demining. Each measure gives rise to a mass func-

know for sure how much we can rely on it within some scenarigtzn having LMO N?\)IO and MO as fgcal clements. No other
O 1 1 .

S0 at this point, the responses of the other two sensors haV%iSJunction is taken into account in the present version of the

be taken into account as well. This is dgtaﬂed in Section 111 model: The full set,©; = (LMO U NMO U MO), is taken
Then, at the second level, the object is further analyzed (this )
: ; . as a focal element only for the two comparison measures to ac-
analysis depends on the metal content) in order to decide abgu

. e . . . ; ount for cases in which the area on the MD image is larger
the final object identity (a mine or a friendly object). In case %han the area in the IR. or the GPR. The numerical represen-

ambiguity between different types, several possibilities among. . !
MO. LMO. and NMO are investigated. As an output of thit ion of mass functions assumes that we can assign numbers
' ' 9 i b ?I{uat represent degrees of belief. The general shapes and tenden-

level, an ordered list of guesses about the true object ident] Y.< are derived from the knowledge we have and its modeling.

is given, together with confidence degrees. The second levells . . ; ; . )
: . S : ere certainly remain some arbitrary choices, which might ap-
discussed in detail in Section IV.

: . ear as a drawback of the method, however, it is not necessary to
The idea of having two levels comes from the fact that orﬁe : L
ave precise estimations of these values, and a good robustness

type of information induces different types of processing of the . ; .
: ! ) . . IS observed experimentally. This can be explained by two rea-
other pieces of information depending on its values. Two levels "~ : . .
. - . . . sons: first, the representations are used for rough information,
are indeed sufficient if only one type of information leads t

: . ; . o nce do not have to be precise themselves, and secondly, sev-
different processing, as is the case in this application. Althou . . : . : .

o e al pieces of information are combined in the whole reasoning
this idea came from the specificities of the metal detector, |

: : . rocess, which decreases the influence of each particular value
should be noticed that it can be applied to any problem wh o ! .

o . o {of individual information). Therefore, the chosen numbers are
we have such situations. It is general in this sense. Extension

. . . Ot crucial. What is important is that ranking is preserved, as
to more than two levels are possible. For instance, if after the . .
) S : ; . .—__well as the shape of the functions, and these are derived from
first branching issued from the analysis of this particular infot- :
o . ; . nowledge. These comments apply to all functions proposed for
mation, it appears that another piece of information leads also
to several ways of reasoning or to several processing branche

m%/lss assignments in this paper.
then another level should be added, and so forth. This can asses are assigned, as illustrated in Figs. 2 and 3. Namely,
seen as a process similar to decision trees, but in the framewor

i %ere is no response of the MD, or if the detected area is very
of belief functions small, then the highest mass assigned by the MD area measure
' (Fig. 2) should be assigned to NMO. If the area is quite large, itis
almost certain that the object is MO. For some moderate areas,
lll. FIRST LEVEL—THE CHOICE BETWEEN MO, it can be expected that the object is LMO. The exact range of
LMO, AND NMO areas corresponding to each type of objects depends on the par-

ticular situation at hand, the types of mines that can be expected,

etc. The reasoning is similar for modeling the strength of MD
All three sensors considered here give images, so the mea-

sures that can tell the most about the absolute and/or relative

amount of metal that an object contains are the foIIowing' 1This simple model was sufficient in our experiments. More complex models
" where soft boundaries between classes are taken into account could also be de-

1) area of the object on the MD image; veloped, but they are not useful in our context.

A. Description
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Lo P — 1) for any subsett # ©;, and any measurg new masses,
| - mi(A), are computed from the initial ones, ix(4), as
.
0.8 |\ A
R i
[\ mi(A) = Frome i i~ (A4); (1)
2 0.6 / "“ scale
E A 2) for the full set:
0.4 # \
‘\ + LMO fl
Lo mi(©1) =1— ——[1 = mi(01)]. )
0.2 . NMO fscale
# S A MO
1. "-«.““ Masses assigned by the four measures are combined by Demp-
et e RR B et ster's rule in unnormalized form [16], [17], [21]
MD area [cm?]
m(A) = Y mi(Ag)-mi(Bi) 3)

k,l

Fig. 2. Masses assigned by MD area measure. )
ArNB;=A.

wherem; andm,; are masses assigned by measusesl; after

Ly discounting, and their focal elements ate, A,,... A,, and
f‘*. By, Bs, ... B, respectively. Since Dempster’s rule is commu-
0.8 +’ 'de" tative and associative, it can be applied repeatedly, until all mea-
/ K. sures are combined, and the result is independent of the order
06 7 X‘:‘ used in the combination. The measures under combination have
4 ‘- K to fulfill the condition of being cognitively independent [21],
B 0.21f it which is weaker than the notion of statistical independence re-
| F 3 ’b% ;l:f];?) quired in the probabilistic case. Measures are cognitively inde-
02{ Iy *, ‘ S pendent if each of them assigns masses without any direct link
v ) to the others. This is the case in the proposed model.
o A 4| FULL SET . . .
o~ v T e If there is no mtersectpn betyveen some focal eleme'nts
0 02 04 06 08 1 12 andBy, the resulting mass is assigned to the empty set. Since the
MD area / GPR area only disjunction among focal elements that is taken into account
at this level is the full set, the mass of the empty set indicates
Fig. 3. Assigned masses by comparing MD and GPR areas. that one measure gives masses to one singleton, and some other

measure to another singleton. A high mass on the empty set

response. Ideas behind modeling the two area comparison nfeoa{_responds to a high conflict among measures, and therefore

g .. to more difficulty to distinguish between the singletons.
sures (shown in Fig. 3 for MD and GPR) are the following:
ures (shown in Fig ) wing Finally, a good indicator for deciding which path to follow at

1) if MD area is negligible when compared to GPR (or IRjne second level (see Fig. 1) is the mass of the empty set. If there
area, such an object might be NMO; is a singletonS € ©; which has a higher mass than the others
2) if MD area is significantly smaller than GPR (or IR) areagnq than the empty set, i.e.,
the object is likely LMO;
3) ifMD and GPR (or IR) areas are similar, the objectisMO; 35 c©,, S#0: m(S) = max m(A)
4) if MD area is quite larger than the other two, ignorance A€{NMO,LMO,MO,0}
about the type of object is high, so the mass should be
mainly assigned t®.

(4)

the path corresponding t® should be followed. Otherwise, we

should group singletons. For each of the three possible combina-
The deminer is included in the reasoning process by &¥sns, masses assigned to corresponding subgroups by measure

pressing his opinion regarding the sensors and, accordinglyre calculated from the masses given to each of the singletons

the importance of each of the four measures via discountiggithe subgroup separately

factors [16], [21], [22]. Since there are only four measures at

the first level that all involve either MD alone or comparison of minew (AU B) = m;(A) + m;(B), (5)

MD data with GPR or IR data, the deminer’s opinion regarding

the sensors and regarding the importance of measures camwhereA and B are singletons that are grouped together. After

treated as one factor for each measure. The deminer expresséculating these new masses, measures are combined using

his opinion about the importance of each measuterough Dempster’s rule (3). Then, if for some of these three combi-

a numberf;, on a scalef,..1. that he predefines. The highesnations the mass of the empty set is lower than the other two

number corresponds to the highest importance of the measuesulting masses and if the masses of the two focal elements are

inducing the smallest discounting. These factors modify massesli-distinguished, the path with the higher mass has to be fol-

as follows: lowed. If the focal element with the higher mass consists of two



MILISAVLIEVIC AND BLOCH: SENSOR FUSION IN ANTI-PERSONNEL MINE DETECTION 273

TABLE | TABLE I
STARTING ANALYSIS FIRST CASE OF GROUPING { LM O, MO} anD {NMO}
m(MO) | m(LMO) | m(NMO) | m(©:) | m(0) m(MO ULMO) | m(NMO) | m(8,) | m(9)
aM | 081 0.19 5e-9 0 0 aM 1 4.9¢-9 0 0
rM | 0.64 0.36 8.7e-5 0 0 rM 1 8.7e-5 0 0
aMG | 0.93 6.2e-2 7.9e-8 | 94e3| 0 aMG 0.99 7.9e-8 | 9.4e3| 0
aMI | 0.96 0.03 7.8¢-9 | 9.7e3| 0 aMI 0.99 7.8¢9 | 973 | 0
c 0.47 1.9e-4 4e-17 0 0.53 c 1 3.9e-17 0 |86e5
singletons, then these two paths should be followed in parallel. SECOND CASE OFGROU-II;’?NBGI,_I?L;\I'IIO.NI\/I()} AND {MO}

If the empty set has a significant mass in all analyzed cases, then
all three paths should be followed in parallel. This idea is illus-
trated in the following example.

m(MO) | m(LMO UNMD) | m(©;) | m(0)

aM 0.81 0.19 0 0

B. Example of Ambiguity Between the Three Types of Objects
rM | 0.64 0.36 0 0

It can happen that the data collected by the three sensors result
in ambiguity between the three types of objects. A way to deal aMG | 093 6.3e-2 9.4e-3 | 0
with such situations is illustrated using the following values for
each of the four measures:

1) MD area is 20 criy c 0.47 1.9e-4 0 |053
2) strength of MD response is 0.4;

3) ratio of MD and GPR areas is 0.7; . . .
4) ratio of MD and IR areas is 0.8 resulting masses, given in the last row of Table Ill, are the same
o as the ones shown in Table I.

assuming that the deminer gives equal and maximum impor—4) Third Case of Grouping: {MO,NMO} and

tance to each measure (no discounting). LMO}: Logically, it does not make sense to group MO
1) Starting Analysis{LMO}, {MO}, and {NMO}: The ;nd NIE/IO together, and LMO separately, but for other appli-
f°°"?" elements aréLMO}./{M(_)}, 6!”0' {NMO}. Masses are cations, where unsupervised clustering may be required, all
aSS|g_ned for each meastras given in Table |, whc_ere Measure,ster possibilities should be checked. Nevertheless, as in the
alMis MD area,rM—MD responseaMG—ratio of MD 05,5 sypsection, this case does not differ significantly from

and GPR areas, and/ I—ratio of MD and IR areas. In the the starting one, since very low masses are assigned to NMO.
last row of this table, name@, the masses resulting from the

combination of the measures by Dempster’s rule (3) are show). Final Remarks Regarding the First Level
The highest mass is assigned to the empty set, indicating that

the conflict between measures is too high. Therefore, we gro_uHn th? example given above, the lowest mass of the empty set
the singletons. is obtained when LMO and MO are grouped together, so these

2) First Case of Grouping: {LMO,MO} and WO paths should be followed. o
(NMO}: Here, the focal elements areLMO, MO} and Note that the values for each measure are chosen so that it is
{NMO}. For évery measure. the new maés of subsetnOt sure at allif it could be a LMO or MO, so obtained results

{LMO, MO} can be found from (5). Masses assigned iqre in accordance with the analyzed situation. Also, it shows the
each 6f the measures are shown in Table II, as well as REVEr of this grouping and of keeping masses unnormalized: it

masses after combination. In this case, the focal elements '§r8a33|'_ todc?eck that if at tlhedstﬁrtlng casef,MDce)mpst%r; rule in
very well distinguished, and the resulting mass of the emp rmalized form were applied, the mass o would be very
set is very low. igh when compared with the other two, so that this case would

3) Second Case of Grouping:{LMO,NMO} and be chosen, i.e., LMO case Woulq be disc;arded. o
(MO}: This time, the focal elements areLMO,NMO} There are two ways to deal with ambiguous situations such
and {MO} The néw masses of the SUb$EMO Nl\}[O} are @s the one shown here, when more than one path is chosen to be

calculated using (5) and given in Table Ill. They do not chan 8llr<])wed, ic.lzl"'l) t? follcr)]w ?" the Ehos_gn peghshin para[lel, %r 2)
much when compared with the starting case, since NM ave additional paths for ambiguities. Both ways introduce

does not have significant masses. Therefore, we can exp %gitional problems. The first one calls for a particular proce-

similar combination results as for the starting case. Indeed, e for mergmg'the result's, vyh|le the second means that for
each of the possible combinations of paths, a set of measures

2Masses are rounded on two digits, and small values are not truncated and adequatg mOde“_ng have to be carefu_lly chosen. Here, we
preserved in order to avoid multiplications by zero during combination. choose the first solution for the two following reasons; 1) the

aMI 0.96 0.03 9.7e-3 0
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TABLE IV
THE FOCAL ELEMENTS IN THE FRAME OF DISCERNMENT AT THE SECOND LEVEL.

GPR IR MD, MO MD, LMO
area (FRUFI), O, (FRUFI), O (MFRUMFI), 6, /
elongation (MRUFR), (MIUFI), ©; | (MRUFR), (MIUFI), ©; | (MMRUMFR), (MMIUMFI), ©, /
ellipticity (MRUFR), (MIUFI), ©, | (MRUFR), (MIUFI), ©; | (MMRUMFR), (MMIUMFI), ©, /
burial depth (FRUFI), O, / (FRUFI), O, (FRUFI), O,
height (FRUFI), O, / / /
burial depth comparison / / / (FRUFI), ©.

problem of merging the results can be simplified by the fact thAt Choice of Measures and Modeling the Resulting Masses

the real aim is to distinguish between mines and friendly ob- While th £ MD functi fth al tent
jects (giving much more importance to mines, since they musE ll€ the measures o are function ot the metal conten

not be missed); this means that as long as the final choices r8 the observed object, the measures of IR and GPR remain the

resent a mine (nonmetallic, metallic, circular, asymmetrig), same. These measures are (Table IV)

they should receive the highestimportance, 2) modeling of addi-1) for both GPR and IR:

tional paths for ambiguities will be much more natural once MO, i) area, assigning massegioR UFT) and the full set,
LMO, and NMO are treated not as crisp, but as fuzzy classes, due to the fact that whenever the area is too small or
which is not addressed here. too large, it is quite certain that such an object is

not a mine, while whenever the area is within some

range corresponding to expected sizes of mines, the
IV. SECOND LEVEL—CLASSIFICATION INTO MINES object can be a mine or anything else as well;

OR FRIENDLY OBJECTS 2) elongation, giving masses tdR UFR), (MIU FT) and

The analysis continues in (at least) one of the three directions,  the full set; _
LMO, NMO, or MO. Taking into account that all three sensors 3) ellipticity, that also assigns masseg R U FR), (MIU
give images, that around 90% of the mines have an elliptical  F'1), and©s;
(regular) top surface (circular, but seen as elliptical under some#) for GPR alone:

burial angle), and that the major goal of our humanitarian demi- i) burial depth, assigning masses (@R U FI) and
ning efforts is to distinguish between a mine and a nondangerous O5;

(friendly) object (stones, cans, etc.), the frame of discernment is i) depth dimension (height) of an object, again giving
defined for each case as follows: masses t¢FR U FT), and the full set.

1) for MO: a0 = {MMR, MMI, MFR, MFI}, where Regarding MD, there is no measure when the object is NMO.
MMR denotes metallic mine of regular shape, MMIFor the other two cases, its measures are
metallic mine of irregular shape, MFR metallic friendly 1) both for LMO and for MO:
object of regular shape, and MFI metallic friendly object

of irregular shape; i) burial depth or cpmparisc_)n of burial depth with
2) for LMO: @110 = {LMMR, LMMI, LMFR, LMFI}, GPR (WhIC.h one is taken into account depgnds on
with: LMMR (low-metal content mine of regular shape), Whethe_r this sensor Q|sagrees or agrees with GPR,
LMMI (low-metal content mine of irregular shape), etc.; respectively), assigning masses(fok U F1I) and
3) for NMO: Ot _ the full set;
{NMMR, NMMI, NMFR, NMFT}. 2) for MO alone—same as for both GPR and IR:
Some measures are the same for all three cases, so we use sim- i) area, assigning masses(fdFR U MFT) and the
plified notations sometimes, such as full set;
1) FR for denoting any friend (regardless its metallic con- ii) elongation, giving masses to(MMR U
tent) of regular shape (either MFR, LMFR or NMFR, de- _ MFR), (MMIU MFT) and the full set;
pending whether MO, LMO, or NMO is analyzed); iii) ellipticity, that assigns masses t¢gMMR U
2) FI for any friend of irregular shape (MFI, LMFI or MFR), (MMIUMFT) and the full set too.
NMFI);
3) MR for any mine of regular shape (MMR, LMMR or Inthe following, we presenta model for each of the measures,
NMMR); based on the bibliographic survey as well as on the single-sensor
4) Ml is any mine of irregular shape (MMI, LMMI or trials within the Belgian HUDEM project. Note that the pro-
NMMI); posed equations for mass assignments are only examples illus-

5) O, for any frame of the discernment at this level. trating the required tendencies. The numbers and parameters in
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these mass functions are not really important. What is impor- I 'y e
tant is the general shape of these functions, as mentioned also Y Y :
in Section IlI-A. 0.8 S »
1) Ellipse Fitting Mass AssignmeniVe apply an ellipse fit- N
ting algorithm using the randomized Hough transform [25], [26] o6 e X
on thresholded images of the sensors. The mass for the subset % X
of regular shapes assigned by this measure indicates how well 04 X Lo
this shape fits an ellipse: ¥ oo Ty :
o e
Aoe -5 Aoe -5 A ¥ T
my(MR UFR) = max <O./ min{ LA }) (6) v'v' L4 5 ¥ Full aet

ey

where A, is the part of object area that belongs to the fitted 0 R0 Ly Tal sul «ab SR da0

ellipse as well A, is the object area. is the ellipse area. The area [cm?]
subtrgctlon qf 5_ pixels is introduced to include t_he limit case (Hg. 4. lllustration of mass assignments for area/size.
an ellipse with just 5 pixels, where we cannot judge about the

shape at all, so ignorance should be maximum. In case of MD, . N .
this equation makes sense only for MO case. as well, can always be predicted, taking into account possible

The mass of irregular subset is the larger value of two Valuéjse_,formaﬂons becauset oélsotrrr]wetbtgrlal tangle.f(_)utzllde_litﬂat r?nge,
the percentage of ellipse area that does not belong to the ob Llg much more expectable that objects are friendly. Therefore,

and the percentage of object area that does not belong to @sses are madeled as:
fitted ellipse: Ay — 0.5 (Amin + Amax)]?
P mq(02) = X - exp 4, ,0 5 (Auin + mzk)]
— Aoe Ay — Ace 0.5- (Amax - Amin)
)

A, A

Again, this equation is used regardless the metal content forfere the approximate range of expectable mine areas is from

and GPR, while for MD it makes sense only when the object imin 10 Amax, as illustrated in Fig. 4 for,,;, = 80 cnv and
MO. Amax = 180 cm?. The parameted is usually set to a value

The full set gets the remaining mass: closed to 1 (here we took 0.98). Taking it not exactly equal to
1 allows to have non zero values for the complement function,
ms(02) =1 —my(MRUFR) —m(MIUFI). (8) which avoids to exclude completely solutions (since mass func-
tions are combined using product operators, having zero some-
2) Elongation Mass Assignmentiere, a thresholded imagewhere is very strong).
of the objectis used as input too. First, the center of gravity of the4) Burial Depth Mass Assignmenffhis measure is useful
image is calculated, and then we compute the following quaf-case of GPR regardless the metallic content of the object. On
tities; 1) minimum and maximum distance of bordering pixelghe contrary, the depth comparison measure has to be ignored
from the center of gravity, and the ratio between them (ratioff)\GPR and MD disagree about the depth position of the object,
(if the center of gravity is not inside the boundary, this does ngecause it means that they do not refer to the same object. If that
make sense, and ratiol is set to 0), and 2) second moments, jgfifle case, in order not to lose the depth information extracted
from them the ratio of minor and major axis of the Obtainegy MD, its own burial depth measure has to be introduced, mod-
quadratic form (ratio2). The mass value for the regular subsetigd in the same way as for GPR.
the smaller of the two ratios: Similarly to area/size of mines, there is a range of burial
depths where it is more expectable that mines can be buried.
©) When a GPR starts to sense something on these small depths,
fiss should be assigned to the full set, since it can be either
mine or something else. At higher depths, it is far more
likely that the detected object is something else but mine.

, (12)

m(MIU FI) = max { Ae } - (N mu(FRUFI) =1 —m, (0, (13)

me.(MR UFR) = min(ratiol, ratio2)

while the mass of the irregular subset is the absolute value'8
their difference a

me(MIUFI) = |ratiol — ratio2|. (10) Corresponding masses are (see Fig. 5):
A
The full set takes the rest i(©)= ——— 14
ma(O2) cosh(p - depth)?’ (14)
me(02) = 1 — max(ratiol, ratio2). (12) mq(FRUFT) =1 — mgy(03). (15)

Note that the method could be applied to edges as well, but filee parametek has the same meaning as before. The parameter
influence of noise on the position of the center of gravity would defines the speed of decreasingness of the function. It depends
be much larger. on the expected range of the depth, and has to be tune for each

3) Area/Size Mass AssignmentVhen a preliminary infor- application, depending on the historical context, the type of soil,
mation about the expected size of mines is available, a rangelud type of mines expected in the concerned area, etc. (here we
areas of detected object that could be a mine, but something dlage chosem = 0.04).
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1Y 1 1: N
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o e . ¥ Full set
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Fig. 5. Example of mass assignments for depth. . . )
Fig. 7. Assigned masses for MD and GPR depth comparison.

3 2) in case of MO:
TN ,
0.75 88 et me(O2) = ;- (20)

v
04 cosh [0.75 - (2 — 1)]
3 . : me(MFR UMFI) = 1 — m.(02). (21)
£ v The mass assignment for LMO differs from the one in case of
v 3 MO within the GPR region because the small metallic piece
0.25 = Friendly can be anywhere within the interval detected by GPR. In case
I & & Skys of MO, the maximum value is given to the mass of the full set
o st ¥ Follset when the position of metal detected by MD is in the middle of
o 5 10 15 20 25 30 the depth interval extracted by GPR, i.e., wher= d/2 (see
object’s height [cm] Fig. 7).
Fig. 6. Masses assigned for depth dimension. B. Discounting Factors

The behavior of each of the three sensors is strongly scenario-

5) Depth Dimension Mass Assignmer@nce again, some dependent, referring to
range of depth dimensions or heights of object exists, where itis1) the quality of the acquired data;
more expectable that an objectis a mine (but it can be something) the reliability of each of the sensors under particular
else as well), while some too small or too large objects are quite  weather conditions, type of soil, etc.;
surely nondangerous, as shown in Fig. 6. 3) the types of objects under analysis.

6) Mass Assignment for Comparison of GPR and MD Depifhese are the main reasons for including discounting factors
Information: If there is an agreement between the depth di6), [21], [22] in the model, and they become very important at
mension of the object detected by GPR, and the depth pagje second level. They are presented in detail in [23] for objects
tion of metal detected by MD, the object can be anything frofgjth high metal content, so we just briefly describe them here.
our frame of djscernment. Otherwisg, the object should n.ot be @iscounting factors consist of three types of parameters:
mine. Accordingly, masses are assigned as follows (whése 1) g;;: confidence level of sensgrin its assessment when

the depth position detected by MD, measured from the top level ~ ; *, . : : :
) : . judging measure (varying from 0 for not confident at all
detected by GPR, andlis the height of the object detected by to 1 for completely confident):

GPR): 2) b;;: level of importance of measuief sensorj, varying
1) in case of LMO: from 1 tobgcate, Whereb...1 is the scale fob parameters;
i) for z € [0,d]: 3) s;:deminer’s confidence into opinion of sengovarying
from 1 t0sgscale, Wheresg... is the scale fog parameters.
me(02) = A, (16) Dis_c:)lijntin? aﬂd combri]nafti&n ddq not C(t)_mmute, o) tit ha_s to bz
pointed out when each of the discounting parameters is used.
me(LMFR ULMFI) = 1 — A; (17) Firstly, gi; and(b;; /bscale) are used to discount masses assigned
by measure of sensoyj, and that is done for all measures of that
sensor. Then we combine the measures per sensor. After that, the
resulting masses are discounted usiRg/ s.cale) parameters,
me( - A _ , (18) before combining the sensors.
cosh [0.75 - (3£ —1)] Discounting of masses is done as given by (1) and (2), where
me(LMFRULMFT) = 1 — m.(03); (19)  (fi/fscale) is replaced by eithey; ;, (bi;/bscale) OF (8;/Sscale)-

ii) otherwise:




MILISAVLIEVIC AND BLOCH: SENSOR FUSION IN ANTI-PERSONNEL MINE DETECTION 277

number, the larger the confidence. The values he gives have to
be rescaled, so he has to provide his scale as well (as detailed
in [23]).

3) Estimatingb;;: There are several open possibilities for
these parameters:

1) their choice can be again left to the deminer (how impor-

f(depth)

0 B 1 13 %0 45 40 tant to him each of the measures is);
depth [cm] . .
2) their values can be preset for each of the predictable cases
Fig. 8. Confidence in GPR in function of estimated depth. (e.g., MO, LMO, etc.);
3) they can be at the beginning chosen all the same, and
1) Calculatingg;;: after combination of masses, their values can be tuned

a) Area/Size:Shape is much more sensitive than area  depending on which subset has the highest mass [23].
to data corruption. Besides, as long as area is moderatBlgcause of lack of additional information, we adopt the first
corrupted, it does not affect mass assignments significanghgssibility in this paper.
Therefore, it is not needed to apply discounting to this measure]t should be noted that this way of using discounting factors
so we do not do it for IR and MD. Sitill, since GPR does natan be applied to any situation where we have some gradual
detect well shallowly buried or very deeply buried objects, weonfidence in the measures and where the user has to give his
model this confidence level as a function of the extracted demivn input. This happens in many domains, as for instance in
information (Fig. 8) medical imaging in diagnosis support systems.

gac = f(depth). (22) . Combination

b) Ellipse fitting: The confidence of a sensor in masses The combination is performed using Dempster’s rule without
assigned by ellipse fitting measure is a function of the shapgrmalization (3). The mass assigned to the empty set expresses
itself. The larger the mass difference between regular and irrége level of conflict between the pieces of information that have

ular sets, the |arger the confidence in the assessment been combined. Two main causes of the conflict can be advo-
cated: either there are several objects and the sensors do not pro-

gsr = |mpr(MRUFR) —m g (MIUFI)| (23) vide information on the same object, or some sources of infor-

grc = |mig(MRUFR) — msg(MIUFI)| (24) mation are not completely reliable. The possibility that sensors

gpar = [myar(MMR UMFR) — m 5, (MMI U MFT)|. (25) Fio not refer to the same _opject is addressed here._lt i; a major
improvement over our initial work [23], [27]. Unreliability is

c) Elongation: Similarly, the confidence level in estima-modeled as discounting factors, the choice of which has been

tion of elongation is addressed in Section IV-B.
After assigning masses for each measure of each sensor, afirst
ger = [mer(MRUFR) —mr(MIUFI)| (26)  check is performed, to see whether GPR and MD agree about
gec = |meq(MRUFR) — m.(MIUFI)]| (27) the depth position of the object:

gert = |Mmepr MMR U MFR) — mep (MMIU MFT)|. (28) 1) if that is the case, we check if that depth is reachable by

) _ _ IR (because the detectability of IR decreases quite signif-
d) Comparison of GPR and MD depth information icantly with depth):

(9e): This measure is not discounted since it can indicate
that the two sensors should be analyzed separately.

e) GPR depth dimension;s: This confidence level is
defined as a function of the extracted depth (Fig. 8)

i) if itis, we continue and analyze all the sensors to-
gether;
i) ifitis not, IR is analyzed separately;
2) ifthatis not the case, we check which one of them detects
gng = f(depth). (29) an object placed closer to the surface, and check whether
it is close enough to the surface to be seen by IR;
i) ifitis, IR is grouped together with that sensor;
i) if itis not, all sensors refer to different objects and
gac = f(depth). (30) havcnT to be analyzed separately. . _
Then, the fusion of measures per sensor is done (3), and in-
We do not discount this factor in case of MD since its reliabilityernal conflicts of each sensor are analyzed. There is no MD
is quite independent of environmental conditions. measure for NMO, and for LMO just one exists, so for these
2) How to Estimates;?: The deminer’s confidence in atwo types of objects only internal conflicts of GPR and IR can
sensor; depends on factors that affect reliability of that sensdoe analyzed.
such as environmental conditions, time of the day, moisture,If the internal conflict of a sensor is high, its data are cor-
etc. His confidence might be also biased by his trust in eachrofpted by noise, occlusion etc., so they should be discounted.
the sensors. We cannot know for sure which part of information is more af-
The idea is that, for each sensor, the deminer gives a numfested by this corruption than others. Still, discounting is per-
describing his belief in its reliability, where the higher thédormed on each measure, since it is modeled in such a way that

f) Burial depth: In case of GPR, this factor also depends
on the burial depth itself
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its influence is proportional to the level of ambiguity and uncetdnfortunately, a decision rule based on any of these three func-

tainty of the information, as shown in the previous subsectiortions does not lead to fruitful conclusions, since there are no
After discounting the sensors that have high internal conflict®cal elements containing mines alone [23], [27]. Namely, after

the fusion of sensors (plus the measure on the depth informate@mmbination of the measures at the second level, the resulting

comparison in cases of LMO and MO) is performed, accordirfgcal elements ar&R, FI, (FR U FI), (MR U FR), (MIU FI)

to the way the sensors were clustered at the beginning. Note thiadl ©,. Beliefs and plausibilities ate

performing the combination in two steps (first for all informa-

tion extracted from one sensor and then between sensors) is con- Bel(M) =0 (35)

sistent because of the associativity of Dempster’s rule: if there  Bel(F') = m(FR) + m(FI) + m(FR U FI) (36)

is no .dlscountlng,. the resultis thg same as fqr direct global com- PI(M) = m(MR UFR) + m(MI U FI) + m(0,) (37)

bination. What still can happen is that even if the sensors were

not clustered into subgroups, the conflict after fusion is high. In )=1 (38)

other words, although it seemed quite possible that they re{/ﬁﬁereM denotes mine¢M = MR U MI) and F denotes
to the same object, they actually do not. For example, aIthou]e_ménmy objects(F = FR U FI). Pignistic probabilities (34)
IR could reach some depths of 5 cm, where GPR and MD d&z, computed only for singletons, thus we have to derive proba-

tect something, it actually detects something nonmetallic on thﬁties for M andF’ using standard probabilistic equations. For
surface. In that case, clustering again takes place, but this tiy& 4nd MI. we find

in an unsupervised manner [28], toward finding the combina-

tion of the sensors where the conflict among the sensors is the MRUFR) = m(02)

PMR) = ™

lowest and goes down to the algebraic sum of internal conflicts 2 + 4 (39)
of the sensors. To illustrate the idea, detind;j be two sensors. P(MI) = m(MIUFT) n m(03) (40)
The mass of the empty set resulting from their combination (3) N 2 4
IS SinceMR N MI = §, the pignistic probability foi/ is equal to
the sum ofP(MR) and P(MI):
mig0) = 3 mi(Aymy(B) (MR) and P(MI)
ANB=0 1
P(M) = =[m(MRUFR) + m(MIUFI) + m(02)]. (41)
= mi(0) Y mi(B) +m;(0) Y mi(A) 2 ’
B A The pignistic probability fo” is found in the similar way:
—m;(0)m;(0) + > mi(A)m;(B)
- m(FR U FI)
) ) AQBE)(A,A;&(/BB;&(D P(FR) — m(FR) + 5
=m,; +m; —m; j
mi(0) + m;(0) — mi(0)m; (0) mMRUFR). m(6y)
+ Y mi(A)my(B) (31) + 5 + = (42)
ANB=0,A#0,B#0
P(FI) = m(FI) + m(FRUFI)

where the first three terms correspond to the algebraic sum of

the internal conflicts. The last term is equal to O if and only if all m(MIU FI) + m(©:) (43)
focal elements of sourdgeare consonant with all focal elements 2 4
of sourceg (i.e., they have never an empty intersection). hence
D. Decision P(F) = m(FR) + m(FI) + m(FR U FI)

After clustering and combination of sensors (3), the resulting + l[m(MR UFR) +m(MIUFI) + m(0,)]. (44)
masses are found for each of the clusters. On the basis of these 2
masses, final conclusion about the true identity of each objegdte that the following relations are always true:
under analysis has to be made for every cluster. Usual decision
rules rely on belief8el, plausibilitiesP| [16] and pignistic prob- Bel(M) < Bel(F) (45)
abilities P [29], defined as follows: PI(M) < PI(F) (46)

for any subseB: P(M) < P(F) (47)

Bel(B) = Z m(A), (32) ' 50 the decision would always be made in favofof
ACB,A#0 Since in case of any ambiguity, far more importance has to
PI(B) = Z m(A), (33) be given to mines, we propose to define guessksl), where
BAAZD A € {M, F,}}, in the following way:
for any singletonC: G(M)= > m(B) (48)
(A) MNB#0
m
P(C) = Z m (34) SFor the sake of simplicity, we assume that masses are normalized in this
A€20 CeA | |[ m( )] illustration.
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G(F)= Z m(B) (49) this paper is to propose a complete model dealing with a large
BCF,B#0 range of cases (that actually occur in reality), we have chosen
G(0) = m(0). (50) toillustrate all aspects of the method on synthetic experiments.

These experiments are drawn from real observations (measure-
The guess value of a mine is the sum of masses of all the fog@énts) of each of the sensors separately.
elements containing mines, no matter whether they are regulagor the sake of simplicity, we give similar examples for MO,
orirregular, the guess of a friend is the sum of masses of all thg10 and NMO cases, clearly stating what applies for each of
focal elements containing nothing else but friends (again, eithgem.
regular orirregular), and the guess of something else is equal t@nly the second level is illustrated here, since the number of
the mass of the empty set. Note that the guess of a mine is equ@dresting combinations of the two levels is very large. The first
to its plausibility, while the guess of a friend is equal to its beliefevel has been illustrated in Section I11.B. These experiments are
which reflects the fact that we have to be cautious in dECidimdered by increasing d|ff|cu|ty, in order to introduce progres-
F'. In other words, the introduced guesses are but a cautious wgjsly the types of problems our approach is able to solve. The
for estimating confidence degrees. first example discusses an ideal case for this problem, i.e., the
Once guesses for the three types of objects are found, they@gact is a mine, and it is seen correctly and equally by all three
ordered and this list, together with confidence degrees, is givegnsors. The next case is more complex: each sensor senses a
as the final result. different physical object, and all objects differ in shape, allowing
If more than one path is followed at the second level, eagbr a possibility to cluster the sensors. This case leads directly
of the paths results in one ordered list of guesses, for each@the third, final example, which is the most difficult one, dis-
its clusters. The problem of merging the results does not havgigsing what happens if the sensors see different objects but of
unique solution. The one that we adopt in this paper is as f@{similar shape. Here we only deal with the classification step.
lows: We assume that the preliminary steps of detection of objects in
1) if all the followed paths result in the same number afuspect areas is already done. The noise of sensorsis involved in
clusters, and sensors are clustered in the same way, ttegse steps only, and is therefore not subject to tests in this work.
each of the clusters, the final guesses are the ones obtaikiémionly assume that we have objects on which measurements
in the path where the guess of a mine is the highest. Late performed in order to classify them into friend or mine.
G;(M) be the guess a¥/ in pathi. We choose the path

m such that A. Ideal Example

G (M) = max G;(M). (51) We can imagine the situation where an object is buried at a
! depth where mines can be expected (5 cm), its area is similar to
The final guesses arfG,, (M), G (F), Gm(0)}. This  the one of mines (120 chy, its depth dimension is as for smaller
set is then ordered and provided as the final result;  mines (5 cm). Three different cases are analyzed in parallel, i.e.,
2) if the number of clusters is not the same for all paths, what this object is:

choose the one with the highest number of clusters as thep an elliptical MO, seen approximately equally by all three
final result (since it is a result of the finest analysis, and ~ sensors, and MD and GPR agree about its depth position;
since it is safer to claim, in case of ambiguity, that there 2) or an elliptical LMO, seen approximately equally by IR
is more than one object although there could be actually ~ gndq GPR, while MD detects a small object, of which posi-
only one); tion is in agreement with depth interval detected by GPR;

3) if the number of clusters for all the paths is the same, 3) or an elliptical NMO, seen approximately equally by GPR
but sensors are not clustered in the same way, most likely = g1d IR.

something went wrong, so the safest is to claim complerr% . . . Lo
; : e masses are given in Table V and no discounting is
ignorance and serve results of analysis of each of the sen-

included yet. The measures are indicated according to
sors separately.

. - notations introduced in Section IV.B, while we note
The decision rule we proposed here can be applied inany sity- = _ m(MR U FR),m; = m(MI U FI), and

. . n
ation where the classes have not the same importance, and where_ m(FR U FI). For the MO case, all measures should be

the classification errors do not have the same cost dependinqafbn into account. for the LMO case the last three should be
their type. For instance, our decision rule applies to any problq ored. and for NMO case the last four should not be taken
where non detection is worse than false alarm (as here), or account

.CO”""?‘W- Aggm this may happen in many problems, like me " The first check, performed on measures extracted from each
ical diagnosis. of the sensors, shows that MD and GPR agree about the depth,
and that this depth can be reached by IR. Therefore, the fol-
lowing step consists in combining the measures per sensor. The
At this time, we do not have real data on which all the featuredbtained masses are given in Table VI (the last column is valid
of the proposed approach can be illustrated. We have resultgust for the MO case).
real data, as presented in [30], but only a part of the model ap-Since the internal conflicts of the sensors are not significant,
plied in that case, due to some particularities of the analyz#tere is no need for their discounting, and in the next step, we
data set (they will be presented in Section VI). Since the aim fufse:

V. FIRST RESULTS
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TABLE V TABLE VII
EXAMPLE 1, MASSESASSIGNED PER MEASURE BEFORE ANY RESULTING MASSES FOREXAMPLE 1, AFTER SENSORFUSION
CHECKING AND DISCOUNTING.

MO LMO | NMO
mg | ™y mp | m(©)

m(FR) | 0.17 | 0.6 | 0.16
eG |072| 01 0 0.18

m(FI) | 3.7e-7 | 2.7e-5 | 2.6e-5
fG 10.96 § 3.9¢-2 0 le-3

mpg 1.5e-12 | 7.1e-9 | 6.8e-9
aG 0 0 0.06 0.94

mg 0.47 0.58 | 0.58
dG 0 0 8.7e-4 1

mr le-6 9.7e-5 | 9.8e-5
hG 0 0 0.12 0.88

m(0s) | 4.3e-12 | 2.5e-8 | 2.5e-8
el 1072] 0.1 0 0.18

i | 096| 3,902 o lo3 m(0) 0.36 0.26 | 0.26
. 9e- e-

al 0 0 0.06 0.94 TABLE VI

GUESSES FOREXAMPLE 1

cG 0 0 0.01 0.99

eM 072] 01 0 0.18 MO | LMO | NMO
FM|096|392] 0 le-3 G(M) | 0.47 | 0.58 | 0.58
aM | 0 0 | 006 | 094 G(F) | 017 0.16 | 0.16

G@®) |0.36| 026 | 0.26

TABLE VI
RESULTING MASSES FOREXAMPLE 1, SEPARATE SENSORS

B. Example Where Shapes Differ

GPR | IR | MD Here, GPR sees some object from 5 cm to 10 cm of depth. In
LMO and MO case, MD detects something at the depth of 30
cm, and for MO case, that is a rectangular shape with area of 10
m(FI) | 1.8e-3 | 6e-4 | 6e-4 cm?. GPR detects an elliptical shape of area equal to 1209 cm
while IR senses an X-like shape the area of which is 18.&n

m(FR) | 0.14 | 0.05 | 0.05

mr 3e-5 | 9.7e-6 | 9.7e-6 first, masses are assigned as given in Table IX.

i 071 | 082 | 082 A st_rong discrepangy in depth information between MD and
GPR is detected during the first check, so these two sensors

my 9.1e-3 | le-2 | le2 are grouped separately. Since the GPR response is closer to the

soil surface, IR is grouped with it. As a result, we have two
clusters, one containing IR and GPR, and another containing
m(®) | 013 | 012 | 0.12 MD. Thus, the measure on MD and GPR depth comparison has
to be ignored and the burial depth measure is introduced for MD.
Measures of this sensor in case of MO assign masses as given in
1) for MO, the three sensors as well as the remaining megable X, of which only burial depth measure remains in case of
sure on depth comparison between MD and GPR;  LMO. Therefore, this measure is the only source of information
2) inthe case of LMO, IR, and GPR as well as the measujighen judging about the identity of this LMO object (see the
on depth comparison between MD and GPR; first column of Table XII). It tells that this object has a metallic
3) in the case of NMO, IR, and GPR. part on 30 cm of depth, and the first guess is that it is a friendly
Table VII contains the resulting masses. The resulting confliabject. In MO case, the fusion of MD measures gives results as
does not exceed the algebraic sum of the internal conflicts of thlgown in the second column of Table XII. The internal conflict
sensors, meaning that these sensors indeed refer to the samefoldD in this case is high, so the masses are discounted (Table
ject. The first guess is that this object is either MR or FR. Thixl). Their fusion leads to the results given in the last column of
is in accordance with the envisaged situation. Note that the fi@ble XII. Calculated guesses, given in Table XV, show that this
sulting masses for LMO and NMO cases are almost identicabject is most likely friendly.
due to the fact that the only differing measure between the twoRegarding IR and GPR cluster, we firstly fuse measures per
cases, i.e., depth comparison of MD and GPR, is almost cosensor, as shown in the first two columns of Table XIlll. Mea-
pletely ignorant about the identity of the object. sures of IR have a relatively strong internal conflict, so we dis-
Guesses (48), (49), and (50) are similar for all the paths (se®unt the IR measures (Table XIV) and then fuse them again (the
Table VIII), and the first guess is that the object is a mine.  third column of Table XIlII). The next step is to fuse discounted

m(©y) | 1.5e-4 | 1.7e-4 | 1.7e-4
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TABLE IX TABLE XIl
STARTING ASSIGNEDMASSES EXAMPLE 2 RESULTING MASSES FORMD, EXAMPLE 2
mg my mr | m(©z) MD, LMO | MD, MO | MD, MO, disc.
eG 072 0.1 0 0.18 m(FR) 0 0.53 0.39
fG | 0.96 | 3.9¢e-2 0 le-3 m(FI) 0 0.12 0.13
oG 0 0 5.4e-2 | 0.94 mg 0.57 1.2e-4 0.41
dG 0 0 8.7e-4 | 0.99 mg 0 1.1e-2 8.1e-3
hG 0 0 0.12 0.88 my 0 2.4e-3 2.7¢-3
el |0.16 | 0.69 0 0.15 m(0s) 0.43 2.5e-6 8.4e-3
fI 042 | 0.58 0 5.1e-4 m(0) 0 0.34 4.6e-2
al 0 0 0.953 | 4.7e-2
TABLE XiIlI
¢ 0 0 0-99 0.01 RESULTING MASSES FORGPRAND IR, EXAMPLE 2
eM |0.64 | 0.19 0 0.17
GPR IR | IR, disc. | IR+GPR
fM | 0.67| 0.33 0 7.3e-4
m(FR) | 0.14 0.12 0.11 0.47
aM | 0 0 0.953 | 4.7e-2
FI 1.8e- .4 0.37 -
a | o 0 0.57 | 043 m(FI) 8e-3 | 0.46 3 9e-3
mpg 3e-5 | 7.3e-b 0.44 7.9e-5
TABLE X
MASSESASSIGNEDPER MEASURE FORMD, EXAMPLE 2, NO DISCOUNTING MR 0.71 | 6.1e-3 | 5.de-3 1.9e-2
my 9.1e-3 | 2.3e-2 | 1.8e-2 3.6e-4
Mg | My mp | m(©s)
m(©;) | 1.5e-4 | 3.6e-6 | 2.2e-2 3.2e-6
dM | 0 0 0.57 | 0.43
m(0) 0.13 0.38 3.9e-2 0.5
eM | 0.64|0.19 0 0.17
fM | 0.67|0.33 0 7.3e-4 or simpler'
aM | 0 | 0 |0.953]| 4.7e-2 ¢ GPR: 1) mine, 2) friendly object, 3) something else;
* MD: 1) friend, 2) mine, 3) something else;
TABLE XI « IR: 1) friendly object, 2) mine, 3) something else.

DISCOUNTED MASSESFROM TABLE X

Obtained results are in agreement with the imagined situation.
The importance of introducing a burial depth measure for MD if

mr | my | mp | m(©s) itis in disagreement with GPR can be seen: it is the simplest and
safest way for treating such cases when MD detects something
M | 0 0 057 | 043 different than GPR and IR, it is the only source of information
eM 102918521 o0 0.63 in case of LMO, and it can give a complementary information
about the true object identity in MO case.
fM (023|011 | 0 | 066 The usefulness of providing confidence values (guesses,
oM | o 0 10953 | 4.7e-2 Table XV) together with the ordered lists is also shown here:

for MD, the difference between first and second guesses for
LMO path is much narrower than in the case of IR. Without
IR and nondiscounted GPR, and the result of this combinatiggnfidence values these two cases seem the same, which could
is given in the last column of Table XIIl. The mass of the empte a dangerous mistake.
set (0.5) is much higher than the algebraic sum of internal con-This example proves that any available measure, even not di-
flicts of the two sensors (0.164), hence these sensors do not reéetly involved in the final decision, can provide useful informa-
to the same object. As a final result, we conclude that the thrgen toward disambiguating some situations. For example, the
sensors refer to three different objects: focal elements for ellipticity and elongation alRUFR, MIU
* GPRobject: 1) MR, 2) FR, 3) MI, 4) FI, 5) something elseFT and®,, meaning that the two shape measures cannot distin-
* MD object: 1) F (Ror 1), 2) M (R or I), 3) something else;guish between mines and friendly objects. Nevertheless, they
* IR object: 1) FI, 2) FR, 3) MI, 4) MR, 5) something else,help detecting the conflict between sensors, hence determining
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TABLE XIV On these data, MD measures are unfortunately not sufficient

MASSESASSIGNEDPER IR MEASUREAFTER DISCOUNTING, EXAMPLE 2. 14 g]jow to use the first level of our approach. Therefore only the
second level could be applied. Moreover, shape and area mea-

mg | my | mp | m(Os) sures are not available on GPR and MD data in these experi-

ments due to a coarse data acquisition step in one of the surface
dimensions. However, the results still show the interest of our
fI|6.6e2]|9.1e2| 0 0.84 approach, and the improvement obtained by fusion.

When using A-scan and C-scans measures, the following re-

el | 0.09 | 0.36 0 0.55

of] 0 0 |0953]4Te2 sults are obtained:
1) 19 mines are detected, and two are missed (due to the
TABLE XV sensitivity of the used sensors, and not due to the method
GUESSES FOREXAMPLE 2. proposed here);
2) Six placed false alarms are correctly recognized, and 1 is
GPR | MD, LMO | MD, MO final | IR, final wrongly classified as a mine;
3) Eight clutter alarms are classified & and six are
G(M) | 072 | 043 0.02 0.04 wrongly classified as mines.
G | 0.15 0.57 0.93 0.92 If we compare thgsg .resuIFs to the ones obtained on each
sensor separately, significant improvement can be observed:
GO | 013 0 0.05 0.04 1) from IR only we get six more non detected mines and one

more false alarm,

) ) 2) from MD only we get three more false alarms and one
that the sensors do not refer to the same object. Namely, if the  more non detected mine,

shape measures are not included in this example, the followingz) from GPR only we get four more false alarms.

GPR and IR measures remain (see Table IX): GPR area, depththjs shows that the fusion using the proposed approach al-
and height, and IR area. For any of them, the focal elements gjgs to improve the mine detection rate, while decreasing the
FR U FI and®, thus there is no conflict resulting from theirg|se alarm rate.

combination. In other words, without the shape information, we \when using B-scan measures, the results are exactly the same
would not be aware that GPR and IR do not detect the safg@ the mines and for the false alarms. But the number of false
object, that, again, could have serious consequences in humglrms due to objects increases while the one for clutter de-
itarian demining reality. creases, keeping the global false alarm rate constant.

C. Example With Several Objects of a Similar Shape VII. CONCLUSION

If everything remains the same as in the previous case, ex- ted thod f deli d fusi f mine d
cept that shapes and areas seen by GPR and IR are similar, € presented a method for modeling and fusion o mine de-

would not be possible to split these two sensors, so it would ntgf:tmsnhs?ns}ors n terlin;of belllef ;‘unchons r:N.'th'n thde Dedmz-
be possible to notice that they do not refer to the same obje fpr-Shater framework. A two-level approach Is introduced. At

Unfortunately, this is not a drawback of the model, but of th e first level, the object under analysis is classified according

choice of sensors, so there is nothing that can be done to a I(ths metal content. Based on that classification, at the second

this misinterpretation. The only way to cope with this problerJr‘f’\_'e_I the chosen type i$ anglyzed_ In detail, with the goal of Qeter-
is that in case that IR and GPR are grouped together and ning whether the object is a mine or a nondangerous, friendly
separately, we claim that the exact position of the object se ect. Measures that can be extracted from each of the sensors

by IR and GPR is somewhere between the soil surface and g presented and modeled. Since importance of each measure,

lowest surface level detected by GPR. This makes sense si %::onfidence ofthe sensors in their assessments regarding each
' t

GPR does not see objects on the soil surface and just below: 1€ measures, as well as the deminer's opinion about the re-
S0 we cannot be sure whether the upper level detected by ility of each of the sensors depend strongly on the scenario,
is really the highest level of the object discounting factors are included in the model in order to account

for these parameters. Guess functions are introduced as a way
of making decisions in this extremely sensitive and dangerous
problem of humanitarian demining. It avoids problems encoun-
In this section, we present results that have been obtainedtered with classical decision rules for this application. Several
real data, provided by TNO Physics and Electronics Laboratogxamples are given, based on synthetic data, showing that the
(The Hague, The Netherlands), within the Dutch HOM-200proposed model is promising.
project. These data include IR, GPR and MD images, obtainedThe two-level approach described here is a logical basis to
on a sand lane containing 21 mines and 7 friendly objects. Aftexplain the complexity of the mine detection problem. The pre-
the processing of each type of data, 42 regions are obtaineds28ted theory is general, and can be easily adjusted depending
corresponding to regions containing the actual objects, and dd specificities of particular data sets. This will be tested in de-
for which clutter produced alarms. This means that finally wiail in our future work, when the proposed approach will be ap-
have to recognize 21 mines and 21 false alarms. plied on additional sets of real data. First results on some real

VI. PRELIMINARY RESULTS ONREAL DATA
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data have already been obtained [30], but only a part of tha7]
model applied in that case.

Furthermore, the paper proposes formal models for dealingg
with important problems in fusion, such as different reliability
among the sensors and possibility that different sensors provide
information on different physical objects, which have a morej19]
general impact than the humanitarian mine detection applica-
tion. [20]

Note that there are possibilities to integrate the two levels in
one, but such an approach has some drawbacks [31]. In futur, 1]
we will work on comparing the two approaches with the aim of
improving them as well as of developing a model which takes[22]
the best of each of them.

Several aspects of our model apply more generally, such as
the multi-level approach, in case a piece of information induce®?l
different processing (in a decision-tree like manner), the two
ways to deal with conflict (discounting and clustering), and the

decision rule which allows to take into account the possible dif—[24]

ferent importance of each type of error. [25]
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