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Abstract

This paper points out some key features of Dempster-Shafer evidence theory for data fusion in medical imaging.
Examples are provided to show its ability to take into account a large variety of situations, which actually often occur and
are not always well managed by classical approaches nor by previous applications of Dempster-Shafer theory in medical
imaging. The modelization of both uncertainty and imprecision, the introduction of possible partial or global ignorance,
the computation of conflict between images, the possible introduction of a priori information are all powerful aspects of
this theory, which deserve to be more exploited in medical image processing. They may be of great influence on the final
decision. They are illustrated on a simple example for classifying brain tissues in pathological dual echo MR images. In
particular, partial volume effect can be properly managed by this approach.
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1. Introduction

Recent technical advances have led to the multi-
plication of imaging systems, which are often used
for observing a phenomenon from different points of
view. They provide a large amount of information that
must be interpreted as a whole in order to draw cor-
rect conclusions. This development has made data fu-
sion in image processing an important step, now well
recognized, in modern multi-source image analysis. In
medical imaging in particular (Coatrieux et al., 1991),
the physician may use images issued from different
sources, each of them highlighting specific proper-
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ties of tissues and pathologies. They may be images
acquired with a single imaging technique using dif-
ferent acquisition parameters (for instance multi-echo
MRI), or images obtained from several imaging tech-
niques (for instance anatomical MRI imaging com-
bined with functional PET imaging). The association
of such images allows the medical expert to confirm
and complete his diagnosis. However, the tools at his
disposal for analysing these images consist of almost
nothing but diagnosis workstations, on which one or
two images can be displayed, and on which some el-
ementary processings can be run. The fusion process
itself is still mainly qualitative and mental (except for
the preliminary step of registration, for which several
software tools exist).
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In most data fusion problems, the images to be com-
bined are partly redundant, as they represent the same
scene, and partly complementary, as they may high-
light different characteristics. Typically, none of the
images provide a completely decisive and reliable in-
formation. In addition, the information is often impre-
cise and uncertain, and these characteristics are inher-
ent to the images, due to observed phenomenon, sen-
sors, numerical reconstruction algorithms, resolution,
etc. The aim of data fusion techniques is therefore
to improve the decisions by increasing the amount of
global information while decreasing its imprecision
and uncertainty, by making use of redundancy and
complementarity.

Up to now, the methods used for data fusion were
generally derived from rule-based systems. They in-
volved numerous pre-processing steps in order to ex-
tract high-level information, which was then used in
the fusion step. Extreme cases are methods where a
decision is taken on each image separately and the
fusion step aims at combining these local decisions
into a global decision. However, numerical methods
also present some interesting advantages, since they
allow to deal with the numerical information, along
with its imperfect nature, until the last decision step.
In particular, dealing with conflicting local decisions
can be avoided. Such numerical methods are mainly
used for pixel-based fusion, for instance for classifi-
cation purposes (Bloch and Maitre, 1994). Among
these, probabilistic fusion and Bayesian inference are
the most popular. But they suffer from serious draw-
backs, which are still a matter for discussion. Alter-
natives to this approach are fuzzy sets theory, possi-
bility theory, and Dempster-Shafer evidence theory.
In this article, we will focus on the Dempster—Shafer
approach (DS).

When considering medical applications, it seems
that DS has been applied mainly for topics derived
from artificial intelligence (DS actually issued from
this domain, for dealing with reasoning under uncer-
tainty), and thus concerns medical diagnosis, where
propositional representations of evidences and knowl-
edge are set in the DS framework (Smets, 1978; Gor-
don and Shortliffe, 1985; Lowrance, 1988; Baldwin,
1991; Baldwin, 1992). Evidences issued from the im-
age signal (of “iconic” type rather than propositional )
are seldom considered. To our knowledge, only a few
papers report on image fusion by DS in medical imag-

ing (Lee and Leahy, 1990; Chen et al., 1993) (both
dealing with brain MRI), (Suh et al., 1990) (applied
for MRI left ventricle). On the contrary, DS has been
more widely used in satellite image processing (see
e.g. (Garvey, 1986; Lee et al., 1987; Rasoulian et al.,
1990; Van Cleynenbreugel et al., 1991; Cucka and
Rosenfeld, 1992; Zahzah, 1992)). There are several
reasons for this: on the one hand, data fusion prob-
lems in remote sensing are probably less recent, and
on the other hand, comparing and judging results with
respect to the ground truth is obviously easier in satel-
lite image interpretation, since it does not necessitate
any surgery on one’s body to access the truth ...

However, DS offers a number of advantages which
could be of great interest for medical image fusion
and deserve to be detailed. In this article, we try to
contribute to this task. The originality of the paper lies
in underlining how some features of Dempster-Shafer
decision theory may be further exploited in medical
imaging.

In Section 2, we briefly outline the principles of
DS reasoning, and present the main advantages of DS
for medical imaging applications. In this section, a
general point of view concerning the key features of
DS is adopted. In Section 3, we choose a more par-
ticular point of view and focus on a particular appli-
cation: brain tissue classification from dual-echo MR
images of pathological brains. We have chosen these
images since they constitute a good illustration of sev-
eral problems which may be solved by DS. This appli-
cation will be detailed under the light of the different
aspects of DS.

2. Data fusion by Dempster-Shafer evidence
theory: interest for medical imaging

2.1. Basic principles of Dempster-Shafer theory

DS allows for a representation of both imprecision
and uncertainty through the definition of two func-
tions: plausibility (Pls) and belief (Bel), both derived
from a mass function m (or basic probability assign-
ment) (Shafer, 1976; Guan and Bell, 1991). Mass
functions are defined on the power set of the space of
discernment D, i.e. a mass is attributed to each subset
of D. In classification problems, D may for instance
be the set of classes of interest, and a subset of D
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represents a union of classes. This represents a major
difference with probabilistic approaches which only
assign probabilities to singletons (i.e. to subsets of D
of cardinality 1). In the following, singletons will be
called simple hypotheses, whereas subsets containing
at least two elements of D are called compound hy-
potheses. A mass function m is thus a function from
2D onto [0, 11, such that

Zm(A):l. (1)

ACD

m(®) =0,

A subset A with non-zero mass value is called a focal
element.

The problem of assigning masses to hypotheses be-
comes more complicated if values have to be assigned
to compound hypotheses. Section 3.2 is dedicated to
this problem for medical image fusion.

Belief and plausibility functions are derived from
the mass function, and are respectively defined by

Bel(0) =0,

Bel(A)=Y _ m(B) VACD, A+, (2)
BCA

Pis(9) =0,

Pis(A)= > m(B) VACD, A #9. (3)
BNA+0

Clearly, we have the following properties:

Bel(D) = 1, (4)
Pis(D) =1, (5)
Bel(A) < PIs(A) VYA C D, (6)
Pis(A) =1 — Bel(A%) VA C D. (7)

It can be shown (Shafer, 1976; Guan and Bell,
1991) that the knowledge of any one of these three
functions on 22 is enough to derive the two others.
DS provides an explicit measure of ignorance about
an event A and its complementary AC as the length
of the interval [Bel(A), Pis(A)] (called belief inter-
val). It can also be interpreted as the imprecision on
the “true probability” of A. The mass assigned to D
can be interpreted as the global ignorance since this
weight of evidence is not discernible among the hy-
potheses. In summary, as for probability theory, using
numerical values in [0, 1] allows us to represent un-

certainty, but, using the two functions Bel and Pls, DS
is also able to represent imprecision.

If masses are assigned only to simple hypotheses
(m(A) = 0 for |A| > 1), then the three functions
m, Bel and Pls are equal and are a probability, called
Bayesian mass function in (Shafer, 1976). Otherwise,
there is no direct equivalence with probabilities.

Now, if we have evidence issued from several
sources, which are modelized in the DS framework
by means of the previously defined functions, these
masses are combined by the orthogonal rule of Demp-
ster (Shafer, 1976). For m; being the mass function
associated with source j (j = 1,...,n), this rule is
written, for all non-empty subset A of D:

(m&m®---dmy,)(A)
_ Tbinngea™m(Bm(Bs) - my(Bn)
T 1= 5ans,mp M (B)my(B2) - -my(By)’

(m &m@-- - ®&my)(P) =0 (8)

if this expression is defined, i.e. if

= ¥

BiN---NB,=0

m(By)my(Bz) - - -mu(By) < 1. (9)

Similar equations can be derived for directly com-
bining belief or plausibility functions. To some extent,
k can be interpreted as a measure of conflict between
the sources and is directly taken into account in the
combination as a normalization factor. It represents
the mass which would be assigned to the empty set
if masses were not normalized. It is very important to
take this value into account for evaluating the quality
of the combination: when it is high (in case of strong
conflict: k = 1), the combination may not make sense
and may lead to questionable decisions (moreover, the
combination rule is not continuous if k is very close
to 1 (Dubois and Prade, 1988)).

When m, Bel and Pls are Bayesian mass functions
(i.e. the only focal elements are singletons), issued
from independent sources, Dempster’s rule is consis-
tent with the laws of probability and the combination
of Bayesian mass functions results in a Bayesian mass
function. Thus probability appears as a limit of DS, in
the case where no ambiguity or imprecision exists and
where only uncertainty has to be taken into account.

After the combination, the final decision is taken
in favour of a simple hypothesis using one of several
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rules (Appriou, 1991; Denceux, 1995): for instance,
the maximum of plausibility (generally over simple
hypotheses), the maximum of belief, or the maximum
of belief without overlapping of belief intervals, i.e.
in favour of d € D such that

Bel(d) > max Pis(d’)
d'€D.d’ #d

(this is a very strict condition, called the absolute de-
cision rule).

2.2. Main advantages of Dempster-Shafer theory

As mentioned above, DS includes modelization of
both imprecision and uncertainty and assigns masses
to all elements of 22 rather than to the elements of
D only. These points constitute some of the main ad-
vantages of the DS approach. Indeed, they lead to a
very flexible and rich modelling, which is able to fit
a very large class of situations, occurring in particu-
lar in medical imaging. A few examples of situations
where DS theory may be successfully used are:

e in ideal cases where all information relevant to
the problem is known, i.e. cases where Bayesian fusion
applies;

e when a source provides information concerning
only a few of several classes: for instance brain PET
images under certain condition allow for the detection
of the brain surface but not of the head surface;

e when a source differentiates two classes and an-
other may not (this example will be illustrated in Sec-
tion 3): DS allows us to deal with hesitation or ambi-
guity between these two classes;

e in the case of partial volume effects (a particular
case of the previous one): it can also be taken into
account by assigning masses to the union of the two
classes mixed in the considered area (an example will
be given in Section 3.6);

e in cases where global source reliability has to be
taken into account: this may be done by weakening all
masses and reinforcing m(D) (such that the normal-
ization constraint is still satisfied);

e in cases where knowledge of source reliability is
available only for some classes: it can be taken into
account by modifying accordingly the masses assigned
to these classes and by introducing ignorance;

¢ in cases where a priori information has to be in-
troduced: even if it is not represented in a probabilis-

tic manner, it can be taken into account if it induces a
way to assign masses, in particular to compound hy-
potheses; for instance if we know that a source is not
able to distinguish between two classes, then it is not
worth trying to estimate masses for these two classes
separately, but the estimation has to be made on the
union of the classes and mass is then assigned to the
corresponding compound hypothesis.

DS provides an efficient way for representing some
extreme kinds of information. A total certainty about
an element d of D is represented by the mass function
mc defined by

mc({d})=1, and thus
mc(A)=0 YACD, A + {d}. (10)

Analogously, total ignorance is represented by the
mass function my:

m(D)=1, and thus
m(A)=0 VACD, A+ D. (11)

These definitions are related to algebraic properties of
the DS combination rule: mc¢ is a null element for &,
while my is the identity. This means that the combi-
nation of any mass function m by m¢ results in mc
(if m is not completely conflicting, i.e. k = 1, with
mc), whereas the combination of m by my results in
m. This perfectly fits the idea of total certainty, which
cannot be changed by any other information, and of
total ignorance, which cannot have any influence on
any other information.

The set of mass functions, along with the & oper-
ator, has a strong algebraic structure, which is an ad-
ditional advantage of DS. As has been pointed out,
there exist an identity and null elements. Moreover,
DS combination is commutative and associative. It is
not idempotent (in general m @ m # m). Finally, it
behaves in a conjunctive way, while conflict behaves
in a disjunctive way (increases) when more sources
are combined (Shafer, 1976; Bloch, 1996).

3. Application to brain tissue classification from
multi-echo MRI data

In this section, we consider a particular application
to medical imaging. It concerns the classification of
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dual-echo MR images of the brain, of patients suffer-
ing from adrenoleukodystrophy (ALD) (Aubourg et
al., 1992). Examples of both echoes from one slice
are shown in Fig. 1. The two echoes acquired for each
slice are registered.

3.1. Image description

Fig. 1 shows a good discrimination between brain,
ventricles (V) and cerebro-spinal fluid (CSF) in the
first image, which however is not able to distinguish
between white matter (WM) and ALD, nor between
grey matter (GM) and WM. On the contrary, the sec-
ond image shows ALD very clearly (the white area),
presents slight differences between WM and GM, but
the ventricles have almost the same grey-levels than
GM and their contours are imprecise. Therefore, these
images constitute a typical example where data fusion
is needed. They are also well suited for illustrating sev-
eral aspects of DS. For the sake of clarity, we will deal
with only 3 classes (C; = WM + GM, C; =V + CSF
and C3 = ALD), and illustrate using this simple case
the influence of the various parameters involved in
DS. Then, we show how the partial volume effect on
the boundary between ALD and WM can be explicitly
introduced as a mass on a compound hypothesis.

3.2. Mass function definition from problem modelling

The definition of mass functions remains a largely
unsolved problem, which did not yet found a general
answer. In image processing, they may be derived at
three different levels. At the highest, most abstract
level, information representation is used in a way sim-
ilar to that in artificial intelligence and masses are
assigned to propositions, often provided by experts
(Neapolitan. 1992: Baldwin. 1991; Baldwin, 1992;
Gordon and Shortifle, 1985). Up to now, this kind
of information is usually not derived from measures
on the images. This is therefore beyond the scope of
this paper. At an intermediate level. masses are com-
puted from attributes. and may involve simple geomet-
rical models (Chen ct al.. 1993: Van Cleynenbreugel
etal,, 1991; Cucka and Rosenteld. 1992; Andress and
Kak, 1988). This is well adapted to model-based pat-
tern recognition but it is ditticult o use tor image fu-
sion classification ol complex structures (like the cor-
tex) without a modcl. At the pinel level, mass assign-

Fig. 1. Initial images: dual echo brain MRI (one slice).

ment is inspired from statistical pattern recognition.
The most widely used approach is as follows: masses
on simple hypotheses are computed from probabili-
ties or from the distance to a class centre (Garvey
et al., 1981; Garvey, 1986; Lee et al.,, 1987; Strat,
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1989; Rasoulian et al., 1990; Suh et al., 1990; Lee
and Leahy, 1990; Lowrance et al., 1991; Appriou,
1991; Clarke and Wilson, 1991; Zahzah, 1992; Ap-
priou, 1993; De Maertelaere et al., 1993; Ip and Ng,
1994). Then global ignorance (m(D)) is introduced
as a weighting factor, often as a constant on all pix-
els (e.g. (Lee and Leahy, 1990; Zahzah, 1992)). In
most cases no other compound hypothesis is consid-
ered, and this drastically limits the power of DS. One
way to overcome this problem consists in using the
decomposability property on the masses and the Bar-
nett approach (only masses on singletons and on their
complements are considered) (Barnett, 1981; Lee and
Leahy, 1990; Chen et al., 1993; Gordon and Short-
liffe, 1985). Although this approach may be interest-
ing for pattern recognition purposes where each class
has to be tested against all the others, it may however
be questionable when a source provides information
on a compound hypothesis which is neither a single-
ton nor the complement of a singleton. In (Lee et al.,
1987), the use of mixed pixels in a probabilistic like
approach is suggested. In (Suh et al., 1990), nested
focal elements are used, by sorting probabilities. In
our opinion, these approaches are quite promising but
are also restrictive since they do not allow to take into
account all occurring situations.

The way we assign masses in our example is based
on a reasoning approach where knowiedge about the
information provided by each image is used to choose
the focal elements. We argue that, although this ap-
proach may probably not be easily made automatic
for any problem, it is more flexible and is able to take
into account a larger variety of situations. In this way,
based on the modelling previously introduced (Sec-
tion 3.1), the focal elements of 1, related to the first
image are C;, C3, C3, C; U (3. Since C| and C; are
not discriminated on this image, a possible choice for
mass assignment consists in assigning the same mass
to Cy, C3 and Cy U Cs. Null mass functions are as-
signed to the other compound hypotheses, since the
corresponding classes cannot be confused. On the sec-
ond image, it is difficult to separate brain and ventri-
cles, and thus the focal elements are C,, C,, C3 and
C; U G;, with the same masses on C|, C; and C; U Cs.
The introduction of global ignorance will be discussed
in Section 3.5. An additional compound hypothesis
will be introduced in Section 3.6 for the second image.
The mass functions are simple functions of trapezoidal

] Ventricles + CSF
g Brain + ALD
0
-
»
0
g P
- P Grey-level histogram
— |
n
']
<
g
~N
g ]
-]
e
L]
0 g
- |
” L
i i
= Sundat
Lo
] T I I 1
0 100 200
grey—-levels
—7 Brain + Ventricles + CSF
Grey-level histogram
: ALD U Brain
0
-
» .
0
<}
]
- ¢
n
]
«
£
~N
£
[}
P
o
0
-
«
-
=
I I |

0
grey—levels

Fig. 2. Grey-level histogram in both images and derivation of
mass functions (the scale is different for mass functions and
for histograms). Mass functions are simple trapezoidal functions
whose parameters are derived from histogram (the mass function
on C; U Cz (union of ALD and brain) will be used in Section
3.6). Afterwards, they are normalized.

shape, derived from grey-level histograms (Fig. 2),
and such that the functions are normalized in order to
verify ) ,cpm(A) = 1. The parameter of the func-
tions could be obtained in an automatic way, for in-
stance from scale-space analysis of the histogram, as
proposed in (Aurdal et al., 1995). This model is coarse
but was found to be sufficient. Thus, in this applica-
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tion, the classification is performed only from grey-
level, and a pixel based fusion will be made. Finally,
in the next two subsections, we will deal with:

mi(Cy) =m(C3) =m (C UCy),
mi(Cy) =1 -3m(C)), (12)
m(CLUGC) =m(CLUC) =m (D) =0.

ma(Cy) =mo(Cr) =ma(Cy U Cy),
my(C3) =1 —-3my(C)), (13)
m(CLUC3) =my(CLUC3) =my(D) =0.

3.3. Combination and decision

In this section, we discuss some aspects related to
combination and decision. A first remark concerns the
influence of the combination on the belief intervals. It
is easy to prove that the combination of any mass func-
tion with a mass function not supporting compound
hypotheses (i.e. a Bayesian mass function) results in a
Bayesian mass function. Therefore the belief intervals
reduce to 0. In the case where D contains only two el-
ements, the belief intervals of the combination of any
two mass functions are smaller than the original ones.
In the application at hand (Eqgs. (12) and (13)), the
combination of m; and m; results in a Bayesian mass
function. Therefore, the belief intervals reduce to 0.
This effect may be of great interest if several images
are combined. This means that each image makes the
global information more precise in such cases. How-
ever the conflict increases, making the global result
more questionable.

It should be noted that the measure of conflict is
not an absolute measure of conflict between the im-
ages but depends on the problem at hand, on the way
it is modelized in the DS framework, and on the way
masses are assigned (on the focal elements in particu-
lar). In Fig. 3, the conflict between m; (given by Eq.
(12)) and my (given by Eq. 13)) is presented as a
function of m;(C;) and m;(C3), along with the cor-
responding conflict image.

Several decision rules have been used in the liter-
ature. The most frequently used is the maximum of
belief among the simple hypotheses. The maximum
plausibility rule is judged as being the best by some
authors (Appriou, 1991; Appriou, 1993; De Maerte-
laere et al., 1993). The absolute rule has been used

Conflict

Fig. 3. Conflict between m; and m; (Egs. (12) and (13)) as
a function of m(C;) and my(C3), and conflict image for the
considered application (the range of conflict values has been
rescaled between O and 255, high grey-levels representing high
conflict values).

in (Suh et al., 1990). Other rules have been proposed
like max(Bel + Pls)/2 (Lee and Leahy, 1990) or
max (Bel(A) — Bel(A®)) (Wesley, 1986) (these two
rules are actually equivalent). It is remarkable that de-
cision rules are seldom compared. Always taking a
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decision in favour of a simple hypothesis actually re-
duces to making a crisp decision, and this does not al-
ways fit real situations in medical imaging, where pix-
els may belong to the union of classes and not to any
one class exclusively. But since we have Bel(A) >
Bel(d) forany d € A and Bel(D) = 1, making the de-
cision for compound hypotheses should be done with
great care. It could for instance be decided in favour
of a compound hypothesis if the evidences support-
ing simple hypotheses are not strong enough. In Fig.
4, decision has been taken following the maximum
belief over all hypotheses excluding D. Note that in
this simple case, the maximum of belief is equivalent
to the maximum of plausibility, since m; @& m; is a
Bayesian function. Therefore, using this decision rule,
the decision is taken for a simple hypothesis at points
where the other masses are null, and for a compound
hypothesis elsewhere. Thus we obtain very interesting
results, where the partial volume effect is detected as
a compound hypothesis, whereas areas without am-
biguity are well segmented. Fig. 5 shows the result
obtained by taking a decision in favour of the simple
hypothesis having the maximum belief.

The decision areas in Figs. 4 and 5 are obtained
in the following way. Let us denote m; (C;) = a and
m;(C3) = b, where a and b depend on grey-levels.
According to Egs. (12) and (13), we have

] .
my(C) =m(Cs3) =m (C;UCy) = 3“,

I -5
my(Cy) =ma(Cy) =ma(CLUCy) = 5

The combination by Dempster rule (Eq. (8)) pro-
vides the following results for the belief function (k
being the conflict):

_4(]—a)(1—b)
Bel(C)) = X =
_2a(1-10)
Bel(Cy) = S
Bel(C3)=M,
3(1 - k) (15)
20-»Q2+a
Bel(CLU ) = o1 = 1) )
_201-a)2+b)
Bel(C,UC3) = 9(1 — %) ,
Bel(C, U Cy) = 2Lat b= 2ab)

3(1 —k)

If the decision is taken only in favour of a sim-
ple hypothesis, C; will be chosen iff Bel(C;) >
max j«; Bel(C;). This is expressed as a function of a
and b as

Decision C; & a<04and b <04,
Decision C; < a>04and b < a, (16)
Decision C3 < b > 0.4and b > a.

This corresponds to the graph given in Fig. 5.
Analogously, if the decision is taken in favour of
any hypothesis excluding D, we obtain

Decision Cy,UC, <& a>band b <04,
Decision C,UC3; & a<band a <04,
Decision C; UC; & a>0.4and b > 0.4,

. (17)
Decision C;, & a=b=0,

DecisionC; < a=1,

Decision C; < b=1.

This corresponds to the graph given in Fig. 4.

3.4. Evidence weightings

In this section we address the problem of weighting
the masses with respect to each other, while keeping
their sum equal to 1. If masses are assigned to simple
hypotheses from probabilities (more precisely, from
posterior conditional probabilities), they are generally
deduced from frequencies (histogram for instance),
leading to conditional probabilities. They are then nat-
urally weighted by prior probabilities (and normal-
ization factor). If global ignorance is introduced as a
mass on D, the other masses are directly weakened by
a factor 1 — m(D).

When masses are assigned to compound hypothe-
ses, as in this application, the problem becomes more
difficult. We have tested different weighting factors
on mi(Cy) =m(C3) =m(CyUC3) and ma(Cy) =
my(C2) = my(C, U Cy), with respect to m; (C,) and
m;(C3). The computation of k shows no systematic
evolution of conflict. For instance, if m;(C3) is low,
the conflict decreases if the weight of evidence on
my (C7) increases (in this case, the two sources are
in better accordance in favour of C;, i.e. the ven-
tricle class). However, it was observed that attribut-



[ Bloch/Pattern Recognition Letters 17 (1996) 905-919 913

Decision /C3
°

°
° auc

c2

4

cucs

ciuc2

C1 (brain)

C2 (ventricles + CSF)
C3 (ALD)

ciucC2

ciucs

cucs

Fig. 4. Decision areas depending on m(C2) and mz(C3) and decision image, by taking the maximum of belief over all hypotheses

excluding D.

ing a mass on compound hypotheses (for instance on
m;(Cy U C3), if we know that source 1 is not able
to discriminate Cs in the brain (C)) areas) tends to
decrease the conflict. This explains why there is little
conflict in the pathological area in Fig. 3. In our opin-
ion, this is a very important behaviour of DS, which
highlights the interest of compound hypotheses.

The computation of decision areas (like in Figs.
4 and 5) shows that if the weight on m,(C3) and
m1(Cy) increases, the decision area in favour of C|
decreases (when the decision is made based on sim-
ple hypotheses). This has also been observed in the
decision images: Fig. 6 shows a zoom of the decision
images over simple hypotheses, where ventricles and
CSF are detected better if the weight on m;(C3) and
m1(C,) is increased. Also, some differences can be

observed on the small branches of ALD which are also
detected better. It is remarkable that areas where dif-
ferences occur are all classified in favour of compound
hypothesis C; U C; (i.e. brain or ventricles + CSF)
in Fig. 4 when decision is taken over all hypotheses
excluding D (respectively Cy UCj; for the branches of
ALD). With this decision rule, almost no differences
are observed in the decision images when weights
change. This supports the conclusion that compound
hypotheses are important. This decision rule is more
robust with respect to evidence weighting.

If the ambiguity is resolved by assigning masses
only to the corresponding compound hypotheses (on
m (C) U C3), with m(Cy) = mi(C3) = 0, and on
ma(CyUCy), withmy(Cy) = my(C,) =0) only a few
differences are observed (see Fig. 6). The decision
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C2 (ventricles + CSF)

C3 (ALD)

Fig. 5. Decision areas depending on 1) (C) and m)(C3) and decision image, by taking the maximum of belief over all simple hypotheses.

area in favour of C; is slightly increased and conflict
is reduced.

3.5. Global ignorance

In this section we introduce a global ignorance, i.e.
a mass on D, and test its influence. Thus the mass
functions are now

my(Cy) =m;(Cz) =m|(C, UC3),

mi(D) =1—m(Cy) —3m|(C), (18)
m)(C; UCy) =m(C,UCy) =0.

my(Cy) = mh(Cy) = mh(Cy U Cy),

my(D) =1 — my(Cs) = 3mb(Cy), (19)

mg(C, UCy) =m'2(C2 UCy) =0.

This model allows for the introduction of reliability
coefficients on each source, which serve as weighting
factors for weakening masses on all hypotheses ex-
cluding D. Denoting these reliability coefficients by
A; and Az in both images (0 < A; < 1) we thus ob-
tain, fori= 1,2,

m(A) = Am;(A) YA # D,

mi(D) =m;i(D) + (1 — &) (1 - m(D)) (20)

(withm{(D) =1 — A; if m;(D) =0).

The computation of conflict provides ¥’ = A Aqk,
and therefore the conflict decreases. On the contrary,
the ignorances on a hypothesis and its complement
increase, since we have
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Fig. 6. Decision by maximum of belief over all simple hypotheses, for increasing weight on m2(C3) and m (Ca) (3 first images), and with
mass only on the compound hypothesis (last image) corresponding to ambiguity between classes on each image (mz(C3) and m;(C7)
are kept unchanged).

VA C D, Since the result of the combination m; & my is no
Pls|(A) — Bell(A) = [Pls;(A) — Beli(A)] longer a Bayesian function, the decision based on (tihe
maximum of belief is no longer equivalent to the de-

+ (1= A [T = (Plsi(A) = Beli(A))) cision based on the maximum of plausibility. Indeed,

> [Plsi(A) — Bel;(A)]. some small differences have been observed in the de-
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cision images.

We observed very small differences in the decision
made based on the simple hypotheses. However, deci-
sions over all hypotheses excluding D are always made
in favour of a compound hypothesis, as expected, if
A; #* 1. In our application, we do not have strong ev-
idence for an image being more or less reliable than
the other one (in a global sense). Therefore assigning
a mass to m(D) is not very useful, and this is con-
firmed by the results. On the contrary, there is a strong
evidence of partial ignorance, depending on the im-
age, leading to ambiguities between classes, and this
has been introduced by masses on compound hypothe-
ses. Again, this supports the proposed way for assign-
ing masses, which relies on problem modelling, rather
than applying a classical probabilistic approach and
global reliability factors.

3.6. Partial volume effect between white matter and
ALD

The images used in our experiments correspond to
thick slices. Therefore, an important partial volume ef-
fect can be observed, in particular between white mat-
ter and ALD (see Fig. 1). We introduce this knowl-
edge as a mass value on C; U C3 in the second image,
which thus explicitly takes into account this partial
volume effect. Again, a trapezoidal function has been
used, whose parameters are determined based on the
histogram, as seen in Fig. 2 (an automatic determina-
tion of partial volume effect and associated mass func-
tion could be obtained for instance like in (Géraud et
al., 1995), using a morphological and statistical anal-
ysis of interfaces between tissues). The conflict is thus
reduced. The computation of m; & my shows that it
is no longer a Bayesian belief function. The decision
areas are changed, as seen in Fig. 7. The computation
of these decision areas is similar as the one explained
for Figs. 4 and 5. Here, the separation curves between
regions have no longer simple linear expressions.

The decision images in Fig. 8 show the decision
results obtained respectively on all hypotheses ex-
cluding D and on all simple hypotheses, first with
my(Cy U C3) = 0 and then with increasing value of
my(C1UC3). This figure shows that the decision on all
hypotheses includes all partial volume between ALD
and WM in C; UC3, and does not change if the weight
affected to m»(C) U C3) increases, proving the ro-
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Fig. 7. Decision areas depending on m(C2) and m(Cz) with
introduction of an increasing mass on C{UCj in the second image
(m3(C3) has to be less than | — my (C, U C3)). The dashed lines

represent the previous limits (see Fig. 5).

bustness with respect to evidence weighting. On the
contrary, more partial volume is included in ALD on
the decision images over all simple hypotheses. This
modelling allows us to mimic the way the physician
would make this decision, depending on his objective.
On the left most image, where the partial volume ef-
fect is not taken into account, the area classified as
ALD presents no ambiguity. On the right most image,
on the contrary all partial volumes are included in the
ALD (this actually corresponds to the segmentation
performed by the physicians), and the area classified
as brain includes no ambiguous region.
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Fig. 8. Decision by maximum of belief over all hypotheses excluding D (first row) and over all simple hypotheses (second row), without
mass on C; U Cz (left) and with introduction of a mass on C, U C; (representing the partial volume effect between brain and ALD) in

the second image, with increasing weight (middle and right).
4. Conclusion

The large diffusion of Bayesian techniques is due
to its sound mathematical bases and to the knowledge
issued from the wide experience in modelization or
learning. It can be used in complex inference networks
and the conditions for correct use are well known and
may be checked by statistical tests. But this approach
also suffers from severe limits. They have led to a
heated debate which will not be discussed here. Let
us just mention some arguments. The additivity prop-
erty, imposing that the probability of an event and of
its contrary must add to 1, may be too constraining in
medical imaging (Smets, 1978). The use of Bayesian
formalism necessitates the knowledge of many pieces
of a priori information about the problem at hand, and
we are often faced with the limitation of statistical
tests relating symptoms or observations to pathologies
and with the difficulty to have an estimation of prior
probabilities. Moreover, knowledge which cannot be
easily modelled by probabilities is often difficult to
introduce in the method. Another limit of probabilis-
tic approaches concerns both absence of information
and ignorance, which cannot be properly managed in
this framework (Shafer, 1976). Furthermore, impre-
cise information is not easily modelied by probabili-
ties, as opposed to uncertain information. Even sub-
Jjective probabilities, which are nothing but a formal
way, chosen by human beings, for representing events,

are not able to overcome all these drawbacks.

We outlined in this paper some features of
Dempster-Shafer evidence theory which can be very
useful for medical image fusion for classification,
segmentation or recognition purposes, and which
constitute advantages over classical probabilistic and
Bayesian approaches. They include the high flexibility
of the modelling offered by DS, taking into account
both imprecision and uncertainty, global ignorance or
source reliability, ability of sources to provide reli-
able information or not about each class of interest,
and prior information not necessarily expressed as
probabilities. These aspects have been illustrated on
an example in images of pathological brains acquired
with dual echo MRI, where none of the images pro-
vides a complete and reliable information, thus mak-
ing the fusion process necessary. In this example, the
advantages of DS approach have been demonstrated.

First of all, an adapted modelization is possible in
the DS framework, in particular we proposed to as-
sign masses to compound hypotheses representing the
unability of an image to discriminate between two
classes on one hand, and partial volume effect on the
other hand. Such a modelling already constitutes an
improvement over other applications of DS. The rea-
soning process proposed in this paper for choosing
the set of focal elements and for assigning masses is
very powerful as long as the number of classes re-
mains low. However, in cases with large numbers of
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classes, it would become too tedious, and unsuper-
vised methods are necessary, for instance like the one
proposed in (Mascle et al., 1995) for SAR imaging.
Since a reduced number of classes is used, computa-
tion is very fast (on a Sparc Center 2000). Again, in
cases with large numbers of classes, the computation
time increases exponentially in the worst case (if all
compound hypotheses are taken into account).

Secondly, even a rough definition of mass functions
proved to be sufficient and robust. Experiences with
more classes have been performed and provide good
results, for instance for discriminating grey matter and
white matter.

In addition, reliability of an image concerning each
class can be introduced by weighting accordingly the
corresponding masses, and its influence on the com-
bination and on the conflict has been tested.

Finally, the decisions have been taken according to
two rules: a classical one, where a decision is always
taken in favour of a simple hypothesis, and a second,
original one, where it can also be decided in favour
of a compound hypothesis. This second rule has sev-
eral advantages: it is robust with respect to evidence
weighting, as seen when testing different weights on
mass functions and on partial volume, and it fits re-
ality by highlighting in particular regions with partial
volume effect, and is adapted to the physician’s way
of reasoning.
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