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a b s t r a c t 

Adaptive optics imaging of the retina has recently proven its capability to image micrometric structures such 

as blood vessels, involved in common ocular diseases. In this paper, we propose an approach for automatically 

segmenting the walls of retinal arteries in the images acquired with this technology. The walls are modeled 

as four curves approximately parallel to a previously detected reference line located near the vessel center 

(axial reflection). These curves are first initialized using a tracking procedure and then more accurately po- 

sitioned using an active contour model embedding a parallelism constraint. We consider both healthy and 

pathological subjects in the same framework and show that the proposed method applies in all cases. Ex- 

tensive experiments are also proposed, by analyzing the robustness of the axial reflections detection, the 

influence of the tracking parameters as well as the performance of the tracking and the active contour model. 

Noticeably, the results show a good robustness for detecting axial reflections and a moderate influence of the 

tracking parameters. Compared to a naive initialization, the active contour model coupled with the tracking 

also offers faster convergence and better accuracy while keeping an overall error smaller or very near the 

inter-physicians error. 

© 2015 Elsevier B.V. All rights reserved. 
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1. Introduction 

This paper deals with the segmentation and the quantification

of retinal blood vessels in Adaptive Optics (AO) images. This recent

and non-invasive technique provides a new insight on retinal vessels

and their diseases. In comparison to classical eye fundus images, AO

images have a better lateral resolution [1] and allow us to visualize

microstructures such as photoreceptors [2] , capillaries [3,4] and vas-

cular walls [5] . This technique offers a new diagnosis and prognosis

investigation tool to study the diseases affecting the retinal blood ves-

sels of small diameter ( ≤150 μm), which are major causes of mor-

bidity and mortality, such as Hypertensive Retinopathy (HR) and

Diabetic Retinopathy (DR). Early treatment of these diseases is cru-

cial to avoid visual loss. This requires objective and accurate quan-

tification of vessel features, such as wall morphometry, which can be
✩ This paper has been recommended for acceptance by Anders Heyden. 
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erived from an automated segmentation of AO images. The measure

f wall thickness appears to be of great importance for physicians.

he automatic segmentation of AO images is the topic of this paper. 

ata and challenges. The images used in this study were acquired

ith a rtx1 camera [6] with flood illumination at 10 Hz using a

50 nm LED light source with a pixel resolution of 1.33 μm. Flood-

llumination systems usually produce noisy images making walls

ardly visible. A common solution is to geometrically align a stack

f images acquired in a short time (4.2 s, 9.5 frames/s) and average

hem to increase the signal-to-noise ratio [7] . In these images, blood

essels appear as dark elongated structures with a bright linear axial

eflection, over a textured background. These characteristics will be

xploited in the proposed method. Parietal structures (arterial walls)

ppear as gray lines along both sides of the lumen (blood column),

ith a typical thickness of about 15% of the latter [8] (see Fig. 1 ). 

Segmenting arterial walls in these images is however very chal-

enging for multiple reasons: (i) the background is highly textured,

ii) the lumens are globally dark but with significant intensity vari-

tion along them, (iii) the axial reflections may locally show discon-

inuities or poor contrast, (iv) the outer borders of walls are poorly

http://dx.doi.org/10.1016/j.patrec.2015.10.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2015.10.011&domain=pdf
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Fig. 1. Examples of images acquired by the rtx1 camera and a detailed view of them for an healthy subject (a,b) and a pathological one (c,d) [9] . 

Fig. 2. Flow diagram of the proposed approach. 
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ontrasted, (v) the vessel segments can be locally blurred due to the

eometry of the retina, and (vi) morphological deformations can oc-

ur in case of pathologies. 

ethod overview. In this paper, we propose a fully automatic method

or segmenting arterial walls in a selected region of interest 1 in the

veraged images produced by [7] . Fig. 2 outlines the different steps of

he proposed approach. To the best of our knowledge, this is the first

ethod addressing this problem in such images. 

To overcome the difficulties previously outlined, we propose a

trategy exploiting both geometric, radiometric and topological prior

nformation regarding vessels. More precisely, we model arterial

alls as four curves approximately parallel to a common reference

ine located near the vessel center (axial reflection). Once this line is

etected, the curves are simultaneously initialized as close as possi-

le to the borders of walls using a tracking procedure to cope with

orphological deformations along vessels (pre-segmentation). Then,

hese curves are more accurately positioned using a parallel active

ontour model where each curve evolves independently of the oth-

rs towards large image gradients under a parallelism constraint [10] .

his approach allows us to control the distance of the curves to their

eference line, without knowing it accurately as prerequisite. This

ork has also permitted the physicians to establish relationships be-

ween morphometric measurements and clinical parameters [8] . 

This paper is an extension of our previous publication [11] , con-

idering still healthy subjects but also pathological ones in the same

ramework. Additionally, we provide more details on the method

here some steps (such as the axial reflection detection) have been

mproved. The experiments and the evaluation have also been sub-

tantially expanded with the analysis of the robustness for detecting

xial reflections, the influence of the tracking parameters as well as

he performance of the tracking and the active contour model. This

ork is complementary to our previous publication [9] where curves

re linked to each others to improve the robustness of the model. 
1 In particular, we do not aim at segmenting the whole vascular tree. m
The rest of this paper is organized as follows. In Section 2 , we de-

ail the steps for detecting axial reflections inside vessels. Next, we

ntroduce in Section 3 the pre-segmentation and the active contour

odel for segmenting arterial walls. Finally, we evaluate the perfor-

ance of the method against manual segmentations in Section 4 and

iscuss perspectives in Section 5 . 

. Axial reflection detection 

All along this section, we consider 2D images as functions map-

ing pixels from �⊂ Z 2 into the interval [0, 1]. 

.1. Pre-processing 

The original image (see Fig. 3 a) is first pre-processed by applying a

edian filter with a square structuring element of size 5 followed by

 morphological closing with a circular structuring element of radius

, in order to enhance the axial reflection. We denote the resulting

mage by I P 1 (see Fig. 3 b). 

The source image is also denoised by a non-linear diffusion fil-

er [12] with the contrast parameter and the space regularization pa-

ameter respectively set to 0.2 and 2.0. We denote by I P 2 the resulting

mage (see Fig. 3 c). This filter allows us smoothing the vessel lumen

hile preserving the contrast along its edges. 

.2. Detection of bright elongated structures 

Two filters are sequentially applied on the pre-processed image I P 1 
n order to further enhance the bright elongated structures. The first

ne is a white top-hat with a binary mask whose radius has a fixed

ize of 1/3 of the axial reflection diameter. 2 We denote by I T 1 the top-

at image (see Fig. 3 d). The second one is a series of adapted linear

lters designed to estimate the local direction of white linear struc-

ures. The mean grey-level is calculated at every pixel ( i , j ) ∈ � along

egments of fixed length but with different orientations, centered on

t. The segment length is about 55 pixels ( � 73 μm ) and the orienta-

ion step is equal to �θ = 5 ◦ ( N = 36 filters). Let us denote by I 
(k)
LF 

the

mage output by the filter with orientation k �θ , k ∈ { 0 , . . . , N − 1 } ,
nd by I D the image storing the estimated direction: 

 opt (i, j) = argmax k I 
(k)
LF 

(i, j), 

 D (i, j)

= 

{
k opt (i, j) if 0 . 75 I 

(k opt (i, j ))(i, j )
LF 

> I 
((k opt (i, j)+ N 2 )mod N )
LF 

(i, j)
−1 otherwise , 

here x mod y is the remainder of x divided by y . In the latter equa-

ion, the threshold 0.75 enables us to distinguish the pixels within

inear bright features with well-defined local direction from all the
2 Despite the variety of images, this parameter appears to be stable in our experi- 

ents (including those presented in Section 4 ). 
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Fig. 3. Steps for axial reflection detection: the source image (a) is pre-processed in two different ways (b,c). Bright elongated structures are detected from (b) by top-hat (d) and 

adapted linear filters (e). From (d), these structures are extracted by hysteresis thresholding (f), filtered (g) and finally combined with those detected in (e) to give (h). Darkest areas 

are detected from (c) by k-means (i) followed by post-processing (j). From (h) and (j), the most relevant axial segments are kept (k,l) and combined with (j) to give (m). Final axial 

segments (i) and lumens (j) are labeled from (d), (l) and the pruned skeleton of (m). 
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others. From the top-hat image I T 1 , we compute a second image I T 2 ,

defined for any pixel ( i , j ) ∈ � as follows: 

I T 2 (i, j) = 

{
(I T 1 • Sl I D (i, j))(i, j) if I D (i, j) ∈ { 0 , . . . , N − 1 } 
I T 1 (i, j) otherwise , 

where • denotes the morphological closing operator and Sl k is a bi-

nary linear structuring element whose length and orientation are re-

spectively set to 21 pixels ( � 28 μm ) and k �θ degrees. Compared to

the image I T 1 , axial reflections show better properties in terms of con-

tinuity in the image I T 2 (see Fig. 3 e) but the lumens are more noisy. 

Afterwards, we binarize the image I T 1 using hysteresis threshold-

ing (lower and upper thresholds are set to 0.2 and 0.6, respectively)

and denote the resulting image by I 
(0 )
ES 

(see Fig. 3 f). Parts of the ax-

ial reflection of vessels are thus extracted, but also other bright ar-

eas of the textured background. Further processing steps are there-

fore needed to discard the undesired areas. For doing so, we propose

to keep the 10 largest connected components and denote the result-

ing binary image by I 
(1 )
ES 

(see Fig. 3 g). To retrieve the connectivity, a

geodesic reconstruction by dilation of the resulting components con-

tained in I 
(1 )
ES 

is performed in a binary mask I M 

that is dynamically

built from the image I T 2 as follows: 

I M 

(i, j) = 1 { I T 2 (i, j)>S M } ∨ I (1 )
ES 

(i, j ), ∀ (i, j ) ∈ �, 

with 

S M 

= 

⎛ 

⎜ ⎝ 

1 

�I (1 )
ES 

∑ 

(i, j)∈ �
I 
(1 )
ES 

=1 

I T 2 (i, j)

⎞ 

⎟ ⎠ 

− 0 . 4 , 

where 1 , � and ∨ , respectively denote the indicator function, the car-

dinality of a set and the logical OR operator. The threshold S M 

is com-

puted from the mean grey-level of the selected bright features in I T 2 ,

which is then lowered ( −0 . 4 ) in order to surely get the whole compo-

nents. We denote by I ES the final binary image of the axial reflection

components (see Fig. 3 h). 
.3. Detection of the darkest areas 

k -means classification ( k = 3 ) is performed on the pre-processed

mages I P 2 (see Fig. 3 i) and the cluster of lowest mean intensity value

rovides a first binary image of the darkest regions. It is then post-

rocessed with morphological operations to get the main connected

omponents corresponding to the dark areas of lumens. In particular,

e retain the components whose area is more than 1/5 of the largest

ne, do a morphological closing with a circular structuring element

f radius 15 and fill holes that are smaller than 10% of the area of the

omponent having the largest surface. We denote by I DA the resulting

mage (see Fig. 3 j). 

.4. Extraction of vascular segments by information fusion 

A first selection of vascular segments is performed based on a sim-

le measure of the tortuosity. Let us denote by I L ES the binary image

f a tested connected component of the image I ES . This component is

etained if 

�I L ES 

�(I L 
ES 

• S)
> 0 . 8 , (1)

here S is a binary disk whose radius is 15 pixels. Moreover, a seg-

ent of axial reflection must lie inside a dark area, and conversely,

 dark region of the lumen must contain at least one axial reflection

egment. We denote by I ES ′ the binary image made of the compo-

ents satisfying (1) (see Fig. 3 k) and I L 
ES ′ a tested component of it. The

omponent I L 
ES ′ is kept as part of an axial reflection segment if 

(I DA ∩ (I L ES ′ ⊕ S ′ )) > 

�I L ES ′ 

5 

, (2)

here ⊕ denotes the morphological dilation operator and S ′ is a bi-

ary disk whose radius is 15 pixels. Notice that the radius of S and

 

′ are determined according to the minimum size of the vessels that

re studied. We denote by I ES ′′ the binary image made of the compo-

ents satisfying (1) and (2) (see Fig. 3 l). Morphological operations are

pplied to I DA , including reconstruction by dilation with the marker

 ES ′′ , in order to get the final lumen mask I LM 

(see Fig. 3 m). 
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Fig. 4. Parametric representation of the model [11] . 
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.5. Segment labeling and reconnection of branches 

We first compute the skeleton of the image I ES ′′ to get the end-

oints of the retained segments (see Section 2.4 ). These end-points

re then reconnected using minimal path techniques [13,14] . These

echniques aim at extracting curves of minimal length, according to a

iemannian metric computed from the image and depending on the

argeted application. A minimal path C connecting two end-points p

nd q is obtained by minimizing the following functional: 

 [ C] = 

∫ q 

p 

P(C(s)) ds, 

here s denotes the curvilinear abscissa and P is a potential inducing

he metric, defined as 

(x) = w 1 (1 − I T M (x))2 + w 2 (1 − I SM 

(x))2 + w 3 , ∀ x ∈ �, 

here I T M is the averages of images I T 1 and I T 2 , I SM 

is the pruned skele-

on of the lumen mask I LM 

filtered by a Gaussian of standard devia-

ion σ and w 1 , w 2 , w 3 ∈ R 

+ ∗ are free parameters. These parameters

re empirically set to σ = 10 , w 1 = 0 . 5 , w 2 = 0 . 45 and w 3 = 0 . 05 . In

he latter expression, the first term should ideally be close to zero

long the axial reflection. The second term encourages the path C to

ass near the middle of the lumen mask I LM 

. The last term is a regu-

arization constant. The combination of the above criteria allows for

 good robustness against the variety of the encountered images. 

Two end-points form a candidate pair for reconnection if they be-

ong to the same connected component in the lumen mask I LM 

and

f they do not belong to the same connected component in the im-

ge I ES ′′ . The candidate pairs are then processed by decreasing order

f the Euclidean distance (to start with points that are close to each

ther) and reconnected using the above procedure. A new skeleton is

hen calculated, providing the axial reflection of the vessels, and the

essel branches are then labeled (see Fig. 3 n). The vessel branches

re individually regularized using a classical parametric active con-

our [15] with Gradient Vector Flow [16] . The lumen mask I LM 

is also

abeled such that every non-null pixel receives the label of the closest

ranch (see Fig. 3 o). 

Although the above described steps rely on a number of parame-

ers, we empirically found that they are all stable for the images stud-

ed (including those presented in Section 4 ). 

. Segmentation of arterial walls 

In what follows, we detail the procedure for segmenting arterial

alls of a single regularized vessel branch obtained at the end of the

xial reflection detection step (see Section 2 ). We denote this regular-

zed branch as the reference line V (s) = (x(s), y(s))T ∈ R 

2 of the ves-

el, parameterized by s . Once obtained, this line is considered to be

xed and will therefore no longer evolve in the subsequent steps. Ad-

itionally, we choose to model the artery wall by four curves { V k } 4 k =1 
pproximately parallel to the reference line V where V 1 , V 2 and V 3 , V 4 

epresent the inner and the outer borders of this wall, respectively.

hese curves are defined as follows: 
 

 

 

 

 

V 1 (s) = V (s) + b 1 (s)� n (s)
V 2 (s) = V (s) − b 2 (s)� n (s)
V 3 (s) = V (s) + b 3 (s)� n (s)
V 4 (s) = V (s) − b 4 (s)� n (s), 

here � n (s) ∈ R 

2 is the normal vector to the curve V and b k (s) ∈ R 

+ is
he local distance (or half-diameter) of any curve V k to the reference

ine V (see Fig. 4 ). This model establishes a direct correspondence be-

ween the points of any curve V k and those of the reference line V . The

egmentation aims at computing the half-diameters { b k } 4 k =1 
that are

he most suitable for the delineation of the artery wall. By making

trong (but realistic) assumptions, we first detail how these curves

an be simultaneously initialized using a tracking procedure to cope
ith morphological deformations. Next, we relax these assumptions

nd present the parallel active contour model used to position these

urves closer to artery walls. 

.1. Pre-segmentation 

For convenience, we first sample the reference line V into equally

paced points and denote by V (i) = (x(s = ih), y(s = ih))T ∈ R 

2 the

oordinates of the i th point along the reference line V , and by � n (i) ∈
 

2 the associated normal vector ( h > 0 denotes the sampling step, set

o 1 here). For every i ∈ { 1 , . . . , �V } , we sample the curves represent-

ng the artery walls by 
 

 

 

 

 

V 1 (i) = V (i) + b int (i)� n (i)
V 2 (i) = V (i) − b int (i)� n (i)
V 3 (i) = V (i) + b ext (i)� n (i)
V 4 (i) = V (i) − b ext (i)� n (i)

, s.t. b int (i) < b ext (i), (3) 

here b int , b ext ∈ R 

+ respectively denote the half-diameters of the in-

er and outer curves. Notice that the model (3) assumes that the in-

er (respectively outer) curves lie at the same distance from the ref-

rence line V (i.e. b 1 = b 2 = b int and b 3 = b 4 = b ext ). Additionally, we

ssume on both sides of V that the wall thickness is constant along

he vessels (i.e. b ext − b int = cst). Although these assumptions could

ppear to be somewhat strong, they are verified for a large number of

mages. 

More generally, the goal is to obtain a robust initialization of the

ctive contour algorithm, which in turn, will refine the curves posi-

ioning so as to reach a better accuracy. The pre-segmentation aims

t simultaneously computing the half-diameters b int and b ext . In this

ay, the robustness of the pre-segmentation against noise and poor

ontrast is substantially improved. For instance, this is typically use-

ul when some of the borders of the artery walls are low contrasted

ince we can rely on those which are well contrasted. 

Before presenting the pre-segmentation, we need to introduce

ome notations. First, we denote by I : � ⊂ Z 

2 → [0 , 1] a grayscale

mage and D �
 u I(p) the derivative of I in the direction 

�
 u at a pixel p ∈ �.

or a half-diameter b ∈ R 

+ , a point V ( i ) on the reference line V and a

indow of size (2 r + 1 ), we also define the mean local gradient along

he curves V 1 and V 2 by 

¯
 

int (b, i, r) = 

1 

2 (2 r + 1 )

r ∑ 

j= −r 

(D �
 n (i + j)I(V 1 (i + j))

+ D −�
 n (i + j)I(V 2 (i + j))), (4) 

nd the mean local gradient along the curves V 3 and V 4 by 

¯
 

ext (b, i, r) = 

1 

2 (2 r + 1 )

r ∑ 

j= −r 

(| D �
 n (i + j)I(V 3 (i + j))| 

+ | D −�
 n (i + j)I(V 4 (i + j))| ). (5) 

sing (4) and (5) , the pre-segmentation is based on a criterion to be

aximized, defined for every i ∈ { 1 , . . . , �V } by: 

(b i , b e , i, r) = D̄ 

int (b i , i, r) + D̄ 

ext (b e , i, r). (6)
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This criterion encourages inner and outer curves to be located near

large gradients in the image. Notice that (4) does not use absolute

values on directional derivatives unlike (5) . Increasing the window

radius r makes gradient measures more robust to noise but less re-

liable when strong deformations occur along vessels. This parame-

ter therefore requires a trade-off. In what follows, we detail the steps

necessary to estimate the half-diameters b int and b ext in (3) . 

Step 1 . Instead of jointly estimating constant half-diameters b int 0 and

b ext 0 as in [11] , we propose to estimate them as piecewise constant. In

this way, the estimated half-diameters are less prone to morpholog-

ical deformations while keeping a good robustness against intensity

changes along the artery walls. The robustness of the tracking (see

Step 3 below) is therefore improved, especially for pathological cases.

Let us denote a vessel segment k whose starting and ending indices

in the reference line are k start and k end , respectively. For each vessel

segment k , the half-diameters are estimated using the criterion (6) as

follows: 

(b int k 0 , b ext k 0 ) = argmax b i ,b e ∈ R + 
b i <b e 

1 

2 (k end − k start + 1 )

k end ∑ 

i = k start 

G(b i , b e , i, r). 

We then set b int 0 (i) = b int k 0 and b ext 0 (i) = b ext k 
0 , ∀ i ∈ { k start , . . . , k end } .

To speed up this step, the intervals for b i and b e are restricted

to typical values [8] . In accordance to morphometric features, the

piecewise constant estimation of the half-diameters is performed

on vessels segments whose length is 50 pixels ( � 66.5 μm ). Such an

approach can however fail to accurately segment the walls when

deformations occur inside the same vessel segment. Estimating

varying half-diameters is therefore essential to take into account

these deformations. 

Step 2 . We determine the position along the curves having the largest

contrast by maximizing the criterion (6) : 

i ∗ = argmax i ∈{ 1 , ... ,�V } G(b int 0 , b ext 0 , i, r). 

Step 3 . Finally, we jointly estimate varying half-diameters b int and b ext 

whose difference (the wall thickness) is constant along vessels. Again,

this is achieved by using the criterion (6) . These half-diameters are

constructed iteratively under a regularity constraint from each side of

the position i ∗ found at Step 2 and using the estimates b int 0 and b ext 0 

found at Step 1. Let us denote by ē = (b ext 0 (i ∗) − b int 0 (i ∗)) the wall

thickness at the position i ∗. For a fixed error e , the half-diameters are

constructed as follows: 

b int (i) = 

{ 

b int 0 (i ∗) if i = i ∗

argmax b E(b, b int (i − 1 ), i, e, r) if i > i ∗

argmax b E(b, b int (i + 1 ), i, e, r) if i < i ∗, 

b ext (i) = b int (i) + ē + e (7)

with 

E(b, b ′ , i, e, r) = αG(b, b + ē + e, i, r) − (1 − α)(b − b ′ )2 , (8)

and where α ∈ [0, 1] is a regularization parameter. The closer the

parameter α is to zero, the more the right term of (8) penalizes large

deviations of b int , and conversely. To get a more robust estimate of the

wall thickness ē + e, we propose to slightly vary e around ē and select

the error e ∗ achieving the maximum energy (8) summed along the

vessel: 

e ∗ = argmax e 
∑ 

i> 0 

E(b int (i), b int (i − 1 ), i, e, r). 

In the latter equation, b int and b ext are constructed using (7) and (8) .

The resulting half-diameters b int ∗ and b ext ∗ are those found for e ∗. It

is not difficult to see that the assumptions made at the beginning of

this section hold for these half-diameters. 
.2. Refined segmentation 

The model proposed by [10] simultaneously evolves two curves

nder a parallelism constraint. In what follows, we describe an ex-

ension of this model for extracting four curves V 1 , V 2 , V 3 and V 4 al-

ost parallel to a reference line V . Since this line is fixed, the energy

ecomes 

(V 1 , . . . , V 4 , b 1 , . . . , b 4 ) = 

4 ∑ 

k =1 

(E Image (V k ) + R(V k , b k )), (9)

here the term 

 Image (V k ) = 

∫ 1 

0 

P (V k (s)) ds, 

s designed to attract the curve V k towards large intensity gradients

see [15] ). In this context, the term E Image is based on the Gradient

ector Flow [16] . The role of the term R in (9) is to control the vari-

tion of the distance b k , thus imposing a local parallelism. [10] pro-

osed a function of the derivative of b k with 

(V k , b k ) = 

∫ 1 

0 

Q(s, b ′ k ) ds = 

∫ 1 

0 

ϕ k (s)(b ′ k (s))2 ds, 

here { ϕ k } 4 k =1 
are application-dependent parameters that locally

ontrol the strength of the parallelism of the curve V k with respect

o the reference line V . More precisely, the larger these parameters

re, the stricter the parallelism to the reference line V is. Unlike pre-

ious active contour methods embedding a parallelism constraint,

t is important to note that the distance between any curve V k and

he reference line V has not to be provided in the model. It is ad-

usted during the evolution process and can vary along boundaries. It

s worth noting that the assumptions made for the pre-segmentation

see Section 3.1 ) are relaxed, i.e. the curves can now evolve indepen-

ently of each other (instead of [9] where curves are linked to oth-

rs). Also, we want to mention that the energy (9) does not ensure

hat b 1 ( s ) < b 3 ( s ) and b 2 ( s ) < b 4 ( s ), ∀ s . However, we never encoun-

ered such a behavior in our experiments (including those presented

n Section 4 ). 

Since the energy (9) does not have crossing terms involving dif-

erent curves, the minimization can be independently done for each

urve V k . For any k ∈ { 1 , . . . , 4 } , the Euler–Lagrange equation ex-

resses the minimization of (9) with respect to b k ( s ) 

∂P (V k (s))

∂b k 
− d 

ds 

∂Q(s, b ′ 
k 
)

∂b ′ 
k 

= 0 , 

nd the evolution of the distance b k to the reference line V is driven

y 

 

�
 n , −∇P (V k (s))〉 − 2 

(
ϕ k (s)b ′′ k (s) + ϕ 

′ 
k (s)b ′ k (s)

)
= 0 . 

he latter equation is solved by discretizing it and introducing the

ime variable using standard numerical approximations of derivatives

central difference in space, backward difference in time). The reso-

ution of the above equations stops when 

ax 
s 

| b n k (s) − b n −1 
k 

(s)| ≤ ε, ∀ k ∈ { 1 , . . . , 4 } , 
here b n 

k 
(s) is the distance of the curve V k to the reference line V at

teration n and ε � 0 is an accuracy parameter. 

. Experimental results and discussion 

.1. Datasets 

A first set of 16 images from healthy and pathological subjects (de-

oted by D 1 ) is used for evaluating the axial reflections detection in

omplex situations (e.g. with several branches). Since well contrasted

essels are generally limited to small localized segments, these im-

ges are not adapted to the evaluation of walls. To this aim, a second
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Table 1 

Description of the measures used for comparing the number of reference lines in man- 

ual and automatic segmentations. 

True Positives (TP) Number of correctly matched reference lines between 

automatic and manual segmentations. 

False Positives (FP) Number of reference lines in automatic segmentation 

that do not match a manual one. 

False Negatives (FN) Number of reference lines in manual segmentation that 

do not match an automatic one. 

Table 2 

Performance of the axial reflection detection on the training set D 1 and the test 

set D 2 . False positives (FP), false negatives (FN), true positives (TP) and the rel- 

ative overlap (RO, in %) are provided (see Table 1 and Eq. (11) ) for each set of 

images. 

Number of branches FP FN TP RO 

Training set 39 3 1 38 92.38% ± 8.28% 

Test set 37 4 1 36 85.26% ± 20.01% 

m  
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et of images is used (denoted by D 2 ), distinct from D 1 , composed

f 14 and 17 images from healthy and pathological subjects, respec-

ively. D 2 is also used for evaluating the axial reflection detection. All

hese images were selected by physicians having several years of ex-

erience in the field of AO image interpretation to ensure the repre-

entativeness of the situations encountered during clinical routine, in

erms of noise levels, contrast and morphological deformations. 

.2. Axial reflections 

From each image of D 1 and D 2 , the axial reflections of the vessels

hose lumen is visible were identified by a physician by first inter-

ctively entering a few points along them and then applying a clas-

ical parametric active contour algorithm [15] with Gradient Vector

low [16] . 

When no bifurcations occur, the automatic detection of axial re-

ections (see Section 2 ) can result in fragmented reference lines due

o intensity changes along them. To not overpenalize the automatic

rocedure, we propose to put in correspondence these lines with

hose obtained semi-interactively by the physician. Let us denote by

 

A and V 

M a sampled reference line obtained from the automatic pro-

edure and from the physician, respectively. Then, we consider that

hese reference lines match with each other if V 

A overlaps V 

M by at

east 50% of its length, or more formally, if 

L(P roj(V 

A , V 

M ))

L(V 

A )
> 0 . 5 , (10)

here Proj ( V 

A , V 

M ) is a subset of points of V 

A such that each of them

as its nearest point in V 

M that lies at a distance less than or equal to

 pixels and L ( x ) denotes the piecewise linear approximation of the

ength of the line x , defined by 

(x) = 

�x ∑ 

i =2 

‖ x i − x i −1 ‖ 2 . 

otice that the points of Proj ( V 

A , V 

M ) in (10) can be unequally spaced

ue to the distance threshold. The latter permits us to tolerate an im-

erfect positioning between the reference lines V 

A and V 

M . Once the

atching is done between these reference lines and to give an idea

f the performance of the axial reflection detection, we propose to

ompare an automatic segmentation and a manual one by relying on
ig. 5. Good (half-left) and poor (half-right) results from Table 2 for the automatic detection

utomatic and manual segmentations, superimposed on the original image. White and cyan

ashed lines that are neither white or cyan correspond to correctly matched reference lines.
easurements based on (i) the number of reference lines detected

see Table 1 ) and (ii) their relative overlap. 

Given a set of automatically detected reference lines { V A k } n 
k =1 

that

atch with a manual reference line V 

M using (10) , this overlap (in

ercentage) is defined by 

O({ V 

A k } n k =1 , V 

M ) = 

(
1 − | L(V 

M ) − ∑ n 
k =1 L(V 

A k )| 
L(V 

M )

)
× 100 . (11)

he performance of the automatic axial reflection detection against

anual segmentations using the above measures is detailed in

able 2 and illustrated in Fig. 5 . To address the generalization capabil-

ty, the automatic procedure is optimized on a training set ( D 1 ). The

est set corresponds to D 2 . In Table 2 , we can see that the automatic

rocedure has a good robustness with very few false positives/false

egatives and a large mean RO , meaning that most of the axial re-

ections are detected and overlap well with the ideal ones. In par-

icular, the automatic procedure demonstrates its capacity to prop-

rly manage single or multiple artery branches (see Subjects 8 and

0). These results appear to be in the same range for the test set D 2 ,

eaning a good generalization of the automatic procedure. However,

e can notice that some images contain falsely detected axial reflec-

ions (see Subject 15). While undesired, these false detections remain
 of axial reflections for four distinct subjects. Top and bottom rows depict respectively 

 dashed lines correspond to missed and falsely detected reference lines, respectively. 
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Fig. 6. Sensitivity of the parameter α on both healthy and pathological subjects. The 

y -axis is the mean error of the measures δid , δod and δwt 1 , 2 with respect to the segmen- 

tations performed by the reference physician Phys Ref . 
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minor in practice and can be easily removed by medical experts in

our software. Also, we can notice that one axial reflection is missing

(see Subject 11). All these particular cases are depicted in Fig. 5 . In

particular, we observe that the detection of axial reflections is very

challenging for the Subjects 11 and 15 due to the large amount of blur

on some vessel segments. However, such vessels are not relevant for

physicians since the arterial walls are not visible. 

4.3. Artery walls 

From each image of D 2 , a single artery branch was manually seg-

mented two times by three physicians, with an interval of several

weeks between the inputs to attenuate the memory effect. To mea-

sure the accuracy of a segmentation A obtained with our approach

against a segmentation M realized by a physician, we use the abso-

lute relative error on the inner diameter, the outer diameter and the

wall thickness, respectively denoted by δid , δod and δwt 1 , 2 . For each

image, these measures are taken where no vessel bifurcation occur

and on the intersection between automatic and manual segmenta-

tions. Considering the wall thickness on each side separately ( δwt 1 

and δwt 2 ) instead as a whole (as previously done in [11] ) is more sen-

sitive but also more realistic. Notice that the measure δwt 1 , 2 is of great

importance for physicians. 

First, we estimate the intra-physician variability by computing the

mean and the standard deviation of the measures δid , δod and δwt 1 , 2 

for all images. To put in perspective the results and since arterial walls

are very difficult to delineate up to a pixel, we provide the mean and

the standard deviation of δid and δod when one of the two delineated

curves is shifted by one pixel all along it (see Section 3.2 ). For δwt 1 , 2 ,

the two concerned curves depend on which side of the reference line

the measure is performed. The resulting statistics are summarized in

Table 3 . As expected, the mean error on the walls thickness appears

to be much larger than for the inner and outer diameter due to its

high sensitivity. Also, we can also notice that the physician Phys 1 has

the smallest variability on both healthy and pathological subjects for

two measures out of three. Because this physician produced the most

stable segmentations, we decided to choose him as a reference for the

remainder of this evaluation and denote him by Phys Ref . 

In what follows, the influence of the parameter α involved in the

pre-segmentation step (see Section 3.1 ) is studied. In particular, the

window radius r is not considered here since our experiments reveal
Table 3 

Intra-physician variability with the absolute relative er

eter (OD) and the wall thickness (WT) (see δid , δod an

in percentages and averaged over vessel and images. Fo

parentheses are the errors made by shifting one of the f

Phys 1 / Phys 1 Phys 2 / Phys 2 

ID 3.74 ± 3.38 (1.03 ± 0.32) 4.09 ± 3.49

OD 2.56 ± 2.04 (0.75 ± 0.21) 3.52 ± 2.99

WT 20.33 ± 20.43 (6.01 ± 2.09) 27.52 ± 31.95

Table 4 

Robustness of the pre-segmentation on healthy and pathologica

cian Phys Ref . The parameter α∗ achieving the best accuracy on th

the images from the test set. Parallel snakes (PS) are then applie

(ID), the outer diameter (OD) and the wall thickness (WT) (see δ

also provided. For each measure, the numbers reported betwee

four curves by one pixel, all along it. 

Pre-segmentation ( α∗) Pre-se

Training set ID 5.62 ± 7.31 (1.13 ± 0.49) 5.33

OD 3.46 ± 3.45 (0.83 ± 0.31) 3.35

WT 16.60 ± 12.93 (6.74 ± 2.65) 16.49

Test set ID 5.97 ± 4.74 (0.98 ± 0.17) 5.15

OD 3.51 ± 2.77 (0.71 ± 0.11) 3.19

WT 19.14 ± 15.55 (5.60 ± 1.65) 18.11
hat this parameter has a limited influence on the results. We there-

ore choose to set r = 1 . We believe that this behavior is due to the

ominant role of (8) in the tracking. 

First, we study the sensitivity to the parameter α. Fig. 6 shows how

he parameter α affects the accuracy of the pre-segmentations com-

ared to those performed by the physician Phys Ref for both healthy

nd pathological subjects. Clearly, the segmentation error is stable

or α ∈ [0, 0.65] and relatively small around 0.95 on the interval [0.9,

]. 

Secondly, we study the impact of the parameter α on pre-

egmentations and segmentations. For doing so, we constitute a

raining set and a set using all the images from healthy and patholog-

cal subjects ( D 2 ). The training set is composed of one third of images

rom healthy subjects and one third of images from pathological sub-

ects, all randomly selected. The test set is composed of the remaining

mages. 

Then, we search for the value of the parameter α giving the best

ccuracy against manual segmentations from the physician Phys Ref on

he training set. More precisely, we choose the optimized value α∗ as

he one that minimizes the mean of δid , δod and δwt 1 , 2 along arteries

nd over images. We pre-segment the images from the test set using
∗ and apply the parallel active contour model (PS) (see Section 3.2 )

n the training and test sets using the following parameter values:

 = 0 . 1 and ϕ = 100 , ∀ k ∈ { 1 , . . . , 4 } . To estimate the accuracy of
k 

ror on the inner diameter (ID), the outer diam- 

d δwt 1 , 2 in the text). All measures are expressed 

r each measure, the numbers reported between 

our curves by one pixel, all along it. 

Phys 3 / Phys 3 

 (1.02 ± 0.31) 3.44 ± 2.84 (1.01 ± 0.31) 

 (0.76 ± 0.21) 3.03 ± 2.58 (0.74 ± 0.21) 

 (6.76 ± 3.08) 22.01 ± 22.33 (6.03 ± 2.37) 

l subjects against manual segmentations from the physi- 

e training set is computed and used for pre-segmenting 

d. The accuracy is then estimated on the inner diameter 

id , δod and δwt 1 , 2 in the text). The inter-physicians error is 

n parentheses are the errors made by shifting one of the 

gmentation ( α∗) + PS Inter-physicians error 

 ± 7.11 (1.13 ± 0.49) 4.09 ± 3.71 (1.13 ± 0.49) 

 ± 3.51 (0.83 ± 0.31) 3.24 ± 2.79 (0.83 ± 0.31) 

 ± 13.17 (6.74 ± 2.65) 21.84 ± 17.44 (6.75 ± 2.68) 

 ± 4.28 (0.98 ± 0.17) 4.07 ± 3.37 (0.98 ± 0.17) 

 ± 2.46 (0.71 ± 0.11) 3.34 ± 2.81 (0.71 ± 0.11) 

 ± 16.81 (5.60 ± 1.65) 23.42 ± 23.36 (5.65 ± 1.63) 
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Fig. 7. From top to bottom: good (upper-half) and poor (lower-half) segmentation results against the physician Phys Ref . First and third rows correspond to healthy subjects while 

second and fourth rows correspond to pathological ones. The left column shows pre-segmentations ( α∗) while the right column shows segmentations obtained by applying parallel 

snakes from them. Manual and automatic segmentations are drawn in purple and cyan, respectively, superimposed on the original images. The white dashed line is the reference 

line V while the white circle denotes the position along it from which the tracking operates in the pre-segmentation. The absolute relative error on inner diameter (ID), outer 

diameter (OD) and walls thickness (WT) (see δid , δod and δwt 1 , 2 in the text) is indicated below each image. Mislocations in manual and automatic segmentations are pointed by 

orange and green arrows in images, respectively. 
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ur approach on the two sets of images ( D 2 ), we again compute the

ean and the standard deviation of the measures δid , δod and δwt 1 , 2 

etween the resulting segmentations and those performed by the

hysician Phys Ref . The inter-physicians variability is also computed

or the same images by comparing the segmentations performed by
ll the physicians, except Phys Ref , with respect to those realized by

hys Ref . All these statistics are summarized in Table 4 . In this table, we

an see that the resulting measures appear to be approximately in the

ame range, meaning good generalization properties of the parame-

er α. The pre-segmentation offers a good accuracy when compared
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Table 5 

Comparison of the proposed pre-segmentation (computed using α∗ that gives the best accuracy against Phys Ref ) compared to a naive one (computed using α = 0 ) in 

terms of convergence speed and accuracy when coupled to parallel snakes (PS). The accuracy is estimated using the absolute relative error on the inner diameter (ID), 

outer diameter (OD) and the walls thickness (WT) (see δid , δod and δwt 1 , 2 in the text) against manual segmentations from the physician Phys Ref . For these measures, 

the inter-physicians error is also provided. The convergence speed is estimated by the number of iterations needed by the PS model to converge. 

Pre-segmentation ( α = 0 ) Pre-segmentation ( α = 0 ) + PS Pre-segmentation ( α∗) Pre-segmentation ( α∗) + PS Inter-physicians error 

ID 9.48 ± 9.01 7.78 ± 9.94 5.86 ± 5.70 5.21 ± 5.36 4.08 ± 3.48 

OD 6.34 ± 5.02 5.40 ± 5.68 3.49 ± 3.00 3.24 ± 2.84 3.31 ± 2.80 

WT 27.16 ± 14.90 30.15 ± 28.27 18.32 ± 14.80 17.59 ± 15.75 22.91 ± 21.64 

Iterations / 90.74 ± 50.23 / 59.03 ± 31.68 / 
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[  
to the inter-physicians error. When parallel snakes are applied from

these pre-segmentations, the accuracy is improved for all measures

on both sets of images. For two measures out of three, the accuracy

on the test set is very good given the inter-physicians error. A subset

of the results is given in Fig. 7 for two healthy subjects (first and third

rows) and two pathological subjects (second and fourth rows). Mis-

locations in manual and automatic segmentations are pointed by or-

ange and green arrows in images, respectively. On the first two rows,

we see that the pre-segmentation is robust to morphological defor-

mations and is able to delineate thin walls. However, the last row de-

picts an extreme situation where the pre-segmentation fails due to

the poor contrast on the inner borders of walls and a fake line in the

textured background that mislead the tracking procedure (green ar-

rows). Also, we believe that the least performance of our approach is

due to a lack of accuracy in the manual segmentations because artery

walls are difficult to delineate. This issue is shown in the two last

rows of Fig. 7 (orange arrows). It is worth noting that the walls are not

strictly parallel to the reference line for pathological cases. However,

we do believe that it still makes sense to consider an approximate

parallelism since its deviation remains moderate. While the model

imposes a local parallelism, it allows diameter variations at a larger

scale. 

Finally, Table 5 demonstrates, on both healthy and pathologi-

cal subjects, the benefit of using a pre-segmentation that follows

morphological deformations along vessels compared to a naive pre-

segmentation that does not. For the first one, we use the optimized

value α∗ (see above). For the second one, we use α = 0 that leads to

constant half-diameters along arteries. We then apply the PS model

on all these pre-segmentations and compare the required number of

iterations as well as the accuracy with respect to the manual segmen-

tations from the physicians Phys Ref . In words, the pre-segmentation

using α∗ both leads in average to a better accuracy for all measures

and diminishes the number of iterations by about 35%. 

4.4. Practical use 

We discuss below the potential usage of the method for a

non-specialist in image processing. To ensure a good accuracy of the

resulting segmentations, the method should be applied on a clean im-

age where the walls of arteries are well contrasted, i.e. visually distin-

guishable from surrounding structures. Whenever it is possible, it is

preferable to focus the analysis on a region of medical interest [8,17]

to limit the computation time and to avoid wrongly detected vessels

due to linear structures in the background. In case of failure, man-

ual corrections can be performed on axial reflections and wall detec-

tion, by manually initializing the snakes. Finally, note that the user

interface developed to address these tasks is easy to handle, stable

and reactive as acknowledged by the positive feedback we had from

the collaborating hospitals (Hôpital des Quinze-Vingts and Hôpital la

Pitié Salpétrière). The overall time for automatically delineating walls

of a single artery from a region of interest of 900 × 900 pixels is �
4 min on a PC with a Intel Core i7-3612QM @ 2.10 GHz. However, our

software has not been optimized and we do believe that this time

would be inferior by using a C implementation. 
. Conclusion 

In this paper, we have proposed an automatic method for delin-

ating the walls of retina arteries that apply on healthy and patho-

ogical cases. Noticeably, the results showed a good robustness for

etecting axial reflections and an overall error on arterial walls mea-

urements smaller or very near the inter-physicians error. For future

ork, we plan to evaluate the benefit of the coupled parallel snakes

odel introduced in [9] for different pathologies. Finally, notice that

his work is not limited to ophthalmology applications and could be

or instance applied to arterial hypertension in cardiology. 
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