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Abstract

This paper proposes a novel method based on Dempster–Shafer (belief function) theory for the detection of blotches in digitized
archive film sequences. The detection scheme relies on the fusion of two uncorrelated blotch detectors, one working in the spatial domain
and the other one in the temporal domain. The imprecision and uncertainty of both detectors have been modeled using belief function
theory, and their combination improves the decision, by taking into account the ignorance and the conflict between detectors. Quanti-
tative evaluation using real blotches ground truth shows that this combination scheme improves the global performance, and compares
favorably with two classical blotch detectors.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The last century has provided a large amount of audio-
visual documents, which are endangered because of the
smooth, but irreversible degradation of their support.
The main challenge for the traditional stakeholders is to
achieve the migration to digital formats and the long-term
preservation of these digitized documents (http://www.
prestospace.org/).

Digital restoration is a key step, because of the increas-
ing need in image quality required by the new digital high
definition (HD) broadcast formats (HDDVD, HDTV and
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HD cinema). However, digital restoration has to deal with
several (sometimes contradictory) constraints: improve the
visual quality of the restoration to deal with high-resolu-
tion images (HD, 2k or 4k), decrease the costs, which are
closely related to the automation of the process (operator
costs), to the hardware and its evolvability, and finally to
the speed of the restoration process. These constraints
should be fulfilled by the introduction of software solu-
tions, working on standard low-cost PCs, and by the
research of new, fast, adaptive, and high-level algorithms.

Film is the oldest and the most fragile moving picture
media. Film impairments are related to the storage condi-
tions (moisture, vinegar syndrome, dye fading), to impro-
per handling (scratches, dust, dirt), and to poorly
maintained equipment (scratches, unsteadiness).

In this paper we focus on the detection of the most fre-
quent defects, which are dirt and sparkle, grouped under
the term of ‘‘blotches’’. Dirt and sparkles are impulsive
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Fig. 1. Examples of blotched 16 mm color film images. Original images showing examples of blotches in the white boxes (top row), zoomed parts (4·)
scanned in RGB with motion vectors superimposed (middle) and in infrared (bottom). (a) Fast camera motion natural scene, (b) low motion but textured
natural scene, (c and d) low motion natural scenes.
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Fig. 2. Main steps of the fusion process: blotch detection by the temporal blotch detector D1 (taking three consecutive images I(t � 1), I(t) and I(t + 1))
and by the spatial blotch detector D2, numerical output modeling by mass functions m (corresponding to hypotheses ‘‘defect’’ (denoted by D), ‘‘no-defect’’
(denoted by D) and ‘‘ignorance’’ (denoted by D [ D)), masses combination, and decision.
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(single frame) defects. Dirt can be seen as opaque or semi-
transparent clusters with random size, shape and position,
caused by dust and dirt stuck on the film, while sparkle are
white clusters, caused by the local abrasion of film gelatin.

Fig. 1 illustrates some examples of blotches on 16 mm
color film, scanned both in RGB and in infrared. The first
image shows an opaque blotch and global motion, the sec-
ond and third ones show opaque blotches and local
motion, while the fourth image shows opaque and semi-
transparent blotches with low motion.

In this paper, we propose a method based on the Demp-
ster–Shafer (DS), or belief function, fusion framework
(Shafer, 1976; Smets, 1990) for optimizing the combination
of two blotch detectors. It extends the preliminary
approach presented in (Tilie et al., 2006). In particular,
the mass function estimation in now automatized, and a
more extensive performance evaluation is performed. The
schema in Fig. 2 shows the processing flow: imprecision
and uncertainty of each detector modeling followed by
their combination in order to take the best decision given
this partial information. The fusion also provides a risk
index, allowing a variable degree of processing.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of the previous blotch detection
methods, while Section 3 describes two blotch detectors
that we combine in Section 4. Section 5 shows experimental
results, and conclusions are presented in Section 6.

2. Previous works

Dirt and sparkle detection often relies on the assump-
tion of smoothness of motion in the sequence, and on tem-
poral and/or spatial inconsistency of defects. Usually, the
image is filtered in the temporal and/or spatial domain,
and the defects are detected as the thresholded difference
between the original frame and the filtered one.
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Temporal detection methods have been used early in the
problem of dirt concealment (Storey, 1985). Basically, these
methods are based on the computation of the displaced
frame difference (DFD), which is the difference between
two consecutive motion compensated (MC) frames. Koka-
ram introduced the spike detection index (SDIa) (Kokaram
and Rayner, 1993) which computes the minimum between
backward and forward DFD, and SDIp that reduces the
number of false alarms, by introducing an additional con-
straint that requires the signs of both DFDs to be identical
before a blotch can be detected. In a similar way, Schal-
lauer et al. (1999) introduced the constraint that the abso-
lute differences of previous and next MC frames have to be
below a threshold.

In spite of good global performances, these methods
have high computational costs (because of motion estima-
tion), and produce false alarms when motion estimation
fails, i.e. for so-called ‘‘pathological motion’’ (Rares
et al., 2001) (occlusions, uncovering, intermittent motion,
erratic motion, motion blur, large displacements,
transparency).

Spatial filtering methods assume spatial inconsistency of
defects. Median filters have been extensively used because
of their ability to eliminate outliers while preserving edges.
Nieminen et al. (1987) proposed a multi-level median filter
(MMF), which was implemented as the median of the
outputs of several median filters with different topologies.
Hardie et al. introduced the Lower–Upper–Middle
(LUM) filter (Hardie and Boncelet, 1993), in which the out-
put is assigned to the upper or to the lower local median
values computed on an upper and a lower intervals defined
by two parameters. Buisson et al. (1997) used a top hat
morphological filter, because of its ability to detect specific
patterns, such as dust and hair.

However, these spatial filters provide false alarms on
sharp and textured regions, i.e. when image spatial patterns
look like defects patterns, and fail to detect blotches
exceeding the filter size.

Spatio-temporal methods extend spatial filtering to the
temporal domain, often using MC frames. Arce (1991)
introduced a multi-stage order statistic filter (MOS) as
an extension of the min/max MMF filter to three (non-
MC) frames. In the same manner, Alp et al. (1990) pre-
sented the ML3D filter, which uses median operations
and provides, according to Kokaram (1993), better
impulse noise rejection than that proposed by Arce.
Kokaram (1993) improved ML3D filter (ML3Dex) by
using three MC frames. Nadenau and Mitra (1996) pre-
sented the rank order detector (ROD), which compares
the rank ordered differences between the current pixel
and six neighbors (from the previous and next image)
against three thresholds. Roosmalen (1999) proposed a
simplified ROD (SROD) by using a single threshold for
the maximum distance between the current pixel and the
minimum or maximum of the neighbors. Gangal et al.
(2004) improved ROD performances by robust motion
estimation based on seven motion vectors computation,
and extending ROD to five MC frames. More recently,
they presented a fuzzy pre-filtering, followed by a less
expensive motion estimation based on three motion vec-
tors computation, more robust with respect to impulsive
blotches, that improves blotch reconstruction (Gangal
and Dizdaroglu, 2006). Unfortunately, no evaluation of
the improvement in blotch detection is reported in the
article. Buisson et al. (1997) presented a hybrid detector,
based on the combination of SDIa with a spatial morpho-
logical filter, while Decenciere Ferrandiere and Serra
(1997) extended the class of morphological area filters to
the spatio-temporal domain.

An original adaptive filter was recently presented by
Hamid et al. (2003). A soft morphological filter (SMF)
works on three non-MC images, and its size and shape
parameters are learned using a genetic algorithm, super-
vised by both artificially corrupted and uncorrupted
sequences. This filter gives less false alarms than LUM
and ML3Dex for fast moving objects, but the learning step
is very slow, and the filter parameters should be adapted to
each new sequence.

Probabilistic methods have also been proposed, using a
Bayesian framework and Markovian models for the detec-
tion of spatial and temporal discontinuities on MC frames
(Bornard, 2002; Kokaram, 1998; Morris, 1995). These
methods perform well in real situations, but have a high
computational cost, which become untractable when the
neighborhood order exceeds first or second order (Bor-
nard, 2002). Bornard (2002) extended the Markov random
fields MRF model to five MC frames, and introduced an
interpretation step (based on spatio-temporal redundancy
of false alarms), that reduced the number of false alarms
within pathological motion areas, but also reduced the
number of good detections.

Spatio-temporal methods achieve better performance
than spatial or temporal methods alone. However, the
computational load is higher, and often false alarms due
to ‘‘pathological motion’’ persist, which can be seen as a
consequence of a sub-optimal combination.

A novel spatio-temporal method for dirt detection in
color films has been introduced in (Ren and Vlachos,
2007). This method combines confidence extracted from
the color of previous/next no-motion compensated frames
and local spatial region growing, to reduce the number of
false alarms. This approach has a low complexity because
of the lack of motion compensation, but for the same rea-
sons it seems to be applicable to sequences with limited
local motions only.

A better modeling of the combination of these detectors
should improve the quality of detection and decrease the
computational time. Temporal detection should be used
to leave the ambiguity between dirt clusters and objects
of a similar spatial structure, while spatial detection should
be used to confirm temporal detections, or to replace these
ones when motion estimation fails.

The fusion method proposed in this paper exploits these
ideas.
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3. Blotch detectors

Two blotch detectors have been chosen, providing
redundant and complementary detections. Belief function
theory only assumes detectors cognitive independence.
Cognitive independence is weaker than the statistical inde-
pendence, and only assumes that the detectors have no
information about each other (Shafer, 1976). The cognitive
independence of these detectors can be assumed, since
detectors act in two different domains (one detects tempo-
ral discontinuities, while the second detects spatial discon-
tinuities) and have no information about each other. Then
it makes sense to use a non-idempotent operator, as the
classical conjunctive belief function combination, to benefit
from its reinforcement effect.

Both detectors are designed to work on intensity images,
as many archive films are black and white. For color films,
intensity is computed as the Y channel in the YCbCr color
space.
3.1. Temporal detector

The temporal detection is achieved by a SROD detector
(Roosmalen, 1999), working on three frames. For a given
frame to be processed, the previous and next frames can
be motion compensated, using the well known phase corre-
lation algorithm (PhC) (Thomas, 1987). The SROD detec-
tor labels a pixel in the current frame as ‘‘blotched’’, if its
intensity value is an outlier of the intensity distribution of
its neighbors taken in the MC previous and next images
(Fig. 3).

The ‘‘outlierness’’ of a pixel in the current image is com-
puted as the difference between the minimum of the
distribution and the pixel value for a black outlier, or as
the difference between the pixel value and the maximum
I(t–1)
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Fig. 3. Principle of SROD: SROD is the difference of intensity between a
pixel in the current image and the minimum/maximum of the distribution
of its neighbors in the previous and the next images.

Fig. 4. Temporal detections of blotches, corresponding to the images in Fig. 1.
detected, while remaining detections are caused by pathological motion.
of the distribution for a white outlier. Let rmin = mink=1. . .N(rk)
and rmax = maxk=1. . .N(rk), where N is the number of neigh-
bors of a pixel x and rk the intensity value of the kth neigh-
bor (from the previous/next image). The detector output at
pixel x is then defined as:

SRODðxÞ ¼ maxf0; rmin � IðxÞ; IðxÞ � rmaxg; ð1Þ
where I(x) is the value of the current pixel x.

This detector has one free parameter S, which is the size
of the square neighborhood in the previous and next

images where S ¼
ffiffiffi
N
2

q� �
. This parameter should be larger

than the residual motion between two consecutive images,
but small enough to avoid the loss of sensibility around
edges.

Fig. 4 shows examples of opaque and semi-transparent
blotches well detected by our temporal detector, and an
example (in the first image) of false alarm, caused by two
strong (backward and forward) DFDs, due to the motion
estimator inability to correctly estimate (backward and for-
ward) fast motion.

3.2. Spatial detector

In order to decrease the number of false alarms provided
by the previous detector, we introduce a second detector,
acting in the spatial domain. As blotches are often local
extrema with sharp edges in the images, we assume that
they can be detected by a morphological filter.

Initially, a top hat morphological filter using a non-flat
large square structuring element with a tunable profile
(Buisson et al., 1997) has been implemented. It provides
good results for the detection of sharp dust, but its profile
is not well adapted to the detection of large and semi-trans-
parent blotches, which are frequent on 16 mm film (see
Fig. 1). As the performances of these morphological filters
are limited by the great variety of blotch shapes and sizes,
we have relaxed the constraints on the blotch shape to a
single constraint on the blotch area.

Area black (white) top hat morphological filters are the
residuals of the morphological area opening (closing) oper-
ators introduced by Vincent (1993). In contrast with
classical mathematical morphology, area operators are
insensitive to the actual shape of detected regions. Area
opening (closing) operator cuts (fills) a peak (gap or valley)
until the area of the cuts (filled) peak (valley) exceeds a
given area value. Image structures which do not satisfy
this increasing criterion on area are left unchanged.
White boxes show examples of semi-transparent and opaque blotches well



Fig. 5. Spatial detection of blotches, corresponding to images in Fig. 1. White boxes show examples of semi-transparent and opaque well-detected
blotches. Remaining detections are false alarms caused by objects having spatial patterns close to blotches ones.
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Morphological area opening and closing have been effi-
ciently implemented using Tarjan’s union-find algorithm
(Wilkinson and Roerdink, 2000), with a reduced computa-
tional cost.

This detector has one free parameter k, which corre-
sponds to the maximal area allowed for the detected
regions. Its value can be considered as a prior knowledge,
which depends on the film size (16 mm or 35 mm), on the
scanning resolution (SD or HD), and on the blotches size
which is related with their type (dust, dirt, sparkle). Given
our test footage (16 mm scanned at standard resolution),
we have fixed this parameter to a large value (500 pixels),
to allow the detection of defects of various sizes, especially
large semi-transparent blotches and elongated structures
(hair).

Fig. 5 shows examples of blotches well detected by our
spatial detector, examples of semi-transparent blotches
partially detected because of their low contrast, and exam-
ples of false alarms, due to spatial image patterns having a
size close to blotches size.

However, we can see that good detections confirm the
ones obtained with the temporal detector, while false
alarms are globally different in the two detections results.
This way, redundant detections reinforce the detection,
while false alarms are detected as a ‘‘conflict’’ between
detectors.
4. Data fusion

In order to take advantage of the redundancy and com-
plementarity of both detectors, we combine their outputs in
the framework of the belief function (or Dempster–Shafer,
DS) theory, which easily handles the concepts of uncer-
tainty, ignorance and imprecision of data.
4.1. Belief structures

We assume that each pixel can be explained by two
mutually exclusive and exhaustive hypotheses: ‘‘defect’’
denoted D or ‘‘non-defect’’ denoted D. The frame of dis-
cernment is denoted by H:

H ¼ fD;Dg: ð2Þ

The set of subsets of H is then:

2H ¼ f;; fDg; fDg;Hg: ð3Þ
The DS theory introduces the concept of disjunction (or
compound hypothesis), to allow the representation of the
ignorance of a source of information (i.e. if the source can-
not distinguish between hypotheses), by assigning the cor-
responding belief to the union of these hypotheses. A
special case is the total ignorance (in the case of missing
data), which can be modeled by assigning a non-null belief
to the union of all hypotheses (H). In our two-class appli-
cation, the only compound hypothesis, denoted D [ D, is
equal to H, and accounts for the detector inability to clas-
sify a pixel as D or D near the boundary between classes.

In the DS theory, each hypothesis is associated with a
mass in the interval [0,1]. Masses corresponding to hypoth-
eses in 2H should fulfill the normalization constraint:

mð;Þ ¼ 0;P
A22H

mðAÞ ¼ 1:

8<
: ð4Þ

In our application, for each pixel, each detector provides a
numerical value in the interval I = [0,255]. Hence each
value of m(A) is actually a function defined on I, i.e. depend-
ing on the strength of the detection result. A function on
the image space can also be derived, by assigning to each
pixel the value of m(A) derived for the value of the detec-
tion at this pixel. We will denote indifferently m(A)(x) or
m(A)(f(x)) where f(x) denotes the value in I at pixel x.

The definition of the mass functions is not straight-
forward, because no general method exists. The main prob-
lem comes from the estimation of masses of compound
hypotheses. Methods based on probabilistic schemes have
been introduced by Appriou (1993) or Dromigny-Badin
(1998). They assume that the conditional distributions of
probabilities p(f(x)jA) (where f(x) is the detector output
for the pixel x) are known. In our application the ground
truth of defects is available, and the conditional probabili-
ties p(f(x)jD) and pðf ðxÞjDÞ can be estimated (on a ‘‘learn-
ing’’ set) by the normalized histograms of the detectors
outputs, with respect to the corresponding binary ground
truth masks (see Section 5).

Appriou’s models assume the knowledge of a set of dis-
counting parameters specific to each detector and to each
hypothesis. As detectors reliabilities are difficult to estimate
in our application, we chose Dromigny’s method.

In this method, compound hypotheses have been defined
using a significance criterion for the conditional probabili-
ties (a threshold, arbitrary set to a low value (10�6)). Sev-
eral situations can occur, as described next.
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First, if none of the conditional probabilities is signifi-
cant, the full mass is assigned to H:

mðHÞ ¼ 1: ð5Þ
Second, if only one conditional probability p(f(x)jA) is sig-
nificant, the mass on A is given by the value of the condi-
tional probability:

mðAÞðf ðxÞÞ ¼ pðf ðxÞjAÞ: ð6Þ
Finally, if several conditional probabilities are significant,
disjunctions of hypotheses are taken into account. In our
two-class application, masses are given by:

mðfDgÞðf ðxÞÞ ¼ maxð0; pðf ðxÞjDÞ � pðf ðxÞjDÞÞ;
mðfDgÞðf ðxÞÞ ¼ maxð0; pðf ðxÞjDÞ � pðf ðxÞjDÞÞ;
mðfD [ DgÞðf ðxÞÞ ¼ minðpðf ðxÞjDÞ; pðf ðxÞjDÞÞ:

8><
>:

ð7Þ

For each case, masses are then normalized, to achieve the
normalization constraint (Eq. (4)).

Fig. 6 shows the empirical distributions of probabilities,
conditionally to hypotheses D (p(f(x)jD)) and D ðpðf ðxÞj
DÞÞ, corresponding to the numerical outputs of (motion
compensated) temporal and spatial detectors. These condi-
tional distributions have been obtained from normalized
occurrence frequencies of the detector output conditionally
to ground truth masks on a ‘‘learning’’ sequence.
Fig. 6. Distributions of the probabilities conditionally to hypotheses D and D.
only the values in the interval [0,30] have been shown.

Fig. 7. Conditional distributions of probabilities, fitted by a non-l
In order to eliminate the histogram noise, conditional
probabilities have been smoothed by a non-linear function.
Several functions have been tested, and we found that a
sum of two decreasing exponentials gave the best fitting:

p̂ðf ðxÞjAÞ ¼ C1 expð�k1xÞ þ C2 expð�k2xÞ: ð8Þ

The linear parameters C1,C2 and non-linear parameters
k1,k2 have been estimated by the Nelder-Mead simplex
optimization method (Lagarias et al., 1998) for A = D

and A ¼ D and for the two detectors. Fig. 7 shows the con-
ditional probabilities fitted by this function.

We can see that high pðf ðxÞjDÞ values correspond to
lower detection values, while p(f(x)jD) values are distrib-
uted along higher detection values. However, some signifi-
cant p(f(x)jD) values occur for lower detection values,
because some defects have been missed or weakly detected.
Also, the distribution of pðf ðxÞjDÞ of the temporal detector
is sharper than the corresponding distribution of the spatial
detector, because the second detector generates more false
alarms than the first one.

Fig. 8 shows the set of mass functions computed for
each detector, according to the previous method.

We can see that the ignorance is maximum between the
D and D hypotheses, and decreases to zero with the increas-
ing temporal detector output values, while it decreases
Left: temporal detector; right: spatial detector. For visualization purposes,

inear function. Left: temporal detector; right: spatial detector.



Fig. 8. Mass functions associated to the temporal detector (left) and to the spatial detector (right), function of the detectors output values.
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more slowly for the spatial detector, because this detector is
less accurate.

Given the two sets of mass functions, we can now asso-
ciate to each pixel two sets of masses (corresponding to
temporal and spatial detections).

4.2. DS combination

Previously defined masses can now be combined pixel-
wise, using the unnormalized combination rule (Shafer,
1976; Smets, 1990):

m12ðAÞ ¼
X

B\C¼A

m1ðBÞm2ðCÞ: ð9Þ

The intersection table corresponding to this combination
rule is illustrated in Table 1. This table also shows the prin-
ciple of the DS fusion: the transfer of mass from the com-
bined hypotheses to simple hypotheses, in order to reduce
the ignorance.

This combination rule assigns a mass to the empty set
(m12(;)), which is interpreted as a measure of the conflict
between detectors. This conflicting mass can be reassigned
to other hypotheses, and the employed method is highly
dependent on the problem modeling.

Several solutions have been proposed for the conflict
management (Lefevre et al., 2002). If we consider that
detectors are perfectly reliable, we can use Smets’ rule of
combination (Eq. (9)), i.e. without re-assigning the conflict-
ing mass (open world assumption), or the Dempster’s rule
which corresponds to Eq. (9) normalized by 1 � m(;)
(closed world assumption). However, for highly conflicting
sources, normalization hides the conflict, which is a prob-
lem in some applications.

If we consider that detectors are not reliable, we can
discount the detectors provided that we can estimate their
Table 1
Intersections between the sets of hypotheses of temporal and spatial
detectors

D D H

D D ; D

D ; D D
H D D H
reliability (Shafer, 1976), or use a disjunctive rule of com-
bination (Lefevre et al., 2002; Smets, 1990), which has
the drawback to increase the ignorance.

In our application, we consider that the frame of dis-
cernment (see Section 4.1) was correctly modeled, but
sometimes detectors fail (closed world assumption). For
example, the first detector may fail for complex motions,
while the second detector fails for texture patterns which
are similar to blotch patterns.

Thus, masses should be discounted by the reliability of
each detector. Unfortunately, the reliability of the temporal
and spatial detectors cannot be estimated as one global
factor.

For these reasons, we chose Dubois and Prade (1988)
rule of combination, where the conflicting mass of two sub-
sets B and C is assigned to their union (compound hypoth-
esis) B [ C:

mDðB [ CÞ ¼ m12ðB [ CÞ þ
X

B\C¼;
m1ðBÞm2ðCÞ: ð10Þ

We can notice that in our two-class model, Dubois’s rule
simplifies to Yager (1987) rule, which assigns the conflict-
ing mass to the whole set H (total ignorance):

mY ðHÞ ¼ m12ðHÞ þ m12ð;Þ: ð11Þ

Yager’s rule of combination merges the total ignorance and
the conflict, which can raise some semantics problems in
some applications. However, this allows defining a single
index of ignorance, as long as we consider that the conflict
is due to the fact that we ignore which detector is
unreliable.
4.3. Decision rule

The decision is usually based on the belief and plausibil-
ity functions, which are the minimum and the maximum of
uncertainty of a given hypothesis A:

BelðAÞ ¼
P

B�A;B 6¼;
mðBÞ;

PlsðAÞ ¼
P

B\A6¼;
mðBÞ:

8>><
>>:

ð12Þ



Fig. 9. Ignorance (m(H)) corresponding to images in Fig. 1.

Fig. 10. Decisions corresponding to images in Fig. 1. (top) Low risk decisions (Th = 0.1), (bottom) high risk decision (Th = 0.6).
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The length of the belief interval [Bel(A),Pls(A)] can been
interpreted as the imprecision about the uncertainty value,
and in our two singleton hypotheses case it is equal to
m(H).

The decision rule we have chosen selects the singleton
hypothesis which corresponds to the maximum of belief
if the total ignorance is lower than a given threshold Th;
otherwise, the decision is H (total ignorance):

D if BelðDÞ > BelðDÞ and mðHÞ 6 Th;

D if BelðDÞ > BelðDÞ and mðHÞ 6 Th;

H else:

8><
>:

ð13Þ

Fig. 9 shows the ignorance attached to each pixel. The
ignorance results from the ignorance masses attached to
each detector in the modeling step, and from the mass of
conflict computed in the combination step. The ignorance
mass has been used to provide a ‘‘risk of decision’’
index, which weights the decision in favor of simple
‘‘defect’’ or ‘‘no-defect’’ hypotheses, against the ‘‘igno-
rance’’ hypothesis.

Fig. 10 shows the decisions corresponding to this risk
index thresholded with Th = 0.1 and Th = 0.6. We can
see that redundant detections of semi-transparent blotches
have been classified as ‘‘defects’’, and that (non-redundant)
false alarms provided by spatial or temporal detectors have
been rejected in the ‘‘ignorance’’ class, because of the con-
flict between detectors.

Fig. 10 also shows the trade-off between good detections
and false alarms resulting from this risk index thresholding:
low values (Th = 0.1) ensure ‘‘sure’’ (low risk) decisions,
but many pixels are rejected in the ‘‘ignorance’’ class, which
decreases the number of false alarms and the number of
good detections. A higher value (Th = 0.6) enforces the
decision in favor of D and D hypotheses, which increases
the number of good detections, but also increases the num-
ber of false alarms.

Finally, to remove the isolated pixels, a morphological
opening with a disk of radius 1 as structuring element
has been performed on the binary mask corresponding to
decision D. Resulting masks will be evaluated in the next
section, using the ground truth extracted from infrared
images.
5. Experimental results

The performance of our blotch detection method has
been compared with the performance of two classical
blotch detection algorithms, using the ground truth of four
test image sequences.
5.1. Test sequences

Test sequences have been scanned by a flatbed scanner
for film with an additional infrared channel, and resampled
to comply with video standard broadcast resolution
(720 · 576). Archive materials are 16 mm color films from
national French TV archives, and have been chosen to
show challenging situations illustrating the diversity of
defects (blotches, sparkles, scratches), as well as the diver-
sity of video content (fast local and global motion, occlu-
sion, small random patterns) (cf. Fig. 1).

The first sequence, called ‘‘Art’’ (83 images) shows an
indoor scene, with strong camera motion and static back-
ground. This sequence is quite difficult because of strong



S. Tilie et al. / Pattern Recognition Letters 28 (2007) 1735–1746 1743
moving texture in the foreground, and patterns size similar
to blotches size. The rate of corruption (estimated as the
ratio between the number of corrupted pixels and the total
number of pixels in the sequence) is low (0.00027) with
respect to other sequences, and defects are medium and
small (about 150 pixels) opaque and semi-transparent
blotches along with thin structures called ‘‘hair’’.

The second sequence, ‘‘Cigarette’’ (269 images) shows
an outdoor scene, with small moving textures in the back-
ground, and moving persons in the foreground. The diffi-
culty here comes from the fact that blotches are small
and hardly visible, because of the dark textured back-
ground. The rate of corruption is higher (0.00038) and
defects are large–medium (about 400 pixels) opaque and
semi-transparent blotches, hair and persistent scratches.

The third and fourth sequences, called ‘‘Door’’ (264
images) and ‘‘Surprise’’ (246 images) have been scanned
from the same reel, and show a static indoor scene and a
woman performing complex motions. The amount of cor-
ruption is higher (0.00048 and 0.00038), and defects are
large–medium (more than 400 pixels) opaque and semi-
transparent blotches, hair and some persistent scratches.
5.2. Ground truth

In order to perform a quantitative evaluation, the
ground truth of defects is required. A traditional approach
consists in doing manual segmentation of blotches, which
is tedious and difficult to do for a large set of images.
Another solution consists in generating artificial blotches
of random shape, location, and gray levels, but with a con-
stant gray level value over the blotch area. Unfortunately,
this model is unrealistic, as real blotches can be semi-trans-
parent, non-uniform, and have large areas (about 500
pixels at the standard resolution scanning).

A novel interesting and original method to evaluate the
quality of blotch detections using infrared scanning has
been introduced in the framework of the PrestoSpace pro-
ject (Tilie et al., 2006; Ren and Vlachos, 2007), and is used
here as well. Infrared images provide the location and the
transparency of ‘‘physical’’ defects of a film such as
blotches, scratches and gelatin abrasion.

The binary ground truth has been generated by thres-
holding infrared images (cf. Fig. 1). Choosing a threshold
value is not straightforward, as it has an influence on the
detectors performance evaluation. In this paper, we manu-
ally set the threshold value (170 for 8-bit infrared images)
Fig. 11. Blotch detections (corresponding to decisions in favor of
to find binary ground truth patterns as close as possible
to the human perception of these defects.

However, this method has some limitations. First it only
works for color films, as black and white films are not
transparent to infrared light. Second, defects which have
been revealed in infrared can be ‘‘hidden’’ in the color
image by dark areas, and thus become hardly detectable
by our method. Moreover, results can be biased by the
presence of non-impulsive defects (scratches) which cannot
be detected by the temporal blotch detectors.

5.3. Evaluation

A qualitative evaluation is shown in Fig. 11, comparing
the binary detections masks (pixels corresponding to deci-
sion D) with the binary ground truth masks, in terms of
well detected pixels, false alarms, and detections missed.

Opaque and semi-transparent blotches have been gener-
ally correctly detected, even in areas with motion. Some
detections have been missed, corresponding to low con-
trasted blotches hidden by dark areas in the image, and
to the pixels situated on the blotches smooth edges. How-
ever, some false alarms occur on some fast moving tex-
tures, showing the limitation of our approach: if small
moving patterns are detected by both detectors, false
alarms are kept in the fusion result, giving a false detection.

The quantitative performance assessment was achieved
using the classical receiver operator characteristic (ROC)
curves. For each detector, the ROC curve plots the good
detection rates against the false alarm rates, for different
values of one free parameter. If we denote by DE the bin-
ary mask of detection, GT the binary mask of ground truth
and GT its complement in the image, good detections and
false alarms rates are defined as follows:

P c ¼ jDE\GT j
jGT j ;

P f ¼ jDE\GT j
jGT j :

8<
: ð14Þ

We can notice that the classical definition of Pf implies nor-
malization by the number of ‘‘sane’’ pixels; as the number
of sane pixels is very important, Pf takes very low values.
However, this should not be a problem, as we look for a
comparative evaluation.

A comparative evaluation has been carried out, by com-
puting the ROC curves of several detectors on the same test
sequences. Our motion compensated fusioned detector
(MCFD) has been compared with two classical (motion
D hypothesis in Fig. 10) compared with ground truth images.
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compensated) blotch detectors SDIp and MRF, described
in (Kokaram, 1998). Motion compensation was achieved
using the PhC with sub-pixel accuracy algorithm (Thomas,
1987).

For our fusioned blotch detector, we have set the tempo-
ral detector parameter to S = 5 to account for noise and
small errors in motion compensation, and the spatial detec-
tor parameter to k = 500 to detect all blotches of size less
than 500 pixels. This value is an upper bound of the
blotches size distribution, and has been empirically chosen
to allow the detection of semi-transparent and elongated
blotches, that are frequent in our test sequences, scanned
at standard resolution from 16 mm footage. In order to
compute the operating points, only the ‘‘decision thresh-
old’’ free parameter Th has been varied from 0 to 1 with
a step of 0.1. To show the influence of the choice of the
learning set on the decision, two sets of mass functions
have been computed by the method described in Section
4.1, using 20 images extracted from two different sequences
(named ‘‘Dance’’ and ‘‘Tierce’’).

The SDIp ‘‘DFD threshold’’ free parameter ranged
from 5 to 40 in steps of 5. The MRF detector has two free
parameters ‘‘spatial and temporal penalties for discontinu-
ities’’, ranging from 5 to 10 and from 3 to 30, respectively.
For this detector, only the operating points corresponding
to the ‘‘best’’ combinations have been shown.

Fig. 12 shows the resulting ROC curves, for the four test
sequences. The vertical line measures the ratio of ‘‘cor-
rupted’’ pixels among the ‘‘sane’’ pixels in each sequence,
Fig. 12. Average ROC curves corresponding to the SDIp, MRF, MCFD with
lines show the average amount of corrupted pixels in each sequence.
and can be seen as an ‘‘index of corruption’’ for each
sequence. We consider that the operating points should
be on the left side of this line, as we consider that the aver-
age rate of false alarms should be lower than the average
rate of corrupted pixels in the sequence.

Given this operating domain, our fusioned algorithm
generates less false alarms than the two other classical
blotch detection methods. However, for high values of
the ‘‘risk of decision’’ parameter (Th > 0.7), our fusioned
detector provides more false alarms, resulting from the
enforcement of the decision in favor of simple hypotheses
(D or D) of pixels with high ignorance resulting from con-
flicting spatial and temporal detections. To avoid this phe-
nomenon, Th parameter should be limited to reasonable
values (less that 0.7 in this example).

We can notice that the operating domain of our detector
is limited by the range of the free parameter Th and
depends on the choice of the sequence used for mass func-
tions computation. To show the influence of the choice of
the learning sequence on the results, we have drawn the
ROC curve for two different learning sequences (of 20
images). Fig. 12 shows little difference between the ROC
curves, which tends to prove that the choice of the learning
sequence has no noticeable impact on the results.

The fusion method relies on the correct modeling of the
data. In our application, this is guaranteed by several fac-
tors: firstly the behavior of the detectors is taken into
account in the design of the mass functions, secondly
parameters are learned automatically and we have shown
two learning sets (ls1 and ls2) detectors for the four test sequences. Vertical
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that the choice of the learning sequence provides a robust
estimation and has no influence on the results, and finally,
although different forms could have been chosen instead of
the one of Eq. (8), this one fits well the data and has proved
to be robust.

The difference of performance between test sequences
can also be explained by the content of these sequences.
Poor good detection rates in ‘‘Cigarette’’ sequence can be
explained by the low visibility of blotches in the images,
that makes them difficult to detect. This is rather a limita-
tion of our infrared ground truth, which reveals some
blotches hidden by dark areas in the image. Better perfor-
mance has been achieved for ‘‘Art’’, ‘‘Door’’ and ‘‘Sur-
prise’’ sequences, where blotches were more contrasted in
the images. ‘‘Art’’ sequence shows more false alarms, as
the large motions have been poorly compensated by the
motion estimator.

Finally, our fusioned detector allows the detection of
semi-transparent and opaque blotches, and reduces the
number of false alarms generated by the temporal or the
spatial detector alone. However, it provides false alarms
when both temporal and spatial detectors generate false
alarms. This is due to the lack of information about the
‘‘local’’ (pixelwise) reliability of spatial and temporal detec-
tors. Local reliability of temporal detectors is a difficult
issue, as no algorithm exists in the literature for the detec-
tion of pathological motion. In the same way, the estima-
tion of the spatial detector reliability is also a difficult
problem, as there are no algorithms to differentiate blotches
from similar texture patterns. Reliability estimation is an
important issue, and should be explored in further research.
Another research issue is the introduction of more spatial
coherence in the detections. Actually, spatial coherence of
detections relies only on the spatial coherence introduced
by the spatial detector. More spatial coherence should be
achieved by extending fusion to spatial domain.

The computation time of our method is similar to clas-
sical detectors ones. On our test machine (P4, CPU 3 GHz,
RAM 2 GB) the average time to process one frame is 2.7 s
for our (MC) method, 2.2 s for the SDIp, and 2.7 s for the
MRF method. All methods have been penalized by the
motion compensation processing time, which is about 2 s
for both previous and next frames.

6. Conclusion

In this paper, we proposed a fusion scheme for the
detection of blotches in digitized archive film material. This
method uses the belief functions framework for combining
two blotch detectors, taking advantage of their redun-
dancy, complementarity and incompleteness.

Performance in terms of correct detections and false
alarms has been improved, as the decision has been per-
formed after the combination step, taking the conflict
between detectors into account. The conflict has been
reported on the ignorance mass, thus allowing the intro-
duction of a single risk index. Variable degrees of treatment
can be achieved by thresholding this risk index in the deci-
sion step.

Further improvements will concern the introduction of
discounting factors in order to take into account the detec-
tors reliability, and the introduction of spatial information
by spatial fusion. Accurate performance evaluation is still
an open issue, because the performance measure should
take into account the visual discomfort resulting from the
detections missed or from the correction of false alarms.

Finally, this fusion scheme can easily be extended to new
detectors, improving detection reliability.
Acknowledgement

This work was supported by the ANRT of the French
Ministry of Research and Technology, and by the FP6-
IST-507336 PrestoSpace project, supported by the Euro-
pean Commission.
References

Alp, B., Haavisto, P., Jarske, T., Oistamo, K., Nuevo, Y., 1990. Median
based algorithms for image sequence processing. SPIE Visual Com-
mun. Image Process., 122–134.

Appriou, A., 1993. Formulation et traitement de l’incertain en analyse
multi-senseurs. Quatorzième Colloque GRETSI, Juan les Pins, France,
pp. 951–954.

Arce, G., 1991. Multistage order statistic filters for image sequence
processing. IEEE Trans. Signal Process. 39, 1146–1163.

Bornard, R., 2002. Probabilistic approaches for the digital restoration of
television archives. PhD Thesis, Ecole Centrale, Paris.

Buisson, O., Besserer, B., Boukir, S., Helt, F., 1997. Deterioration
detection for digital film restoration. In: IEEE Internat. Conf. on
Computer Vision and Pattern Recognition, vol. 1, Puerto Rico, USA,
pp. 78–84.

Decenciere Ferrandiere, E., Serra, J., 1997. Detection of local defects
in old motion pictures. In: VII National Symposium on Pattern
Recognition and Image Analysis, Barcelona, Spain, April, pp. 145–
150.

Dromigny-Badin, A., 1998. Fusion d’Images par la Théorie de l’Évidence
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