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Abstract

A method for segmentation and recognition of image structures based on graph homomorphisms is presented in this paper.
It is a model-based recognition method where the input image is over-segmented and the obtained regions are represented by
an attributed relational graph (ARG). This graph is then matched against a model graph thus accomplishing the model-based
recognition task. This type of problem calls for inexact graph matching through a homomorphism between the graphs since
no bijective correspondence can be expected, because of the over-segmentation of the image with respect to the model. The
search for the best homomorphism is carried out by optimizing an objective function based on similarities between object and
relational attributes defined on the graphs. The following optimization procedures are compared and discussed: deterministic
tree search, for which new algorithms are detailed, genetic algorithms and estimation of distribution algorithms. In order to
assess the performance of these algorithms using real data, experimental results on supervised classification of facial features
using face images from public databases are presented.
© 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction relational graph (ARG) is used to represent the model

and the image content. Therefore, the recognition proce-
In this paper we propose a method for segmentation and dure amounts to find a suitable matching between both

recognition of image structures or objects based on a model graphs.

of the imaged scene. The idea is to represent knowledge Graph representations are widely used for dealing with

about the structures in the model as a graph. Based on anstructural information in different domains such as net-

over-segmentation, input (i.e. target) image information is works, psycho-sociology, image interpretation and pattern

also represented as a graph. More specificallgtaibuted recognition, to name but a few. One important problem to
be solved when using such representations is graph match-
ing. In order to achieve a good correspondence between two

* Corresponding author. Tel.: 3314581 7585; graphs, the most used concept is the graph isomorphism and
fax: 33145813794, a lot of work is dedicated to the search for the best isomor-
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problem. For instance, inexact graph matching appears as anrecognize facial features using face images from public
important area of research in the pattern recognition field. In databases, with the aim of comparing the optimization
several approaches graphs are used to represent knowledgealgorithms.

and information extracted from images, where vertices rep-  This paper is organized as follows. In Section 2, we
resent the regions or entities of the image and edges showpresent our graph-based approach for solving model-based
the relationships between them. Cartography, robotics and recognition of image structures. The optimization algorithms
autonomous agents, character recognition, and recognition assessed in this paper are discussed in Section 3. The exper-
of brain structures are examples of areas in which this type imental results evaluating and comparing these algorithms
of representation appears. Because of the usually schematicare described in Section 4. Some comments on our ongoing
aspect of the model and difficulty to accurately segment the research are given in Section 5.

image into meaningful entities, no isomorphism can be ex-

pected between both graphs. Such problems call for inexact

graph matching. The technique of inexact graph matching 2. Homomorphism between ARGs

has been extensively studied in several different domains

such as pattern recognition, computer vision, cybernetics, 2.1. Notations and definitions

among otherg2]. Most works on inexact graph matching _

rely on the optimization of some objective function. This In this work, G = (N, E) denotes a directed graph where
function usually measures the adequacy between verticesN represents the set of vertices@fand£ € N x N the set

and between edges of both graphs, involving both the of edges. Two vertices, b of N are adjacent ita, b) € E.
similarity between attributes of vertices and the similarity If each vertex ofG is adjacent to all others, thef is said
between attributes of edges, as well as the structure of the to be complete. We define an attributed relational graph as
graph. Existing optimization methods include combinatorial G = (N, E, u, v), whereu : N — Ly assigns an attribute
optimization techniquef8], relaxation techniquei,5], ex- vector to each vertex dfl. Similarly, v : £ — Lg assigns
pectation maximization (EM) algorithii®,7], estimation of an attribute vector to each edge Bf We typically have
distribution algorithms (EDAs]8], and genetic algorithms Ly =R" andL g =R", wherem andn are the numbers of

[9]. Other methods are more concerned by the structure itself vertex and edge attributes, respectively. ARGs have been ex-
of the graphs and use tree search and propagation techniquedensively used in computer vision and artificial intelligence

[10], heuristic-based graph traversifityl], graph editing in problems of model-based recognition and structural scene

[12,13]and graph labeling based on probabilistic models of analysis. In such approaches, the scene is composed of a

attributes[14]. number of objects arranged according to some structure.
In a previous papefl15], estimation of distributions al- ~ Usually, each object is represented by a vertex of the ARG,

gorithms have been developed for inexact graph matching. b€ing characterized by a set of features encoded by the ver-
Here we develop new algorithms based on tree search, tex attribute vector, while the ARG edges represent the rela-
which constitute one of the contribution of the paper. As tion between objects. The vertices and the edges attributes
a result, the following optimization procedures are applied are called object and relational attributes, respectively. In the
to real-world data, and then compared and discussed in Presentapproach, we need two ARGs= (N1, E1, i1, v1)
this paper: deterministic tree search, classical genetic algo- andG2=(N2, E2, pip, v2), which will be henceforth referred
rithms and estimation of distribution algorithms. Another to as theinput (i.e. derived from the image) and tineodel
main contribution of this paper is to adapt them to the prob- draphs, respectivelyNi| denotes the number of vertices in
lem of model-based recognition problem through matching N1, while|E1| denotes the number of edgesiin. We use a
optimization, and to compare and evaluate them on real subscriptto denote the corresponding graphag.g.N1 de-
data. notes a vertex of; 1, while (a1, 1) € E1 denotes an edge of

An experiment about the recognition of facial features G1.\We use a superscript to enumerate the nodes of a graph,
has been devised in order to evaluate the aforementionedi.e. a%,a%, ...,a‘lNll € Njp. Similar notations are used
optimization algorithms used in our method. Face recog- for G».
nition has received intense and growing attention from the = The easiest way of obtaining the model gragp is by
computer vision community, partially because of the many manually segmenting a prototype image followed by repre-
applications such as human-computer interaction, model- senting it by the corresponding ARG. Section 4 illustrates
based coding, teleconferencing, security and surveillance. this by showing the generated model for our experiments.
A particularly important task that arises in different prob- As far asG1 is concerned, the input image is segmented
lems of face recognition is the location and segmentation by applying a watershed algorithm to the image gradient,
of facial feature regions, such as eyebrows, iris, lips, and which results in an over-segmented image (any other over-
nostrils[16]. For instance, segmentation of facial regions is segmentation method could be used as well). The input graph
important for feature-based face recognitid], medical G1 is subsequently obtained from the over-segmented im-
applications[18] and analysis of facial expressiofik6]. age, with each vertex representing an image connected re-
In this paper, we have applied our method to segment and gion. Each vertex o&1 is adjacent to all othe 1 vertices,
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and it is also adjacent to itself, i.éa1 € N1, (a1, a1) € E1. If two verticesaq and ap have the same attributes (high

The same applies tG'». similarity), thency will be very low and the association
Theassociation graplG 4 betweenG1 andG» is defined of ap anday will be favored when minimizingf1. On the

as the complete grapfiy =(Ny4, E4), With N4y =Ny x No. other hand, associations between nodes having different
A graph homomorphism betweenG1 andG» is a map- attribute values will be penalized. The term depending on

pingh : Ny — N2|Vaj € N1,Vby € Ny, if (a1, b1) € E1, edge comparison can be interpreted in a similar way. The

then (h(ay), h(by)) € Eo. Note that|N1| is often much specific form of the similarity or dissimilarity measures

greater than|N»| in model-based recognition problems depends on the type of attributes. Some examples will be
where each object of the image can be subdivided in several given below for the application chosen to illustrate the

regions (over-segmentation). approach.

A solution of an inexact match problem betweén The functionfy is a simple weighted average of measures
and G, can be expressed as a subgraph = (Ns, Es) of qualities of vertex associations (first sum) and of edge as-
of the association graphG, between G; and Ga sociations (second sum). Weighted mean operators achieve a
with Ng = {(a1,a2),a1 € Ni,ap € Np} such that compromise between the similarities. Such operators have a
Va1 € Ni1,3ap € Np,(ay,a2) € Ng and V(a1,a2) € compensation effect which is interesting in cases where both

Ng, V(a’l, a’2) € Ng, a1= “/1 = ay =a/2 which guarantees low and high similarities occur. For instance a low similar-
that each vertex of the image graph has exactly one label ity between a model node (or edge) and an image node (or

(vertex of the model graph) an&vg| = |N1|. Such solu- edge) with respect to one attribute can be compensated by a
tion defines a homomorphism betweén and Go. G is high similarity with respect to another attribute. Such oper-
built as a clique ofG 4. This approach only considers the ators allow to weight differently node attributes and edge at-
structure of the graphs. tributes, or to give more importance to some attributes than
Clearly, there are many possible homomorphisms that to other ones. This is particularly useful when characteristics
represent an inexact match betwe@pn and G, and we of objects or of relations have not the same level of stability

need to define an objective function to assess the quality and variability. For instance if an attribute corresponds to a
of a given homomorphism and its suitability with re- highly variable feature for which differences are expected
spect to each specific application. This criterion should between the model and the image, a higher dissimilarity can
include, additionally to the structural aspects, informa- be expected between the model and the image, but it should
tion on the attributes. In particular, the homomorphism have a low impact on the global objective function. One
should minimize the dissimilarity between the object at- noticeable point infy is that it only considers the quality of
tributes of the mapped vertices frod; to G2 and the the actual associations. It does not take into account possi-
respective relational attributes associated to the matched ble similarities between vertices or edges that have not been

edges. matched. Nevertheless, solutions where a lot of non-matched
nodes have a good similarity should not be favored. In order

2.2. Objective function to take this into account, a more sophisticated function could
be defined.

The evaluation of the quality of a solution expressed by
Gy is performed through an objective function. Finding
the best solution then amounts to minimize this function.
In this paper we have explored the following objective 3. The optimization algorithms

function:
Among the different possible approaches for finding a

f1(Gg) = NL Z cy(ay, ap) sui;able _homomorphism basgd on the objective function de-
INs| (ar,a2)ENs scribed in the previous section, we developed, tested and
compared several methods based on heuristics and on evo-
1-9 Z cp(e), 1) lutionary computation_ tec_hniques. We already applied some
|Es] of them to other application®,19,20]

Ec
oens We explore a beam search algorithm often applied to dif-

wherecy (a1, ap) is a measure of the adequacy betwegn ferent problems in artificial intelligence. Here we propose a
anday, i.e. a measure of dissimilarity (or similarity if the ob-  new algorithm of this type adapted to inexact graph match-
jective function is to be maximized) between the attributes ing (a preliminary version was shortly introduced in Ref.

of a1 andap. Similarly, if e = ((a1, ap), (b1, b2)), cg(e) [21]). Evolutionary computation techniques are proposed in
is a measure of the dissimilarity between edge, b1) of order to reduce the number of solutions to be analyzed. The
the image and edgéiy, bo) of the model. Note that evolutionary computation algorithms that we have applied

andcg are supposed to be normalized between 0 and 1 in and tested are Genetic Algorithms (GAs) and Estimation of
Eq. (1). Typically,cy (a1, a2) will be defined as a decreas-  Distribution Algorithms (EDAs), which are also discussed
ing function of the similarity between vertex attributes. below and adapted to the aim of this work.
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3.1. Tree search algorithm . .
Algorithm 1 Tree search algorithm

This algorithm finds a solution by creating a search tree

with each vertex representing a pair, /), wherek repre- pl = priority_init(); /* initializes the priority queue */
sents thekth vertex of the input graph (i.e{) and| rep- p0 = tree_init(); /* initializes the search tree */
resents thdth vertex of the model graph (i.ez’z), thus p=p0;

analogous to the nodes of the association gré@ghintro- priority_insert(pl, p); /* insert a tree pointer in the
duced in Section 2.1. The search tree is initialized with a priority queue */

dummy root vertex(0, 0) that is expanded iHN,| sons endflag=0;

(1,1),(1,2),..., (1, |N2]). The chosen objective function while (endflag# 1) do
f1 (see Section 2.2) is calculated for each son. The cheaper P = priority_removépl); /* p is the cheaper vertex */

leaf in the tree is taken to be expanded in the next loop. if (solution(p, input_graph)hen
In this first expansion of the tree, the only leaves are the improve_solution(p);

nodes that have just been expanded, but this will not be the save_solution(fpout,p);

case after the second node expansion. It is hence necessary  endflag=1;

to calculatecy (a1, a3), j =1.....|No| (see Eq. (1)), i.e. else

explode(p, input_graph, model_graph); /* expands

the cost of matching the input graph ncnﬂeto each model the cheaper vertex */

graph nodmé. This first step does not involve calculating end if

the edge costsg since only one node of each graph is being priority_insert_sons(pl, p); /* insert the newly born
considered so far. Suppose that 3) is chosen. i.ea% is leaves in the priority queue */

matched tmg. Then,(1, 3) is analogously expanded jivo| end while

sons(2, 1), (2,2),...,(2,|N2|), the objective function for

each newly born son is calculated and the cheaper tree leaf
among all leaves (including nodes left unexpanded in previ- called. The cost of each tree vertex is calculated within the
ous steps) is taken to be expanded. Itis necessary to calculateexplodefunction based on the adopted objective function

cN(af, aé), as well as the edge cosgs((a%, af), (ag, aé)), and involves the evaluation ofy (a1, a2) andcg (e) for the
j=1,...,|N2|. As new nodes are expanded more terms corresponding vertices and edges.
cy andcg are taken into account by the objective func- We have limited the maximum size allowed for the pri-

tion. All matchings between edges must be taken into ac- ority queue and, once this limit is reached, the more expen-
count once a tree leaf is expanded. For instance, supposesive vertices are discarded from the queue. This solution is
that (2, 4) is chosen as the cheapest node. Tk&am) is similar to the beam search algorithm, which saves time and
expanded in|Np| sons(3,1),(3,2),...,(3,|N2]). In or- space complexity at the cost of not considering many paths
der to calculate the value of the objective function for each in the tree (and therefore possibly loosing a better solution).
new node, it is necessary to calcula]se(af, aé), as well as We found in practice that this limitation a!lows thg algo-
rithm to converge fastly and that the solution quality does
X not critically depend on the maximum allowed size.
ce((@}.ad), @3, a3)), j=1.....|No|. The normalization One of the main drawbacks with this approach is that a
terms|N4| and|E 4| must be set properly when calculat-  solution is created based on “local” decisions, i.e. each node
ing the objective function for each node since the number is labeled by Choosing the Cheapest tree leaf from the pri_
of considered vertices and arcs depends on the depth of theOrity queue. C|ear|y’ the node price at each step On|y takes
exploded nodes. into account the tree nodes above the leaf under considera-
It is worth noting that all leaves are considered at each tjon, and the remaining subtree is not considered (because
step, i.e. tree nodes previously left unexpanded are also can-it has not been expanded yet), which often leads to sub-
didates to be expanded. For instance, in our previous exam- optimal solutions (i.e. local minima). We have proposed a

the edge costsg (a2, a3), (ad, a))), j=1,..., N2, and

ple, at the third iteration we had: randomized variation of the tree search method and inves-
Expanded nodes so fafl, 3) and (2, 4). tigated the solutions produced by it in RE22]. The idea
Nodes to be considered for being expanded)), j = is to randomize the search by creating a priority listkof

1. ., IN2l; j #3and2, j), j=1,...,IN2l; j #4 candidatesk= 100 in our experiments) having the smallest
The process is repeated until a tree vertgXy|, /) is dissimilarity measures. Then, the next leaf to be expanded

reached, meaning that alV1| vertices inG1 have been as-  is chosen randomly among the candidates of this list. This

signed to a vertex iiG2, thus defining a suitable homomor-  procedure is executed several times, and since different ex-

phism between the two graphs. This procedure is summa- ecutions may lead to different solutions, we select the best

rized in Algorithm 1. one. This random algorithm provides much better results
Algorithm 1 defines a priority queue and returns a pointer than the deterministic one in many rum], thus Suggest_

to the cheaper vertex when the= priority_removépl) is ing that the tree-search algorithm could be improved.
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Therefore, we have implemented a post-processing step a population size of 2000 individuals was chosen, with a
in order to get the solution subsequently improved. Once a mutation probability of 10/|N1| (where|N1| is the number
solution is reached by the above procedure, the algorithm of vertices of the input graph) and a cross-over probability
tracks its path in the tree, from leaf to root, and verifies the of 1. We decided to set this last parameter to its maximum
price of the solution obtained by changing the node label value since all the different genetic algorithms tested in
by the other possible labels for that node. If the obtained our experiments are elitist ones, and therefore we ensure
solution is cheaper than the previous one, then it is updated that the fittest individual of each generation will remain
with the new label for that node (otherwise, nothing is done). in the next one. The reason for using an elitist approach
The algorithm then proceeds for the next node in the tree. If in all our genetic algorithms is that the theoretical proof
the solution has been improved at least once after traversing of GAs to converge to the best solution can be done for
a leaf-to-root path, this procedure is repeated again from this type of GAs. Furthermore, usually eGAs obtain better
the leaf. Convergence is reached after traversing the leaf-to- results than canonical GAs, and after our preliminary tests

root path with no improvements on the solution. This final
procedure is represented as thgrove solution p) step in
algorithm 1.

3.2. Genetic algorithms

GAs [23,24] are stochastic heuristic evolutionary compu-

we concluded that this fact was also true for our type of
problems.

3.3. Estimation of distribution algorithms

EDAs [8,27], which were introduced about 10 years ago

tation techniques. They keep a population formed by indi- [28,29], are also stochastic heuristic search strategies within
viduals (i.e. solutions), and make it evolve towards better the evolutionary computation approaches, where, similarly
solutions according to a fitness function by selecting indi- as GAs, a number of solutions or individuals are created
viduals and applying cross-over and mutation operators to every generation, thus evolving until a satisfactory solution
them. In our problem, each individual represents a corre- is achieved.
spondence hypothesis, that is, a correspondence for each of The motivation for the use of EDAs is that the behavior
the vertices in the input graph to a vertex in the model graph. of GAs depends to a large extent on the choice of opera-
The individuals in the GA represent a solution for the tors and probabilities for crossing and mutation, size of the
optimization problem stated in the previous section. In our population, rate of generational reproduction, the number
concrete case, we propose to use an individual representa-of generations, and others. Experience on the use of these
tion which containgN1| genes (one per each node @Gf algorithms is required in order to choose the suitable val-
that has to be recognized), and in which each gene can con-ues for these parameters. In addition, EDAs have already

tain an integer value between 1 apdy| (that is, a label
representing a node of the model grapp). More formally,
given an individuak = (xg, ..., x;y;|), the fact that; =k,
for 1<i <|N1| and 1<k <|N2|, means that this solution
proposes to matckth vertex of G1 with the kth vertex of
G». The fitness value of the solutionis computed using
the objective function (Section 2.2) as fitness function.

Regarding the literature on genetic algorithms, we have
chosen two types of general purpose GAs. The first one
is known as the elitist genetic algorithm (eGJ®5], and
consists in keeping the best individual in a population and
regenerate all the other individuals for the next generation.

The second GA type applied is steady-state (ss[28),
where two individuals are randomly chosen in a generation,
undergo cross-over in order to generate a new individual,
and this is then compared to the worst individual of the
generation. The worst of both is then removed.

The eGA was programmed to stop the search automati-
cally at a maximum of 100 generations. In the case of ssGA,
as it generates only a new individual each iteration, it was
programmed in order to generate the same number of indi-
viduals as in eGA.

The initial population for both GAs was generated us-
ing a random generation procedure based on a uniform
distribution for all the possible values. In both GA types,

shown their better performance in many classical optimiza-
tion problemg8] and also than other inexact graph match-
ing technique430].

The main difference between EDAs and other evolution-
ary search strategies is that the evolution of the population
from a generation to the next one is performed by esti-
mating the probability distribution of the fitter individuals,
creating a probabilistic graphical model. If the individuals
are composed of discrete values, this probabilistic graphical
model has the form of a Bayesian network. The next gener-
ation of fitter individuals is created by sampling the induced
model. Therefore, in EDAs the new population of individ-
uals is generated without using neither cross-over nor mu-
tation operators. Instead, the new individuals are sampled
starting from the probability distribution estimated from the
database containing only selected individuals from the pre-
vious generation.

The representation of solutions (i.e. individuals) and the
fithess value of the solution for EDAs have been chosen
exactly the same as for GAs.

Let X = (X1, ..., X,) be a set of discrete random vari-
ables, and lek; be a value ofX;, the ith component of
X. Lety = (x;)x,cy be a value ofy € X. A probabilistic
graphical model foK is a graphical factorization of the joint
probability distribution,p(X=x) values. The representation
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Do
X Xy Xz oo Xy eval
1 4 5 2 3 13.25
2 5 3 1 .. 6 32.45
R 1 5 4 .. 2 34.12
Selection ofN<R individuals
b
X1 Xy X3 Xn
1 4 1 5 3
6

Selection of
N<R individuals

Induction of the
probability model

D41
Xy Xy Xz X, eval
1 3 3 4 5 32.78
2 2 5 1 4 33.45
Sampling R individuals
R 4 2 1 .. 2 37.26 from p ()

P (X)= p, (X|D")

Fig. 1. lllustration of the EDA approach in optimization.

of this model is given by two components: a struct8i@nd
a set of conditional probabilities.

The structureS of the model forX is a directed acyclic
graph (DAG) that describes a set of conditional interdepen-
dencies between the variables ¥nLet Paf represent the
set of parents-variables from which an arrow is coming out choose the half of the populatiotv = M /2) formed by
in S of the variableX; in the probabilistic graphical model. the N fittest individuals.

The structureS for X assumes thaX; and its non descen-  (3) Thirdly, then-dimensional probabilistic model; (x) =
dants are independent givéml.s, i =2,...,n. Therefore, p(x|DlS_e1) that better represents the inter-dependencies
the factorization can be written as follows: between then variables is induced. This step is also

(2) Secondly, in order to make tlie-1)th populationD; _1
evolve towards the next on®f), a numbemN (N < M)
of individuals are selected according to a criterion. We
denote byDlS_e1 the set of selected individuals from
generation(! — 1). In our case, we have decided to

n known as thelearning procedure, and it is the most
pX)=p(x1,...,xp) = 1_[ p(x; |pal.5), %) crucial one, since representing appropriately the depen-
i=1 dencies between the variables is essential for a proper

evolution towards fitter individuals.

(4) Finally, the new populatiorD; constituted byM new
individuals is obtained by carrying out the simulation
of the probability distribution learned in the previous

The EDA approach is illustrated ig. L Four main steps
are identified in all EDAs:

(1) Firstly, the initial populationDg of M individuals is

generated. The generation of thédéndividuals is usu-
ally carried out by assuming a uniform distribution on

each variable, and next each individual is evaluated. This

has also been done in our EDA#7(= 2000 in our
experiments).

step. The simulation method used in our experiments is
the one known afrobabilistic Logic SamplingPLS),
which was proposed in Ref31]. Usually an elitist ap-
proach is followed, and therefore the best individual of
population D;_4 is kept in D;. As a result, a total of
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M — 1 new individuals is created every generation in-
stead ofM.

Steps 2—4 are repeated until a stopping condition is verified.
In our particular case, we have chosen to stop the search
when uniformity in the generated population is obtained, or
when a maximum of 100 generations has been reached.

A common way of classifying the different EDAs in the
literature is by taking into account the maximum number of
inter-dependencies between variables that they accept (max-
imum number of parents that a varialife can have in the
probabilistic graphical model). The reader can find in Ref.
[8] a more complete review of this topic. Usually, 3 main
categories are identified:

(1) Without interdependencies: All the EDAs belonging to
this category assume that thedimensional joint prob-
ability distribution factorizes as a product of uni-
variate and independent probability distributions, that is
) =TT{_q pr(xi).

An illustrative example in this category is the Univari-
ate Marginal Distribution Algorithm (UMDA)32], in
which the relative marginal frequencies of thh vari-
able within the subset of selected individua)g_e1 are
estimated.

Pairwise dependencies: all the EDAs in this category
estimate the joint probability distribution by only taking
into account dependencies between pairs of variables.
An example of this second category is the Mutual In-

formation Maximization for Input Clustering (MIMIC) Fig. 2. (a) Original image; (b) its masked version containing only

proposed in Refg33,34] o _ the regions of interest around the landmarks; (c) face model man-
Multiple interdependencies: Estimation of Bayesian yajly segmented; (d) model superimposed to the face image.
Networks Algorithm[35] (EBNA) is an example of an

EDA that belongs to this category. EBNA takes into
account multiple inter-dependencies between variables
by constructing a probabilistic graphical model with
no restriction in the number of parents that each of
the variables can have. Another example of an EDA in
this category is the Factorised Distribution Algorithm
(FDA) [27], which is based on a fixed probabilistic
graphical model and therefore it does not add a learning
step as in former EBNA.

The three different EDAs mentioned so far (UMDA,
MIMIC, and EBNA) have been applied in this paper,
each of them as representatives of their corresponding
EDA category.

(2

~

3

~

4. Experimental results Fig. 3. Over-segmented image by the watershed algorithm.
4.1. Application: facial feature recognition
define a limited region that is considered by the recognition
The proposed approach has been applied in a series of ex-procedure (sekig. 2). The model is manually obtained from
periments for facial feature segmentation based on finding a reference image. The image in which recognition has to
a suitable homomorphism between two ARGs. First the fa- be performed is segmented using a watershed method which
cial landmarks are located by a tracking method and used to provides an over-segmentation (dég. 3). Both input and
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model faces are represented by ARGs and the respective at-

tributes are computed. The objective function is optimized

using one of the three proposed methods and the final seg-

mentation produced by the method may be evaluated.

The initial step to segment the facial feature regions is
to locate the face in the image, which can be done both
in still images and in video sequences. The latter means
to detect the face in a frame and to track it in the subse-
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The face region extracted by the GWN undergoes a wa-
tershed transform thus producing an over-segmented im-
age (sedrig. 3). Too small regions produced in the over-
segmentation are discarded.

4.2. Attributes

guent frames. In our approach, these steps are performed The object attributes are calculated from image connected
by a recently proposed technique that represents a face us-regions while relational attributes are based on the spatial

ing the Gabor wavelet network (GWN36]. Furthermore,
the GWN acts as a rigid model that providagproxima-
tive landmarkswhich are located near the facial features to
be segmentefB7] (e.g. eyes, nose and mouth). These land-
marks are used in two different ways in order to make our
approach more efficient: (1) only certain regions around the
landmarks are considered; and (2) the landmark information
is used by the optimization algorithm to constrain the so-
lution search space. The GWN allows a real-time efficient
face tracking based on the whole face, being robust to facial
feature deformations such as eye blinking and stil€he
reader is referred to Ref37] for complete details about the
GWN approach.

The model graph should contain vertices associated to
each facial feature of interest, e.g. for each eyebrow, iris,
nostril, mouth and the skin. It is important to note that, in
the model ofFig. 2(c), some single facial features have been
subdivided, e.g. the eyebrows. This has been done because
the adopted vertex and edge attributes are calculated based
on average measures over the segmented image regions.
Therefore, model attributes extracted from large regions tend

to be less representative because such regions often present

larger variability with respect to the attributes. Some facial
features have thus been subdivided in order to circumvent
such a potential problem. Furthermore, the fact that the skin
is not a well-localized facial feature (in contrary to pupils
and nostrils) presents an additional difficulty for introducing
structural relations between skin and the other features. As
an example, while it is possible to define structural relations
such as “the pupil is above the nostrils”, it would be more
difficult to define a similar relation with respect to the skin.

The face images used in our experiments have been
acquired using a standard digital camera, as well as faces
from standard public databases available on-line. We
used images from the University of Stirling, available at
http://pics.psych.stir.ac.uk/ . This database
has been used for testing face analysis and recognition
methods in other papers in the literature, presenting simi-
lar characteristics than others such as Feret and XM2VTS
[38,39] The tested images show how robust the method
is with respect to images presenting different acquisition
conditions (i.e. geometry, illumination, distance from the
camera, etc.).

1An on-line demo can be found http://www.vision.
ime.usp.br/  ~cesar/journals/rti04tracking/

disposition of the regions. The adopted attributes for the
experiments presented in this paper are:

e Object attributesLet G = (N, E, i, v) be an ARG and
let a € N. The set of object attributeg(a) is defined
asu(a) = (g(a), gmin(a), l(a)), whereg(a) denotes the
average gray-level of the image region associated to ver-
texa, gmin(a) denotes the average gray-level of the 15%
darkest pixels of the image region associated to vertex
a, and/(a) is a region label assigned with respect to the
approximative landmarks provided by the tracking pro-
cedure. Bothg(a) andgmin(a) are normalized between
0 and 1 with respect to the minimum and maximum pos-
sible grey-levels, and the value of 15% used to calculate
gmin(a) is a parameter that may be changed depending
on the test images. The attribugghin(a) has been in-
cluded in order to facilitate the recognition of textured

regions composed of light and dark pixels, such as the
eyebrows and, in some cases, the mouth. This feature

was particularly important in the experiments performed
in this paper. The existence of both light and dark pixels
in such facial features may lead to higher average values
(i.e. g(@)), and the addition ofgmi, avoids confusion
with brighter regions like the skin. The region lalét)
indicates which approximative landmark (i.e. left eye,
right eye, nose, mouth) is the closest to the region cen-
troid. The region label attribute is particularly useful for
constraining the search tree, which is implemented by
the dissimilarity measure between object attributes.
Relational attribute Leta, b € N be any two vertices of

G, andp, and p;, be the centroids of the respective cor-
responding image regions. The relational attribute b)

of (a,b) € E is defined as the vector(a, b) = (pp —
Pa)/(2dmax), Whered,,q, is the largest distance between
any two points of the considered image region. Clearly,
va, b) = —v(b, a).

4.3. Dissimilarity measures

There are two dissimilarity measureg andcg used by
the objective functioryy (Eq. (1)), associated respectively to
vertices and edges of the association graph . The meagure
is related to object attributes, whitg is related to relational
attributes. Their definitions (chosen for this application) are
given below.


http://pics.psych.stir.ac.uk/
http://www.vision.ime.usp.br/cesar/journals/rti04tracking/
http://www.vision.ime.usp.br/cesar/journals/rti04tracking/
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Fig. 4. Segmentation and recognition of facial features using (a) deterministic tree search, (b) eGA, (c) ssGA, (d) UMDA, (e) MIMIC and
(f) EBNA. In this example, the target and the model image are the same.

Let (a1, ap) denote a vertex o6 4, with a1 € Nq and
ao € N». The dissimilarity measurey (a1, ap) is defined as

en(ag, ag)=
ynlg1(ar) — ga(a2)|
+(1 —yn)lgmini(a1)

—&min2(a2)l,
o0

if I1(a1) = I2(ap),
otherwise

where(g; (a;), gmin; (@i), li (a;)) are the object attributes of
Gi, i =1,2. The parametepy (0<yy <1) controls the
weights ofg and gmin. It is worth noting that, if the ver-
ticesaq anday correspond to regions associated to differ-
ent approximative landmarks, then the dissimilarity measure
equalsoo, and this means thaf; is not evaluated in such
cases. This fact is important because it allows the optimiza-
tion algorithm to avoid exploring non-desirable solutions
such as trying to classify a region near the left eye approx-
imative landmark as mouth, for instance.

Let e denote an edge df 4, with end-points(ay, a2) €
Na,a1 € N1 anday € No and(b1, bp) € N4, b1 € N1 and
b2 € N». We compute the modulus and angular differences
betweenv(aq, b1) andv(az, bo) as

Pmle) = llv@az, byl — lIv(az, b2) ||

and

0)—1
a0y = 10801

where 0 is the angle between(aq, b1) andv(ay, b2), i.e.
coq0) is calculated as

v(a, by) - v(az, b2)
Va1, by)llIvaz, b) |

The dissimilarity measureg (e) is defined as

cog0) =

ce@) =ypdq(@) + L —yp)pye),

wherev(q;, b;) is the relational attribute (i.e. vector) asso-
ciated to edgéa;, b;) € E;. The parameteyr (0<yg <1)
controls the weights o$,, and¢,. It is important to note
thatv(a, a) = 0. This fact means that, when two vertices in
G1 are mapped onto a single vertex b by the homo-
morphism, we haver (e) = [|v(a1. b1) — O]l = [v(az., b1,
which is proportional to the distance between the centroids
of the corresponding regions in the over-segmented image
(in such cases, we define ¢8s= 1). Thereforecg would

give large dissimilarity measures when assigning the same
label (i.e. the target vertex ifio) to distant regions and lower
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in Fig. 4, showing the obtained segmentation and recogni-
tion of the eyebrows, nostrils and lips using the different
search algorithms. As it can be seen, the method is able to
correctly recognize the facial features of interest, and is ro-
bust to substantial differences between the model &))

and the target image. A problem that we have experienced
here is that the outer portions of the eyebrows in the model
contain several skin pixels, leading to misclassifications near
it. Therefore, we have identified as “eyebrows” only the two
inner portions that compose each eyebrow in the model. Be-
cause of the structural constraints in the objective function,
the outer portions of the eyebrows in the obtained results

Fig. 5. Correspondences between model and target image recog-have not been included, which is a drawback that we intend
nized facial features, used to calculate the affine transform to match to circumvent in future work

the model mask over the target image.

It is interesting to note that the recognized facial features
can be used in order to match the model over the input

measures when assigning the same label to near regionsitace, which is suitable for visualization purposes and visual

which is intuitively desirable in the present application.

Note that when using; as function to be minimized:y
andcg have to be evaluated only for pairs of vertices and
edges actually existing i6's.

4.4. Algorithm evaluation

assessment of the matching process. Firstly, the centroids of
some a priori defined regions of the model are calculated.
In the present case, we have chosen to use the eyebrows,
pupils, nostrils and lips. The centroids of the respective
regions are also calculated for the target image. It is worth
noting that these regions have been recognized by the
homomorphism, as previously explained. Then, the affine

An ARG has been obtained for each input image and transformation that better maps the model centroids onto
a homomorphism has been found using the search algo- the corresponding target image centroids is calculptéf
rithms described in Section 3. The obtained results are shown Fig. 5 illustrates the correspondences between model and

Fig. 6. Model mask matched over the target images using the recognized facial features.
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Table 1
Figures of the 6 cases that we analyzed, illustrating the mean values after 5 executions of each of the algorithms (except from the tree
search algorithm, which is deterministic)

bebiel dani

Best Time Eval. Best Time Eval.
TreeS 0.326 00:05 — 0.33 00:05 —
eGA 0.457 00:54 202,000 0.463 00:52 202,000
ssGA 0.381 00:40 202,000 0.384 00:37 202,000
UMDA 0.360 00:31 184,710 0.326 00:28 173,914
MIMIC 0.323 00:38 163,119 0.326 00:35 162,720
EBNA 0.323 02:49 175,913 0.326 02:38 163,119

deise fo14

Best Time Eval. Best Time Eval.
TreeS 0.313 00:01 — 0.318 00:05:21 —
eGA 0.434 00:33 202,000 0.464 01:30:35 202,000
ssGA 0.357 00:26 202,000 0.388 01:07:50 202,000
UMDA 0.310 00:14 143,909 0.317 00:58:26 184,894
MIMIC 0.311 00:17 129,008 0.317 01:07:46 167,117
EBNA 0.310 01:19 153,924 0.317 04:40:16 185,908

fo41 mO036

Best Time Eval. Best Time Eval.
TreeS 0.322 00:11 — 0.323 00:23 —
eGA 0.463 01:35 202,000 — — —
ssGA 0.389 01:09 202,000 0.402 01:54 202,000
UMDA 0.319 00:58 196,702 0.321 01:41 201,900
MIMIC 0.319 01:10 181,910 0.321 02:08 201,900
EBNA 0.319 05:15 195,103 0.321 09:11 201,900

The bestcolumn corresponds to the mean best fitness value obtained through the seartimeldmumn shows the CPU time required
for the search (in hh:mm format), and theal. one shows the number of individuals that had to be evaluated in order to end the search.

target image centroids. This affine transformation is then  The null hypothesis of the same distribution densities
applied to the model mask, which is thus projected onto the was tested (non-parametric tests of Kruskal-Wallis and
target image. Some obtained results are showkign 6. Mann-Whitney) for each of the examples and algorithm
The results obtained from the different executions of the executions with the statistical package S.P.S.S. release 10.1.
algorithms are discussed below. Six different face images The results of these tests are shownTable 2 and they
were analyzed, andable 3 shows for each of them the  confirm the significance of the differences of all the al-
number of regions (nodes) and edges after the automatic gorithms regarding the value of the best solution obtained
over-segmentation procedure. The model used is shown in of EDAs and GAs. They also show that differences be-
Fig. 2 and it contains 62 nodes and 3844 edges. tween the different EDAs in the best individual obtained
We executed 5 times each of the stochastic algorithms for are not statistically significant, but these are significant
each of the examples, and Table 1the results are given = among eGA and ssGA. In all the examples the EDAs ob-
in the form of the mean fitness value of the best individual tained better results than the GAs, and these differences
at the last generation, the CPU time, and the number of are statistically significant regardingable 2 Also, the
different individuals created during the search. The latter differences in execution time are also significant in all the
computation time is presented as a measure to illustrate thealgorithms, and EDAs required always more time. As a
difference in computation complexity of all the algorithms. result, regardingfables 1and 2, we can conclude that the
The machine in which all the executions where performed results are much better in EDAs at the expense of a higher
is a two processor Ultra 80 Sun computer under Solaris computation time, but EDAs arrive to a more satisfactory
version 7 with 1Gb of RAM.Fig. 7 illustrates the mean final individual by having to evaluate less individuals than
performance of the search process of GAs and EDAs during GAs. This fact is important to take into account if the com-
the different generations. putation of the fitness function is more complex (i.e. if it



2110 R.M. Cesar et al. / Pattern Recognition 38 (2005) 2099-2113
0.48
1}‘ % 03%
\ —+—eGA
0.46
\ ) 23, 03255 0 —=—35GA [
ik L9 e —&—UMDA |
\ b \ MIMIC
042 \ - 03245 \ ——EBNA | |
u
04 < 0324 \
\ ~ 3
038 B
i ——eGA \ ’ g
036 1| —®—%sGA 0323
—— UMDA \\
034 MIMIC 03225
—»— EBNA ™
032 A e 032 . .
2 RR 93 BR B K B B8 8 8RELBSER18S8
(@) = (b =
0335
048 \k :‘“’M \
L M
046 -
\ N, 0333
0.44 L
\ w
0.42 2
\E " 0331
04 —
‘\ "l.t_-_‘_-
038 —=-s
; '\ll 0329
036 4 ——aGA e cCA
—=—gsGA \ —s—ssCA [
D34 | & UMDA s 0327 +| —a— UMDA
i~ | e WA o E.
—=—EBNA e EBNA
03 e s — .
L I B S S Y BBBBREESS B

(c)

Fig. 7. Comparison on the performance of GAs and EDAs for the examplesbi¢l (a) and (b), andiani, (c) and (d), showing the fithess

of the best individual along the search process. Xlagis corresponds to the fitness function andythaxis to the generation number. The

plots (b) and (d) have been added to note more clearly the difference between the EDAs. These graphs show that the performance of all
the EDAs is better than such of GAs during the whole research process.

requires more CPU time) than the one selected for our a human solution for the problem. Of course, such ground-
experiments. truth is prone to some subjectivity, since a human operator
In the light of the results obtained for the fitness values, decides the label of each region of the over-segmented im-
we can conclude the following: generally speaking, EDAs age with respect to the model (nearby regions around the
obtained in all the executions a fitter individual than tree facial features are generally difficult to be classified, being
search and GAs, but although the number of individuals cre- often labeled differently depending on the operator). Then,
ated is lower than GAs, the CPU time required was bigger. the ground-truth is compared to each automatically labeled
It is worth emphasizing that one of the main goals of this image to obtain the number of errors, i.e. number of mis-
work is to present a comparative performance assessment ofclassified regions (with respect to the ground-truth). Some
some state-of-the-art optimization methods that may be in- of the error regions typically obtained in our experiments
corporated in the proposed framework, showing how these are shown inFig. 8 This figure shows 3 types of errors
methods compare with respect to accuracy of the obtained found in our experiments:
results and to computation time as well. In this research
phase, we have neither aimed at implementing optimized al- e very small regions nearby the facial features (indicated
gorithms with respect to computation time nor concentrated by “A” in Fig. 8), which have generally been missed by
efforts on finding out if there are efficient algorithms to im- the operator while producing the ground-truth;
plement the proposed framework, which will be done in due e regions in the outer portion of the eyebrows (indicated
time. by “B” in Fig. 8), which have been left out during the
Besides the important problem of assessing the optimiza-  classification procedure because of the above explained
tion algorithms with respect to the objective function and reasons;
execution time, it is also important to analyze the obtained e true errors such as the region indicated by “C'Fig. 8.
results with respect to the problem context, i.e. recognition
of the facial features of interest. In order to perform this task, Table 4shows the obtained errors for some images. We have
we have generated a ground-truth for some faces by manu- performed this ground-truth-based assessment (total number
ally labelling the over-segmented images, i.e. by obtaining of misclassified regions and percentage with respect to the
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Table 2

Statistical significance for all the 6 examples and algorithms, by
means of the results of the non-parametric tests of Kruskal-Wallis
and Mann-Whitney

GAs-EDAs  Among GAs  Among EDAs

bebiel Best p<0.001 p =0.008 p=0.620
Eval. p<0001 p=1000  p=0084
Time p=0.016 p =0.008 p <0.001

dani Best p<0001 p=0008  p=0677
Eval. p<0001 p=1000  p=0.063
Time p=0177 p=0008  p=0.002

deise  Best p<0001 p=0008  p=0078
Eval. p<0001 p=1000  p=0.068

) Fig. 8. Example of some typical error regions.
Time p=0.121 p =0.008 p <0.001

fo14 Best p<0.001 p =0.008 p=0.105 Table 4
Eval. p<0.001 p =1.000 p =0.064 Number of misclassified regions in each test image for each algo-
Time p=0.495 p =0.008 p =0.002 rithm
deise fo14 fo41 m036

fo41 Best p<0.001 p =0.008 p=0.3811
Eval. p<0.001 p =1.000 p=0.012
Time p=0.643 p =0.008 p <0.002 TreeS 2 1.79 9 511 6 3.28 10 4.39
eGA 21 18.75 36 20.45 46 25.14 50 21.93
ssGA 35 31.25 63 35.8 57 31.15 — —

Errors % Errors % Errors % Errors %

m036 Best p<0.001 — p=0.085

UMDA 1 08912 6827 38312 526
fval P00 T apyost MIMIC 1 089 12 6828 43715 658
ime  p=0. — p=4 EBNA 1 0.89 11 6.25 5 273 15 6.58

The first column shows the result of the test comparing all EDAs
with all GAs, the second is the test for comparing eGA and ssGA,
and the third is the comparison between the three EDAs.

The “Errors” column indicates the number of misclassified re-
gions, while “%” shows the percentage with respect to the total
number of regions in the image.

Table 3 i Itis clear that absolut It Idb
Figures of the 6 cases that we analyzed, illustrating the number of pomparlson p_urpose._ IS clear a. anso u_e resulis cou €
nodes and arcs that are considered improved by introducing more attributes, in order to guar-

. . . antee that the optimum of; actually corresponds to the
bebiel  dani deise fo14 fo41 mO036 expected solution (with no error).

Nodes 147 148 112 176 183 228
Arcs 21609 21904 12544 30976 33489 51984

5. Concluding remarks and future work

A new method for model-based recognition in images
total number of regions in the segmented image) for the has been proposed, by expressing the problem as an inex-
different optimization algorithms. act graph matching problem and its optimization through

As it can also be seen, the ssGA and eGA algorithms lead an objective function. New algorithms have been proposed
to much poorer results with respect to the recognized facial and other ones have been adapted to this problem. As an
features and the best solution obtained. This result can be illustration, we described a new approach for facial feature
partially understood by the fact that these are both general segmentation based on graph homomorphisms: we have
purpose algorithms. The use of GAs specially thought for defined ARG representations of a face model and the image
our problem could lead to better results. However, it must to be recognized, an objective function, and applied the
also be said that the EDAs applied are also general purposeoptimization algorithms in order to evaluate and compare
ones. them.

It should be noted that all these results should be con-  Our ongoing work aims at improving the method robust-
sidered only from the optimization point of view and for ness and at generalizing it in a number of different ways,
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e.g. using fuzzy morphisnid1] and developing other object [7]1 AW. Finch, R.C. Wilson, E.R. Hancock, Symbolic graph
and relational attributes. A foreseen extension is to adapt the matching with the EM algorithm, Pattern Recognition 31 (11)
method to time varying images such as video sequences, by ~ (1998) 1777-1790.

taking advantage of the homomorphism found in a frame [8] P. Larraﬁaga, J.A. Lozano (Eds.), Es_timation of Distripution
in a video sequence when searching for the one in the next ~ Algorithms. A New Tool for Evolutionary Computation,
frame. Such a strategy could explore a model parameter up- __ Kluwer Academic Publishers, Dordrecht, 2001.

. R » [9] A. Perchant, C. Boeres, I. Bloch, M. Roux, C. Ribeiro, Model-
date procedure, and of extended graphs including “temporal e . .
L . . > based scene recognition using graph fuzzy homomorphism
edges linking regions in successive images.

solved by genetic algorithm, in: GbR'99 Second International

Furthermore, the above definition of graph homomor- Workshop on Graph-Based Representations in Pattern
phism implies that all vertices iG'1 are mapped t@» and Recognition, Castle of Haindorf, Austria, 1999, pp. 61-70.
if the input image presents features not known by the model, [10] A. Deruyver, Y. Hodé, Constraint satisfaction problem with
they will be classified. For instance, in the face application, bilevel constraint: application to interpretation of over-

if the input face has glasses and the model graph does not ~ segmented images, Artif. Intell. 93 (1997) 321-335.

include them, the glass regions will be classified as skin [11] M.L. Williams, R.C. Wilson, E.R. Hancock, Deterministic
or some other facial feature. Two possible solutions to this search for relational graph matching, Pattern Recognition 32
problem can be designed. The first one is to leave some of (1999) 1255-1271. ) )
the Gy vertices unmapped. The second approach is to de- [12 J-P- Braquelaire, L.- Brun, Image segmentation with

. w . topological maps and inter-pixel representation, J. Visual
fine an “unknown label vertex” in the model graph, to which Commun. Image Representat. 9 (1) (1998) 62—79.

the unclassified input regions should be mapped. Both ap- [13] H. Bunke, Error correcting graph matching: on the influence

proaches present specific difficulties and are currently being of the underlying cost function, IEEE Trans. Pattern Anal.
considered in our research. Also other objective functions Mach. Intell. 21 (9) (1999) 917-922.
are currently under investigation. [14] M. Skomorowski, Use of random graph parsing for scene

labelling by probabilistic relaxation, Pattern Recognition Lett.
20 (1999) 949-956.
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