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Abstract

This paper proposes a new data-driven segmentation technique of 3D T1-weighted magnetic resonance scans of human
head. This technique serves to the construction of individual head models. Several structures of the head are extracted. The
morphology-oriented approach combined with an extensive use of topological constraints provides a robust and automatic
method requiring minimum user intervention. This new approach is suitable to applications where the topology is one of the
main constraints. The originality of the approach lies in the satisfaction of such constraints and in an e�ort towards robustness.
? 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Since anatomical brain imaging serves as a reference for
clinical investigations as well as for functional studies, the
segmentation of brain structures deserves a large attention
and aims at many di�erent applications, each imposing its
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own constraints on the segmentation. Here, the aim of
the segmentation was to build 3D meshes of the main
head tissues, where the respect of topology is of a prime
importance. A large body of literature has been devoted
to brain image segmentation (see e.g. the syntheses in
Refs. [1–3]). In this paper, we will deal with T1-weighted
magnetic resonance images (MRI). Segmentation meth-
ods can be distinguished depending on whether they make
use of some models of the targeted structures or not. The
models can be either implicit like deformable models or
physics-based models, or explicit like atlas-deformation
based techniques. Implicit models are often used when
one speci�c structure of interest has to be detected. The
atlas-based approaches can segment all the structures but
have to deal with di�cult problems due to the anatomical
variability. Examples of the deformable models applied to
the brain and brain structure segmentation can be found
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for instance in Refs. [4–8]. Sometimes, some statistical
aspects are included in the model, which require some
learning. Since such methods are usually applied to in-
dividual structures, it is di�cult to guarantee the global
topology when segmenting several tissues. Examples of
atlas-based methods can be found in Refs. [9–17]. Meth-
ods that do not use any structure model employ mainly
classi�cation approaches. Many such methods have been
developed to separate the main tissues. For instance, both
fuzzy clustering (e.g. Refs. [18,19]) and neural networks
(e.g. Refs. [20,21]) have been used, as well as probabilistic
and statistical approaches (see for instance Ref. [1] for a
review). Such methods rely on the grey level characteris-
tics of the structures of interest, and can hardly incorporate
other features, in particular topological ones.
Here, we are interested in methods that do not use any

object model and that exploit not only the content of the im-
age but also some constraints on the desired result, partic-
ularly topological constraints. Morphological methods are
well adapted to this aim and provide natural tools for this.
Most work using mathematical morphology in this domain
concentrates on the segmentation of the brain and on the
separation of the grey and the white matters (e.g. Refs. [22–
24]). Little attention was paid to the other structures until
now. For instance, only few methods exist for the skull and
the skin, and they usually rely on constraints di�erent from
those that we employ here (see e.g. Ref. [25]). For the sep-
aration of both hemispheres, most approaches rely on the
optimization of a plane [26–29], or a template [30] which,
however, does not necessarily respect well the shape of the
separation. Here, based on a preliminary segmentation of
the brain, we propose a morphological method to segment
the brain stem and the cerebellum, the cerebrospinal �uid
(CSF), the grey and white matters, the skull and the scalp.
Furthermore, the two hemispheres are extracted separately
and attention is paid to the grey/white matter interface, and
to the grey matter/cerebrospinal �uid interface. The aim of
this segmentation is to build from any standard MRI an in-
dividual 3D model of head structures which can serve for
numerical solving of the electromagnetic wave propagation
equations, as needed in electrophysiology, as well as when
studying the in�uence of mobile phones on the head tissues.
In contrary to other applications where a millimetric preci-
sion may be needed, for such applications the precision of
the segmentation is not the key point. The most important
aspect for the foreseen applications is to have a good and
robust representation of the shapes and particularly preser-
vation of the topology. The robustness is achieved in the
proposed morphological approach by an intensive use of
morphological reconstruction, conditional operations and by
reducing the number of parameters. The topology is con-
trolled by using homotopic transformations. An important
aspect of the proposed method is the completely automatic
selection of markers that limits the necessary user interaction
and which also increases robustness. The method has been
applied to thirteen 3D MR images from di�erent acquisition

devices (T1-weighted MRI), and has always provided good
results.
The paper is organized as follows. In Section 2 we recall

some basic notions related to homotopic morphological op-
erations. We propose a way to select automatically a given
number of markers. We outline brie�y the principle of the
homotopic deformations that combine topological and other
criteria (on distance or on grey levels for instance). In Sec-
tion 3, we present successively methods for segmenting the
structures of interest, which are applications on real cases
of theoretical results of digital topology. The experiment re-
sults are given in Section 4 as well as some comments on
the parameter estimation and robustness.

2. Morphological operators under robustness and
topological constraints

We use the following notations. Let f :Z3 → N de-
note a digital image. Let ��(f) denote a dilation of f by a
structuring element �, � ⊂ Z3: ��(f)(x) =

∨
xi∈�(x) f(xi),

where �(x) denotes the translation of � at x [31] whereas
��(f) denotes the erosion of f by � de�ned as ��(f) =∧
xi∈�(x) f(xi). The symbol ��(f) = ��[��(f)] denotes the

opening and ’�(f) = ��[��(f)] the closing (these de�ni-
tions are for symmetrical structuring elements, which will
always be the case in the following; in the general case,
one of both operations has to be performed with the sym-
metrical of the structuring element). The set-wise version
of dilation is obtained from the dilation on function by re-
placing sup (supremum) by ∪ (union) and inf (in�mum)
by ∩ (intersection). For any subset X of Z3, �X denotes the
complement of X . The function dist : Z3×Z3 → N denotes
an approximation of the Euclidean distance in Z3 [32]. We
use the same notation for the distance from a point to a set.
The function distX denotes the geodesic distance, calculated
within the set X . For any point x∈Z3, N (x) denotes some
neighborhood of x, such that N (x) ⊂ Z3 (it can be typi-
cally the elementary neighborhood related to the 6-, 18-, or
26-connectivity). The operator bd(X ) denotes the boundary
of X : bd(X )={x | x∈X and N (x)∩ �X �= ∅}. Thereby, the
boundary of any set is a subset de�ned as the union of the
points x, included in the set, such that their neighborhood in-
tersects both the set and its complement. On the other hand,
the interface is an anatomical concept specifying the com-
mon face of two adjacent organs. It does not have a rigorous
geometric meaning.

2.1. Morphological reconstruction

Morphological reconstruction is one classical way in
mathematical morphology to increase the robustness of
operations. The principle consists in conditioning a cho-
sen transformation to some reference set or image, and
controlling thereby its spatial extension [31,33]. Geodesic
transformations are de�ned by using balls of the geodesic
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distance as structuring elements. In the digital case, the
geodesic dilation of a set Y conditionally to a set X (with
Y ⊆ X ) by a ball of radius 1 is simply computed as [33]:
�X (Y ) = �(Y ) ∩ X , where �X uses the geodesic ball of
radius 1 as a structuring element. The morphological recon-
struction �X (Y ) of Y in X is then de�ned by iterating this
conditional dilation until convergence: �X (Y )= (�X )∞(Y ),
with (�X )n(Y ) = �X [(�X )n−1(Y )] (note that convergence is
achieved in a �nite number of steps for X �nite). These
de�nitions extend to functions and the morphological recon-
struction of f′ under f is de�ned as �f(f′) = (�f)∞(f′),
with �f(f′)=�(f′)∧f. The other geodesic morphological
operations are de�ned in a similar way.

2.2. Bottleneck constriction

We call a bottleneck constriction the splitting of one con-
nected component into several objects, the separation occur-
ring at the narrowest junctions. A narrow junction in some
object X is identi�ed as a topographic saddle of the distance
function g(x) = dist(x; �X ). One would expect that the split-
ting of X into several objects can be done in g by searching
for regional maxima followed by a watershed reconstruc-
tion. In real cases (noisy objects, fragmented borders, etc.),
however, we may obtain many more maxima than the num-
ber of signi�cant objects. Instead, we have to consider only
the maxima corresponding to (or marking) the signi�cant
objects according to some suitable criterion of selection and
rejection of markers. The objects are then obtained by recon-
struction of the chosen markers in the distance function. In
a general case, where no topological assumptions are made,
one may use the watershed transform (see e.g. Ref. [34]) for
this reconstruction. In situations where the topology of the
result needs to be controlled, we may use a reconstruction
based on a homotopic deformation of the markers. If the
markers have the correct topology, then the topology of the
reconstructed objects will remain unchanged. In the follow-
ing section we propose a new completely automatic marker
selection scheme. This scheme permits to control the num-
ber of resulting objects and select those that maximize some
chosen criterion.

2.3. Component tree and automatic selection of markers

A direct application of watershed algorithms often pro-
vides a poor segmentation result. Indeed, every function
minimum gives birth to one segment in the result. The input
image often contains a multitude of minima (several of them
being not signi�cant) which bring over an oversegmentation
of the input image. Several methods can be used to avoid
this, consisting mainly in �ltering either the initial image or
the image on which the watersheds are applied (typically
a gradient image), or merging a posteriori the obtained re-
gions. If some a priori knowledge of the desired segments
is available then one may employ a powerful method using
markers. The markers will limit the number of the func-
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Fig. 1. 1-D example of function f and the component tree (the val-
ues represent the thresholding level giving birth to the component;
not all values are given).

tion minima before the watersheds are applied. Then the
watershed-based segmentation techniques (see for instance
Ref. [34]) are usually based on the following scheme:

(1) selection of markers of the objects to extract,
(2) reconstruction of boundaries between the marked ob-

jects by using the watersheds.

The selection of markers can be done in various ways, de-
pending on the type of available knowledge. For our ap-
plication, we exactly know the number of objects to �nd.
Moreover, we want to de�ne them as the most pertinent ar-
eas of the grey level function, according to some criterion.
If this approach were implemented in a naive way, it would
require to try all the possible values of this criterion, un-
til the right number of objects is found. We propose here a
new way to extract a known number of markers maximiz-
ing this criterion with a reasonable time complexity. We use
a component-tree representation of a function towards this
aim. The use of a tree in order to represent the “meaningful”
information contained in a function is not new. In particu-
lar, Hanusse and Guillataud [35] claim that such a tree can
play a central role in image segmentation, and suggest a way
to compute it, based on an immersion simulation. Several
authors, such as Vachier [36], Breen and Jones [37], Salem-
bier et al. [38] have used this structure for e�cient imple-
mentation of some morphological operators (e.g. attribute
openings, granulometries, extinction functions). The algo-
rithms used to compute the component tree can be found
in Refs. [37–39]. The last reference also contains a discus-
sion about the time complexity of di�erent algorithms. Let
f denote a function f :Z3 → N and let k ∈N. We con-
sider a binarization of f obtained by thresholding f at level
k:fk={x|f(x)¿ k}.Ck(f) denotes the set of all connected
components of fk and C(f) is the set of components ob-
tained with all possible k. These components for all possi-
ble values of k are organized in a directed component tree
(see Fig. 1) de�ned as:

(1) the vertices of the tree are the elements of C(f),
(2) the arcs represent the inclusion relations between the

corresponding components. The relations that can be
obtained by transitivity are omitted.
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Attributes: To each component in C(f), we can associate
numbers which measure some of the component character-
istics. In the following, #X denotes the cardinal of the set
X . Let k ∈N, let c∈Ck(f), we de�ne:

• h(c) = max{f(x)− k + 1; x∈ c}, the height of the com-
ponent c;

• a(c) = #c, the area of the component c;
• v(c) =∑

x∈c(f(x) − k + 1), the volume of the compo-
nent c (i.e. the volume delimited by the function and the
horizontal plane at height k).

The mappings h; a; v are called attributes. These three at-
tributes are increasing (with respect to the inclusion rela-
tion): we say that an attribute � is increasing if ∀c; c′ ∈C(f),
c ⊆ c′ ⇒ �(c)6 �(c′). Suppose that, for a given function
f, we need to �nd the N most signi�cant lobes with respect
to either the height, area or volume criterion. These lobes
will serve as markers for subsequent bottleneck constriction
algorithm. By using the tree, this task reduces to the search
of the N vertices that have the largest attribute values and
are not bound (even transitively) by the inclusion relation.
The algorithm reads as follows:

Compute the component tree T for the function f;
Compute the attribute values for the vertices of T
(height, area or volume);

Sort the vertices of T by increasing order of
attribute value;

Count the number L of leaves in T ;
While L¿N do

Choose a (leaf) vertex c in T with smallest
attribute value;

Remove c from T (keeping unchanged the attribute
values of other vertices);

If this removal does not create a new leaf in T , then do
L= L− 1.

EndWhile

The remaining leafs (more precisely, the pixels which
are associated to these leafs) constitute the desired markers.
An illustrative example is given in Fig. 2. Suppose that the
desired segmentation contains two objects as given in Fig.
2d). For the segmentation we use the height attribute. The
above algorithm is initialized with N = 2 desired resulting
components. Initially, the tree contains L = 11 leaves. The
algorithm iteratively suppresses the leaves with the smallest
weights: 1, 2, 3, 5, 6, 7, 9, 10, 12, 13, 14 (all of them hav-
ing the weight equal to 1), until there are only two leaves
left in the remaining tree: 8 and 11 (with weights 21 and
11, respectively). Using various attributes gives birth to dif-
ferent segmentations even if the same number of resulting
objects is speci�ed. Consider a digital function f the values
of which are given in Fig. 3. For k =1 we obtain three con-
nected components for the set {x|f(x)¿ k}. The height is
equivalent for all of the three components, the second and
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Fig. 2. Segmentation by bottleneck constriction: (a) 2D input ob-
ject, (b) contours of distance to the complement with labeled con-
nected components, (c) corresponding component tree with labeled
vertices and the height-attribute values in parentheses, (d) segmen-
tation in two most pertinent objects.

Fig. 3. Example of a function f. For k = 1, fk contains three
connected components (given in bold). The height, area and volume
attribute values are given below.

the third components have the same area. The volumes dif-
fer for all the three components. The level k and the area a
of the nodes have a special geometrical meaning when used
with a distance function. Consider some object X and some
function g representing the distance to the complement �X .
Consider a node ci of the component tree of g, corresponding
to some component of gk , i.e. (ci ∈Ck(g); k ∈N). Hence,
a ball of radius k centered somewhere in ci is necessar-
ily included in X . The level k corresponds to the radius of
the maximal included ball and the area a(c) to the number
of all such balls. Note that this property assumes that the
digital distance is chosen in accordance with the connectiv-
ity used for de�ning the connected components. The auto-
matic selection of markers used in this approach relies on
the (arbitrary but known) number of resulting objects. The
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function g is some distance function. The selected mark-
ers are those maximizing either the criterion of maximal
included ball (for the height attribute) or the number of
maximal included balls, if the radius is equal for several
components (for the area attribute). We have observed a sig-
ni�cant increase in the segmentation robustness for the area
and volume attributes compared to the height, as shown in
the experiment section.

2.4. Homotopic transformations under constraints

Homotopic transformations can be performed in digital
spaces thanks to the use of simple points (e.g. [40,41]), i.e.
points that can be successively deleted from a set X (or
added to X ) without modifying its topology. Note, how-
ever, that simultaneous deletion of several simple points may
change the topology. Therefore, any transformation which
acts exclusively by sequential deletion or addition of simple
points is homotopic. In order to guarantee a topologically
consistent result, we extensively use homotopic deforma-
tions throughout the segmentation process. Although thin-
ning and thickening are very popular in image processing
and digital topology, here we use more recent tools, where
these operations are constrained not only by topological cri-
teria but also other ones such as grey levels, distances, etc.
They are called �-thinning and �-thickening and were �rst
introduced in Refs. [42,43]. These operators perform a ho-
motopic thinning (respectively thickening) of some binary
object according to some criterion �. The �-thickening is
de�ned by the following algorithm:

Reconstruction by �-thickening
X := marker
repeat until stability
select a simple point x satisfying �
X := X ∪ {x}

The criterion � can be of any nature, not necessarily a topo-
logical one. �-thickening allows to perform transformations
combining topological constraints with any other constraint.
Moreover, it is known that the result of thinning or thick-
ening depends on the order in which the points are tested.
If � introduces an order on the set of points then the selec-
tion of a simple point may be determined by this order. The
priority will be given by the degree of satisfaction of �. For
instance, � can be a criterion on grey level, as f(x)¡C,
and points are ordered according to their grey level. Let X
denote some initial binary object and f a grey-valued im-
age; the �-thickening iteratively adds to X all simple points
such that f(x)¡C. The darkest simple points are added
�rst. The deformation process stops as soon as there are no
more simple points such that f(x)¡C. The �-thinning op-
erator is derived from �-thickening by duality with respect
to complementation, and iteratively deletes points from X
according to the criterion �. Throughout the segmentation

process, the object markers found by the component tree are
often reconstructed by using one of the �-reconstructions.
The construction of the component tree is actually similar
to the extraction of a watershed by �ooding where all the
local minima represent the markers. During the �ooding we
construct the tree while associating the component labels
and the attribute values. The advantage is that once the tree
is constructed, the search of di�erent components by using
various types of criteria or even di�erent number of com-
ponents becomes very fast. During the reconstruction of the
objects from the markers either morphological or homotopic
reconstruction can be used.We prefer �-reconstructions over
morphological reconstructions for their ability to preserve
the topology provided that the markers already have the
topology of the �nal object.

2.5. Cavity and hole

In binary images we call background the complement of
the object. A cavity denotes a connected component of the
background which is not adjacent to the border of the image.
For example, the interior of a hollow sphere is a cavity. In 3D
binary images, a hole denotes intuitively a tunnel through an
object. For example, a solid torus has a hole. Contrarily to a
cavity, the concept of hole does not exist in 2D. Note that an
object containing holes and/or cavities cannot be reduced to
a single point by a series of homotopic operations. While the
�lling of cavities is rather a trivial operation both in 2D and
3D, which can be performed by using labeled background
components, the closing of holes has been proposed only
recently in Ref. [44]. The hole closing algorithm described
below is a simpli�ed version of this method, suited to the
case of connected objects. The hole closing algorithm is
initialized by a bounding boxB of the object containing holes
X , B ⊃ X . The bounding box B is submitted to �-thinning
controlled by the distance function d(x) = dist(x; X ). The
bounding box is a simply connected object with no holes
nor cavities and �-thinning cannot create holes. The thinning
Y = �-thinning(B), where � is d¿ 0, stops as soon as there
are no more simple points to delete (by construction Y is
without holes). At the same time, no point x∈X can be
deleted since d(x) = 0 for all x∈X . Although, during the
thinning, preference is given to points more distant from
the object X , counter-examples have been found where the
holes are not closed with the minimal surface. In the sequel,
Fill(X ) denotes the operator �lling up the holes and cavities
of X .

3. Segmentation method

In this section we describe the segmentation process. The
structures are extracted one by one in the order they are
listed below. In the text, we use numerical indices for the
intermediate objects and abbreviations for complete organs.
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Fig. 4. Result of the initial thresholding (object X1). The CSF,
bone and fat have been eliminated. The 3D process is illustrated
here on two orthogonal slices (sagittal and coronal).

Fig. 5. The encephalon reconstructed from the marker (object X9).

3.1. Encephalon

The extraction of the encephalon mask has been devel-
oped in Ref. [45]. The result of this stage—XENCEPH—is
a smooth envelop of the brain including the cerebrospinal
�uid. The cerebellum, brain stem, hemispheres and the cere-
brospinal �uid are then extracted from the encephalon mask.
Let f be the initial grey-scale image. The initial threshold-
ing X1 = {x | t1¡f(x)¡t2}, where t1 = �CSF − (	CSF =2)
(�CSF and 	CSF being the mean and standard deviation of
the grey levels in the CSF) and t2 = �FAT − 	FAT (�FAT and
	FAT being the mean and standard deviation of the grey lev-
els of fat), eliminates the dark elements (the lower limit)
as the cerebrospinal �uid, bone and air and the vasculariza-
tion and fat (the upper limit). The choice of the lower limit
is essential for good disconnection of the encephalon from
other structures of the head. However, it is not di�cult to
�nd the good value since the tissues are usually well con-
trasted. The actual disconnection is performed by the ero-
sion: X2 = �X1 where the structuring element is a ball with a
radius R=4 to 5 mm. Fig. 4 gives the object X1. Let X3 be the
largest component of X2. The component X3 then marks the
encephalon. The eroded encephalon is reconstructed by di-
lation X4 = �X2 (X3). The structuring elements used for the
reconstruction and the previous erosion are the same, see
Fig. 5. A 3D binary closing X5 = ’�(X4) will close the
cortical furrows and ventricles and smooth the encephalon
surface. The structuring element � is a ball with a radius
R = 5 mm. Finally, the hole and cavity �lling is applied to
�ll up the cavities XENCEPH = Fill(X5), see Fig. 6.

Fig. 6. The encephalon mask XENCEPH .

3.2. Brain stem, cerebellum and cerebrum

The segmentation of the cerebellum and the brain stem is
generally not addressed in the literature. We base it on the
bottleneck constriction (see Section 2). These objects are
�rst automatically separated from the encephalon and then
from each other at the narrowest junction situated in the mes-
encephalon and in the cerebral peduncles. In the following,
the function f denotes the initial MRI. First, we obtain an
intermediate object: X ′

6 = {x | x∈XENCEPH and f(x)¿s1},
where s1=�CORTEX is the mean value of the grey matter (see
Section 4 for the automatic estimation of the parameters).
From now on, we only consider the lower part of X ′

6 limited
on the top by the higher extremity of the tegmentum. This
can be easily found manually. Let X6 denote the resulting
object. The separation proceeds in two steps. First, we iden-
tify the lateral hemisphere lobes which will be deleted, then
we separate the brain stem from the cerebellum. By using
the component tree (Section 2) we �nd three markers M ′=
{M1; M2; M3} corresponding to the three most signi�cant
lobes of g1(x) = dist(x; X6). Since the searched objects are
simply connected with no cavities, the markers are submit-
ted to a cavity and hole �lling algorithm [44] M =Fill(M ′).
The objects are then obtained by homotopic reconstruction
of the three markers in g1: X7 = �-thickening(M), where �
is g1(x)¿ 0. The largest connected component of X7 gives
the union of the cerebellum and the brainstem: XBS+CB. The
second step separates the brainstem and the cerebellum.
The separation is based on the bottleneck constriction of
the morphological closing of XBS+CB. This closing regular-
izes the laminar structure of the cerebellum which would
have otherwise perturbed the distance function. The result-
ing smooth-surfaced object is denoted by ’�(XBS+CB). The
structuring element� is a ball of radius R=1 mm.We search
three markers M ′ = {M1; M2; M3} marking the most sig-
ni�cant lobes of g2, calculated as g2 = dist(x; ’�(XBS+CB)).
After a recti�cation of the topologyM=Fill(M ′), by homo-
topic reconstruction of M we obtain X8 = �-thickening(M),
where � is g2(x)¿ 0. The brainstem is the smallest con-
nected component of X8 ∩ XBS+CB. The cerebellum XCB is
obtained as the union of the two largest connected compo-
nents of X8 ∩ XBS+CB. The intersection permits to recover
the laminar aspect of the cerebellum. Finally, we obtain the
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Fig. 7. Contours (in white) of the cerebellum XCB and the brain
stem XBS , sagittal and axial views.

cerebrum by XCEREBRUM = XENCEPH \ XBS \ XCB. The pro-
posed method uses the a priory knowledge we have about
the number of objects of interest, and the automatic selec-
tion of the corresponding number of markers, chosen as the
most signi�cant ones (Fig. 7).

3.3. Cerebrospinal �uid

This method extracts the object XCSF representing the CSF
both in the ventricles and in the sulci. We impose to the re-
sulting XCSF the topology of a hollow sphere: it corresponds
to the reality but not necessarily to the input image because
of its limited resolution. This is a speci�city of the proposed
approach, to include constraints related to reality even if the
data do not exactly satisfy them. We start with an initial
thresholding: X9 = {x | x∈XENCEPH and f(x)¡s2} where
s2 = �CSF + 2	CSF , and �CSF and 	CSF are the mean and
the standard deviation of CSF. Then we �lter out the noisy
points by morphological opening: X10 = X9 \ ��(X9) where
� is a ball of radius R=1 mm. We de�ne a new grey-scale
image g as

g(x) =




f(x) if x∈X10;
s2 if x∈X9 and x �∈ X10;
0 otherwise:

The points from X10 are reported from f with the same
grey-level value, these points are likely to belong to the
cerebrospinal �uid. Isolated points or points belonging to
small structures, �ltered out by the opening above, get a
new value s2. (These points would also belong to the CSF
but they are likely to be just noise since they are isolated.)
Indeed, the grey-level s2 is the lowest value authorized for
the reconstruction of the CSF complement below. Hence,
these points will not be part of the CSF. We extract XCSF
by reconstruction of its complement in XENCEPH denoted as
XCSF . Let X11 = �-thickening(M), where �: g(x)¿ s2, and
the markerM is an arbitrary point of the encephalon XENCEPH
such that f(x)¿s2 (i.e. in XCSF). The CSF is then obtained
by subtraction: XCSF =�� (XENCEPH )\X11; where � is a ball
of radius R=1 mm (see Fig. 8). The dilation guarantees that

Fig. 8. The cerebrospinal �uid XCSF (in white), sagittal and axial
views.

XCSF contains all CSF. Note that the dilation �� by a ball
of R = 1 mm cannot (the absorption law, see [46]) modify
the topology of XENCEPH since this object has previously
been smoothed by a closing with a ball of R=10 mm [47].
The topology of XCSF is a hollow sphere. From now on, we
consider XENCEPH as XENCEPH \ XCSF .

3.4. Grey and white matters

The segmentation of the grey and white matters is
initialized from the classical k-means classi�cation al-
gorithm used to identify the intensity clusters of the
two tissues. We obtain the cluster-separation threshold
c1=k-means(f∩XCEREBRUM ) with k=2 for two clusters. The
interface between the white and the grey matters is obtained
by �-thickening. First, we identify the largest component of
the white matter X8 by taking X7 = {x | x∈XCEREBRUM and
f(x)¿c1} and X8 the largest connected component of X7
which will, after the �lling of cavities M = Fill(X8), serve
as marker for �-thickening. The �-thickening is controlled
by the geodesic distance g to the marker, conditionally to
the complement of the grey matter by g(x) = distX7 (x;M).
The white matter XWM is then reconstructed homotopically
from the marker M as XWM = �-thickening(M), where �
is g¡∞. Note that the �-reconstruction is limited only to
points classi�ed as white matter since g(x)=∞, for all x �∈
X7. During the reconstruction the priority is given to simple
points which are at the smallest geodesic distance from the
initialization. The interface between the grey matter and
the CSF is obtained in a similar way, by �-thickening in
the complement of CSF, with the same priority depending
on geodesic distances. These ideas are detailed below. The
human anatomy may vary substantially between di�erent
individuals, and this is particularly true for the cortex. On
the other hand, the topology always remains unchanged de-
spite the di�erences in the shape and the structure. Again,
the foreseen applications led us to privilege the topology
over the millimetric precision. The cerebral cavities (e.g.
the ventricles) and convolutions are particularly sensitive
to the partial volume e�ect, especially in regions where the
space between two adjacent gyri gets very small. Because of
the partial volume e�ect the gyri sometimes seem to grow
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Fig. 9. Extraction of the white matter and the cortex: (a) an originally open concavity appears closed due to partial volumes, (b) the dashed
line indicates the real cortex surface; the solid lines indicate the distance isovalues used to control the �-reconstruction of the cortex from
XWM , (c) correctly segmented concavity remains open.

together, whereas in reality this is never the case. Conse-
quently, the topology of the surface, found in such a MRI
scan, might be compromised. We will try to solve this in our
approach. It may seem that the easiest method to obtain the
cortical surface would be to simply extract the boundary of
the volume representing the cerebrum bd(XCEREBRUM ). How-
ever, as this method does not control the topology, it does
not necessarily deliver the required topology. The principal
cause is the partial volume e�ect. We propose a di�erent
approach. The cortex is mainly a layer of almost constant
thickness covering the white matter. We start with the sim-
ply connected component (without any hole or cavity) rep-
resenting the white matter XWM and perform a �-thickening
conditionally to XCEREBRUM . The grey matter is obtained as
XCORTEX = �-thickening(XWM ) \ XWM , where � is g¡∞,
where g(x) = distXCEREBRUM (x; XWM ). Note that the cortex re-
construction is limited to points x∈XCEREBRUM \ XWM . This
allows us to add progressively the points that are inside the
XCEREBRUM (i.e. do not enter the CSF), and that are close to
the white matter while the topology (XCORTEX is one con-
nected component with one cavity due to the subtraction
of XWM ) remains preserved. This method guarantees that
the sulcus concavities, which may appear closed due to the
partial volume e�ect, are kept open. This topology corre-
sponds best to the real cortical surface (see Fig. 9). Fig. 10
shows a few axial slices; the cortical surface is represented
by white closed contours. Note that the disconnections
are only due to the 2D representation. The 3D surface is
actually closed. Fig. 11 shows two 3D renderings of the
cortical surface. The quality of the cortical surface depends
heavily on the quality of the segmentation of the parts that
are taken as input (brain-mask, cerebellum, brainstem, CSF
and white matter). If, for instance, the cerebrospinal �uid is
not segmented correctly, the cortical surface that is found
by our approach will not have a correct form either. Here,
thanks to the robustness of our approach, this problem does
not occur. The extraction of the grey/white matter interface
is to some extent equivalent to the following three steps:
(1) �nding the markers by identifying the most prominent
maxima in the distance to the complement, followed by (2)
applying the watershed and (3) some topology recti�cation
step. However, the white matter and the cortex have com-
plex geometric forms due to numerous giry and furrows

Fig. 10. The cortical surface in white, superimposed on a few slices.

Fig. 11. 3D representation of the cortical surface, upper front view
and lower view.

and the classic de�nition of watershed includes no topology
constraints. Therefore, watershed-based interface may not
give good results from a topological point of view. Noise
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in the images can increase topological problems too. An
alternative topology-controlled approach might consist of
two simultaneous �-reconstructions running towards each
other, started from the CSF and some marker situated in the
white matter. The preference could be done to points where
the intensity gradient is lower. It is likely that the two prop-
agation fronts meet in the gradient crest, but we have not
tested this method yet. The authors of Refs. [48,49] propose
an approach that allows a more precise description of the
cortical surface, using cellular complexes. This description,
however, which has been developed for a di�erent purpose,
makes the treatment of the cortical surface much more dif-
�cult, and is not very suited for creating a volumic mesh.
These constraints being taken into account, our approach
has proven to be very robust. It delivers a volumic rep-
resentation of the cortical surface with the topology of a
hollow sphere. Therefore, it is very suitable for creating a
mesh representation of the cortical surface.

3.5. Separation of hemispheres

From an anatomical point of view, the two hemispheres
are separated by the �ssura longitudinalis cerebri, a very
deep and narrow furrow. Due to the resolution of the MRI
technique, the convolutions that lie at opposite sides of
the �ssura longitudinalis cerebri seem sometimes to grow
together. In fact, they are not really connected. The space
between them is too small to appear in the MRI image.
Another di�culty is that the hemispheres are physically
connected by the corpus callosum, and the division within
the corpus callosum can only be done somewhat arbitrarily.
By using the component tree to the XCEREBRUM (see Section
2) searching for two markers, we obtain markers for the two
hemispheres, M = {M1; M2}. During the second step (the
reconstruction of the hemispheres from the markers), it may
happen that voxels of one hemisphere are wrongly assigned
to the other. This happens due to connections of hemi-
spheres in the MRI images (partial volume e�ect and corpus
callosum), and a dissymetry between both hemispheres, that
is occasionally found. To deal with this problem we modify
the markers. The markers are cut in both the antero-posterior
and up-down directions, so that they have the same pro-
jections in the left-right direction. This method follows the
form of the �ssura longitudinalis and gives satisfactory re-
sults even for brains where one of the hemispheres is larger
than the other. The hemispheres are obtained by reconstruc-
tion from the two markers: {XHL; XHR}= �-thickening(M),
where � is g¡∞, where g(x) = distXCEREBRUM (x;M).
Fig. 12 presents an example of the result. Fig. 14 illustrates
a case of a marker that has grown into the other hemisphere.
The reason for this phenomenon can be found in Fig. 13.
The left marker is still present in the lower region of the
left hemisphere whereas, in the corresponding region in the
right hemisphere, its marker is already completely eroded
away. Fig. 15 illustrates the modi�ed markers according to
the proposed method. The result of the conditional dilation

Fig. 12. The separated hemispheres in 3D.

Fig. 13. Example of unmodi�ed marker volumes.

Fig. 14. Example of a marker that grew into the other hemisphere.

Fig. 15. Modi�ed marker volumes.

of these markers is presented in Fig. 16 and illustrates the
improvement provided by the modi�cation of markers. The
proposed procedure, applied to several MRI images has
proven to be very robust. However, for some MRI im-
ages the assignment of a small number of voxels may be
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Fig. 16. Separated hemispheres, obtained from modi�ed markers.

arguable. Especially the precise anatomical division of the
two hemispheres is rather subjective. A possible accuracy
improvement might be obtained by using methods based on
dynamical surfaces (snakes). Nevertheless, considering the
extremely complex geometrical form of the cortex, these
methods get easily trapped in local minima. Therefore, the
segmentation results obtained by the topology-controlled
approach proposed here can be used as the initialization of
the dynamic surface. The evolution of the surface must be
limited to only some little extent to avoid the risk of getting
stuck in some local minimum.

3.6. Skin

The �rst step to extract the skin consists in extracting the
mask of the head XHEAD. This object is simply connected
with no holes nor cavities and is obtained as follows. After
an initial thresholding and selection of the greatest connected
component X10 of {x|f(x)¿s3}, where s3 = �CSF − 	CSF ,
we perform a smoothing by a morphological closing: X16 =
’�(X10), � is a ball of R=5 mm. Filling of cavities leads to
X17 = Fill(X16). The object X17 is too smooth and does not
follow correctly the contours of the head. Therefore we pro-
pose to add a peeling step eliminating the dark regions (air)
introduced by the closing. The closing, however, could not
be omitted since its purpose is to close the ori�ces (ears: : :)
which would have otherwise connected the exterior of the
head with the bone, since the air and the bone have similar
grey levels. The peeling is only limited to dark points (the
air) and up to some maximum distance from the surface of
XHEAD. A geodesic transform can be used g(x)=distX15 (X17),
and the peeling is achieved by �-thinning(X17) = XHEAD
where �: g(x)¡R, where R is the radius used in the clos-
ing (5 mm). XHEAD has therefore the correct topology and
its surface follows the contour of the head. The skin XSKIN is
obtained in the next step by a thickening of the border of the
mask of the head bd(XHEAD). The thickening is bounded by a
maximum distance from the contour and is limited to bright
points only, likely to belong to the skin. This restriction
is achieved by a geodesic transform g(x) = distX15 (XHEAD).
Homotopic thickening of the contour of the head is per-
formed as follows: XSKIN =�-thickening(bd(XHEAD)), where
�: g(x)¡C, where C = 6 mm (an arbitrarily chosen max-
imum allowed thickness of the skin and epidermis). The

Fig. 17. Contours of the skin XSKIN (in white), sagittal and axial
views.

Fig. 18. Filling of holes on a hollow sphere. (a) the object M is a
sphere with one cavity, (b) the object with holes X inside M , (c)
the holes of X are �lled whereas its concavity becomes a cavity.

Fig. 19. Contours of the cranium with closed holes (reduced to the
skullcap and base), sagittal and axial views.

thickening extends homotopically the head contour inwards.
XSKIN has the topology of a hollow sphere and entirely cov-
ers the head. The ori�ces are covered by an one-point-thick
surface (Fig. 17).

3.7. Skull

The extraction of the skull is subject to two constraints: (i)
The resulting object XSKULL is homotopic to a hollow sphere.
Note that this constraint is imposed by the foreseen applica-
tions and does not correspond to the reality. It is completely
di�erent from the one of Ref. [25] where no precise topol-
ogy is required. (ii) Focus is given only to the skullcap and
the cranium basis whereas the regions situated far from the
cortical surface (jaw and sinus) are eliminated. Recall that
the result of the segmentation is an individual head model.
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Figure Part (i) The height attribute

Figure Part (ii) The area attribute

Figure Part (iii) The volume attribute

Fig. 20. Quality of extraction of the cerebellum and the brain stem with respect to the inaccuracy of parameters: manually-found upper
extremity of the tegmentum (left column) and thresholding parameter s (right column) when using the height, area or volume attribute
(�gure Parts i, ii and iii, respectively). Part (i). The height attribute. Part (ii) The area attribute. Part (iii). The volume attribute.

This model is later used as a simulation support for elec-
tromagnetic �eld penetration through various tissues of the
head. The sinus and jaw are situated relatively far from the
cortex and possess a complex topology. The numerical so-
lution of waveform propagation equations applied to these
objects would be useless and overwhelmingly complex. The
segmentation proceeds in two steps according to these re-
quirements: a presegmentation step followed by a hole (tun-
nel) closing.
(1) Presegmentation: masking of the encephalon and the

air. We �rst de�ne X12 = XHEAD \ XENCEPH . Then by thresh-
olding we get X13 = {x | x∈X12 and f(x)¡s3}, where

s3 = �CORTEX − 	CORTEX . The mask “close to the cortex” is
de�ned as XMASK = ��(XCEREBRUM ∪ XCB), where � is a ball
of R = 25 mm; X ′

SKULL = X13 ∩ XMASK . The mask includes
the skullcap, the front and the cranium base. The sinus and
the jaw are suppressed.
(2) Hole closing: We use a modi�ed version of the hole

closing algorithm of [44]. The new version is based on ho-
motopic deformations controlled by a distance function from
the object (see Fig. 18). Let X denote the object submitted
to the modi�ed �lling algorithm. In the real case X repre-
sents the skull. This object has holes—either natural ori�ces
or induced by noise. Filling of these holes will give birth to
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the central cavity occupied by the encephalon. The starting
object M , M ⊃ X , has the correct topology (equivalent to a
hollow sphere). M is then homotopically deformed towards
the desired result. The deformation prevents the creation of
holes and preserves the only cavity (Fig. 19).
The hole closing applied on the skull starts with the object

X14 =XMASK \ (XCEREBRUM ∪XCB) containing the skull (with
holes). The distance function d(x)=dist(x; X ′

SKULL) controls
the hole closing. The resulting object XSKULL is obtained by
homotopic thinning: XSKULL = �-thinning(X14), where � is
d(x)¿ 0.

4. Experiment results

The segmentation proceeds sequentially. Later stages de-
pend on previous intermediate results. Good robustness is
therefore important at every stage since an early error would
propagate throughout the entire segmentation process. In this
section we evaluate the sensitivity to the parameter values.

4.1. Parameter estimation and robustness

The segmentation algorithm uses several parameters. In
this section we show experimentally the sensitivity to incor-
rect parameter values. The sizes of the structuring elements
are derived from the anatomical knowledge and the same
values could be successfully used on all examples. Markers
are selected automatically, and geodesic transformations and
reconstruction contribute to the robustness of the method.
Grey level parameters are estimated automatically with the
k-means algorithm, with k = 5 for �ve classes (ordered by
increasing grey level: air and bone, cerebrospinal �uid, grey
matter, white matter, fat). The mean values �i and standard
deviations 	i are calculated for each of the �ve classes found
by the k-means. Sometimes (about 30 percent of all cases)
the k-means fails to identify the cerebrospinal �uid (due to
the partial volume e�ect and the negligible volume occu-
pied by this structure compared to other objects). A man-
ual intervention is therefore needed to verify the result of
the k-means. Except the positioning of the horizontal slice
used to segment the cerebellum and the brain stem, no other
user-interaction is needed. These limited interactions are
fully reasonable for the foreseen applications. The quality
of the result is assessed by introducing a measure d of simi-
larity between two segmented images f and g. One of them
represents a reference result and the other the tested one.
The reference result is obtained with the correct value of the
parameter. The values of the other parameters remain �xed
and equal to the automatically found ones. Then, the value
of tested parameter is subject to alteration with an added
error. We assume the following: g; f :Z3 → {0; 1; : : : ; n},
where n is the number of objects (same for g and f) and the
set {x | g(x) = 0} (or {x |f(x) = 0}) is the background for
g (respectively for f). In our case, the segmentation tech-
nique guarantees a correct topology and that the number n

Fig. 21. Example of an input image, sagittal and axial views.

Fig. 22. Result of the segmentation of the image given in Fig. 21.

Fig. 23. 3D view of the segmented result.

of resulting objects in g and f is constant. The topology
and the number of objects is constant whatever the value
of parameter. Therefore, no considerations have to be made
about the number of objects or the topology of the result.
We propose a similarity measure de�ned as

d(f; g) =
NA(f; g)

ND(f; g) + NA(f; g)
;

where NA is the number of points associated to the same
structure in f and g given by NA(f; g) = #{x |f(x) =
g(x); f(x) �= 0; g(x) �= 0} and ND is the number of points
attributed to di�erent structures ND(f; g) = #{x |f(x) �=
g(x)}. The symbol # denotes the cardinal of a set. This
measure ensures that d(f; g)=d(g; f), d(f; g)∈ [0; 1], and
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Fig. 24. Set of sagittal slices of the resulting contours (from the center to one side).

yields values close to zero (or one) for low (or high) rate
of similarity between f and g, respectively.

4.2. Results

Two parameters are essential to a successful segmenta-
tion, both concerning the identi�cation of the brain stem
and cerebellum: the position of the manually given horizon-

tal slice delimiting the upper extremity of the tegmentum
and the grey-level parameter s1 automatically found by the
k-means analysis. These parameters are critical, since an
incorrect value may result in misidenti�cation of the brain
stem and cerebellum. The other parameters are not critical;
an inaccuracy of the value can only slightly deteriorate the
segmentation quality. It may only result in displacement of
the contours of the object, and no object misidenti�cation
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may occur. The misidenti�cation is re�ected in the similar-
ity measure as a rapid decrease of the correspondence rate,
since the number of incorrectly attributed points consider-
ably grows. For a slight displacement of the contours, the
values of the similarity measure d remain close to 100% of
correctly attributed points. We show the sensitivity of the
result to the error of these two critical parameters. Fig. 20
illustrates the robustness of the brain stem and cerebellum
extraction when using the height (Part i), area (Part ii) and
volume attribute (Part iii) as criterion for the marker se-
lection (see Section 2). We have traced the segmentation
quality by using the measure d for each of the testing MRIs
versus a set of erroneous values of the two parameters. Each
graphic contains therefore one curve per image. The horizon-
tal axis represents the error introduced to the parameter. The
error is calculated as (s−s0)=s0:100%, where s0 is the correct
value. The central value is error-free; the error is positive
to the right and negative to the left. The vertical axis shows
the similarity rate with respect to the central error-free result
(therefore, always 100%). As the error grows, the similarity
rate decreases. The left-column graphics give the in�uence
of an erroneous displacement of the manually found up-
per extremity of the tegmentum. The height attribute is not
su�ciently robust to an incorrect value. The area-based
(respectively the volume-based) results exhibit a good error
insensitivity with only one (or two) misidenti�cations out
of 13 tests for the displacement of +3 slices (vertical reso-
lution is 1:5 mm per slice). The right-column graphics give
the sensitivity to the inaccuracy of the thresholding parame-
ter s1. Again, the area and volume-based criteria exhibit con-
siderably better robustness than the height-based one. The
error equal to −9% introduces two misidenti�cation for the
area-based extraction. The error of −6% and −8% intro-
duces one and two misidenti�cations for the volume-based
extraction. A discussion with neurologists revealed that two
manual interventions needed to control the segmentation
process are acceptable: (1) veri�cation of the clusters found
by k-means and (2) location of the top extremity of the
tegmentum. Indeed, they belong to the interactions that the
users are ready to do to speed up the process and get good
results. Fig. 21 gives an example of the input data. Fig. 22
gives the segmentation results corresponding to these slices.
Fig. 23 gives a 3D rendering whereas Fig. 24 gives a series
of slices throughout the entire volume.

5. Conclusion

In this paper, we have proposed an original method for the
segmentation of 3D MRI scans of the head. Several struc-
tures are extracted one by one by using operators from the
frameworks of mathematical morphology and digital topol-
ogy. The advantage of these operators is that they allow to
account easily for available knowledge concerning geome-
try (shape, size, thickness: : :) of the objects of interest as
well as topology, which is a major constraint in the fore-

seen application. Despite the anatomical variations between
di�erent individuals and the diversity of the input images
(acquired by several scanners in various laboratories), we
have observed a satisfactory insensitivity to the parameters
error limiting thus the necessary manual intervention. The
segmentation result is always a partition of the space, i.e.
no points remain unlabeled or associated to two structures.
A correct 3D topology of the result is always guaranteed by
the used approach. Although di�erent works in the literature
address already the brain segmentation, the foreseen appli-
cations called for other methods focusing to the topology
of the result. The originality of the proposed approach is to
provide an automatic and robust method devoted to speci�c
applications. The constraints are derived from the applica-
tion and are guaranteed even if they are not completely true
in reality or in the data. The reduced number of parameters,
the automatic selection of markers and the use of morpho-
logical reconstruction contribute to the increase in robust-
ness. Moreover, this work shows a real application relying
on sound theoretical bases in digital topology. The overall
execution time necessary for a Sun Ultra 5 to segment a
256× 256× 160-point image (i.e. equal to 10 MB of data
if coded in eight bits) is 25–35 min. The results have been
positively evaluated by medical doctors and electrophysiol-
ogists and serve now as individual models for solving equa-
tions simulating the electromagnetic wave propagation in
head tissues.
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