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a b s t r a c t

The analysis of spatial relations among objects in an image is an important vision problem that involves

both shape analysis and structural pattern recognition. In this paper, we propose a new approach to

characterize the spatial relation along, an important feature of spatial configurations in space that has

been overlooked in the literature up to now. We propose a mathematical definition of the degree to

which an object A is along an object B, based on the region between A and B and a degree of

elongatedness of this region. In order to better fit the perceptual meaning of the relation, distance

information is included as well. In order to cover a more wide range of potential applications, both the

crisp and fuzzy cases are considered. In the crisp case, the objects are represented in terms of 2D

regions or 1D contours, and the definition of the alongness between them is derived from a visibility

notion and from the region between the objects. However, the computational complexity of this

approach leads us to the proposition of a new model to calculate the between region using the convex

hull of the contours. On the fuzzy side, the region-based approach is extended. Experimental results

obtained using synthetic shapes and brain structures in medical imaging corroborate the proposed

model and the derived measures of alongness, thus showing that they agree with the common sense.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The importance of spatial relations between spatial entities or
between parts of objects has been highlighted in many different
works, including linguistics, philosophy, experimental psychology
and computer science (see e.g. [2,8] for several references in
different domains). For instance, according to feature integration
theory, object perception requires the sequential allocation of
focused attention to areas in space, enabling features belonging
to the same object to be linked through their shared spatial
location [20]. Moreover, relations between parts are main features
for object perception and recognition [1,12,19]. The literature
about the analysis of spatial relations from images is quite vast
and dates back to the 1970s and 1980s [11,16]. In [11], Freeman
presents mathematical–computational formalisms to represent the
semantic context of terms (in English) that codify relationships
between objects. Here we consider spatial relations between two
spatial entities, that can be either different objects or different
parts of one single object.
ll rights reserved.

Takemura),
In the present paper we address the issue of modeling the
relation along, which is a complex relation, not included in the
usual basic topological or metric relations [13] and that has been
overlooked by the computer vision literature. However, it is an
important spatial relation that is often used to describe objects in
natural language. Calculating the degree of alongness could be
useful for processing spatial queries with natural language expres-
sions [18] such as: ‘‘Which are the roads along the coast?’’ or
‘‘Which are the muscles along the femur?’’. Structures along each
other also appear in the context of thin objects in images. For
instance, the edges of thin objects such as blood vessels or roads
are inherently along each other. The use of this spatial relation
may be useful to devise segmentation algorithms for thin struc-
tures. To the best of our knowledge, the only work addressing
alongness between objects by giving mathematical definitions was
developed in the context of geographic information systems (GIS)
[18]. In that work, the relation along between a line and an object
is defined as the length of the intersection of the line and the
boundary of the object, normalized either by the length of this
boundary (perimeter alongness) or by the length of the line (line

alongness). In these definitions, the boundary can also be extended
to a buffer zone around the boundary. However, no algorithmic
implementations or real experimental results obtained from
digital images are presented. Crevier [10] addresses the problem
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of spatial relationships between line segments by detecting
collinear chains of segments based on the probability that succes-
sive segments belong to the same underlying structure. Never-
theless, this approach cannot be directly extended to any object
shape. Here we consider the more general case where both objects
can have any shape, and where they are not necessarily adjacent.
For computer vision applications, the considered objects can be
obtained for instance from a crisp or fuzzy segmentation of digital
images. Algorithmic details for all approaches are provided.

The along relation is an intrinsically vague notion. Indeed, in
numerous situations even of moderate complexity, it is difficult to
provide a definite binary answer to the question ‘‘Is A along B?’’,
and the answer should rather be a matter of degree. Therefore
fuzzy modeling is appropriate, as for many relations that have an
intuitively clear meaning but that defy any all-or-nothing math-
ematical definitions (see e.g. [3] for a review on fuzzy spatial
relations). Now if the objects are themselves imprecisely defined,
as fuzzy sets, this induces a second level of fuzziness.

In this paper, we propose a fuzzy model of the relation along,
for both crisp and fuzzy 2D objects. It is based on a measure of
elongatedness of the region between both objects. In case of crisp
objects, they are considered as 2D shapes in images which, in
turn, may be represented in terms of 2D regions or 1D contours.
The 2D representation is useful and leads to a powerful approach
to calculate the region between the objects of interest based on
the concept of visibility. The price to be paid, in this case, is its
higher computational cost. In order to derive a more efficient
contour-based approach, an alternative model to calculate the
between region based on convex hulls is introduced, which is less
general but still applies to a large class of shapes. For fuzzy
objects, we propose an extension of the region-based approach.

We first present a general approach to characterize the
alongness spatial relation in terms of the region between two
objects in Section 2. We assume that each object is a connected
spatial entity. We propose a mathematical model and measures of
alongness between crisp objects in Section 3. An efficient contour-
based implementation of the convex hull method is described in
Section 4. An extension of the general approach to calculate the
degree of alongness between fuzzy objects is discussed in Section
5. Experimental results using both synthetic and real objects are
shown in Section 6. Some properties and possible extensions are
provided in Section 7.
2. General approach: along as an elongated space between

The between relation, on which we base our proposal for along,
is clearly polymorphic and may have different intuitive meanings
depending on the objects and their spatial configuration. Similarly
the along relation may depend on the shape of the objects. To
derive the along notion from the one of betweenness and from the
elongatedness of the region between two objects, some assump-
tions can eventually be made about the objects, such as ‘‘at least
A

B
β β

A

Fig. 1. (a) Example where A is along B, with an elongated region b between A and B. (

adjacent arcs are shown in red. (For interpretation of the references to color in this fig
one object should be elongated’’, or ‘‘both objects should be
elongated’’. Also, the distance between them should be small
with respect to the size of the objects. In the example in Fig. 1(a),
it can be said that A is along B, or that B is along A. But typically
we would not say that A is along B in the example in Fig. 1(b),
although the region between them is elongated.

It is quite clear that the region between A and B, denoted by b,
should be elongated, as is the case in Fig. 1(a). In our model, we
propose a definition that does not necessarily consider the shape
of the objects as a whole, that is symmetrical in both arguments,
and that involves the region between the objects and their
distance. Moreover, as already advocated in [11], defining such
relations in a binary way would not be satisfactory, and a degree
of satisfaction of the relation is more appropriate. Finally, we also
want to be able to deal with situations where the relation is
satisfied locally, between parts of the objects only.

Based on these considerations, we propose a mathematical
definition of the degree to which an object A is along an object B,
based on the region between A and B and a measure of this region.
The two main steps of our approach are thus as follows:
1.
b) C

ure
Calculate the region b between A and B.

2.
 Measure how elongated is b, thus defining the degree to which

A is along B.

One of the interesting features of this approach is that it
involves explicitly the between region, which is also committed in
the usual semantics of the along relation. From a mathematical
and computational point of view, the approach benefits from
powerful existing techniques to calculate the region between A

and B. In the present paper we choose to use the definitions
proposed in [4]. Once the region between A and B is obtained, the
issue of how elongated is b may be treated by shape analysis,
leading to different measures which may be chosen depending on
the application, as explained below. The paper [4] is used as the
basic reference to implement the methods to calculate the
between region in the present paper.
3. Spatial relation along for crisp objects: region-based model

Since no assumption on the shapes of the objects is made,
some classical ways to define the between region may not be
appropriate. Thus, we choose here the visibility approach [4] to
model a region-based definition of betweenness. In this particular
model, concavities of an object that are not visible from the other
one are not included in the between area.

Conversely, a contour representation may be adopted in order
to derive a more computationally efficient method to calculate
the between region and the alongness degree between regions. The
visibility approach described above is not completely suitable in
this sense because, though the visibility region between two
objects may be calculated from their contours, they have to be,
B

A

Bβ

Adjacent arcs

ase where b is elongated but A is not along B. (c) Same example as (a) where

legend, the reader is referred to the web version of this article.)
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in principle, defined for each point in the considered 2D image. In
order to derive a more efficient method, an alternative approach
to calculate the between region based on the convex hull [4] and
on contour representations is described in Section 4.

In this section, we discuss the region-based model by means of
the computation of the region between using visibility (Section
3.1) and the elongation (Section 3.2).

3.1. Region between two objects

In [4], methods for computing the region between two objects
in order to cope with complex shapes have been proposed,
including the visibility approach. More formally, this approach
relies on the notion of admissible segments as introduced in [16].
A (straight line) segment �a,b½, with a in A and b in B (A and B are
supposed to be compact sets or digital objects), is said admissible
if it is included in AC \ BC [4]. Note that a and b then necessarily
belong to the boundary of A and B, respectively. This has
interesting consequences from an algorithmic point of view, since
it considerably reduces the size of the set of points to be explored.
The traditional Bresenham algorithm has been adopted to calcu-
late the line segments in our experiments. The visible points are
those which belong to admissible segments. The region between
A and B is then defined as the union of admissible segments.

The second step requires that the extremities (belonging to the
boundary of A or B) of the admissible segments are kept in the
between region. Therefore we slightly modify the definition of [4] as

b¼
[
f½a,b�,aAA,bAB,�a,b½ admissibleg: ð1Þ

This definition is illustrated in Fig. 2 for two different cases.
Note that, in contrast to the objects in Fig. 2(a), in case of
Fig. 2(b) there is a concavity in one of the shapes not visible from
the other object, which is properly excluded from the between

region by the visibility approach. This illustrates the agreement
between the proposed mathematical definition and the intuitive
meaning of the relation.

3.2. Degree of elongatedness

Elongatedness is related to shape measurements and several
approaches can be used to define an appropriate measure such as
the circularity or the ratio between the minor and the major axes
[9]. One of the most popular ones is given by the inverse of
compacity, i.e. how elongated is the region with respect to a disk
(or more generally a hyper-sphere). This can be measured in the
2D case by the elongatedness measure c¼ P2=S, where P and S

represent the perimeter and the area of the region. We have
c¼ 4p for a perfect disk, and the more elongated is the shape, the
larger is c. In order to normalize this measure between 0 and 1,
we propose a first alongness measure defined as

a1 ¼ fa
P2ðbÞ
SðbÞ

� �
, ð2Þ
Fig. 2. (a) Region (in red) between two objects (in green), calculated by the

visibility approach. (b) Another example, showing that the concavity of the object

below is properly excluded from the between region by the visibility method. (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
where SðbÞ and PðbÞ denote the area and perimeter of region b,
respectively, and fa is an increasing function, typically a sigmoid,
such as faðxÞ ¼ ð1�expð�axÞÞ=ð1þexpð�axÞÞ, which is used in the
present paper. This measure a1 tends towards 1 as b becomes
more elongated. Although a is a parameter of the method, fa is a
non-decreasing function that preserves the order, which is the
most important property, i.e. a configuration where b is more
elongated than in other configurations will always lead to higher
values of a1. Absolute values can be changed by tuning a to
enhance the differences depending on the application.

Let us now introduce the constraints derived from the discus-
sion in Section 2. It is clear that the measure a1 does not match
these constraints. In particular it does not lead to good results in
all situations since it considers a global elongatedness, while the
elongatedness only in some directions is useful. Let us consider
the example in Fig. 1(b). The region between A and B is elongated,
but this does not mean that A is along B. On the other hand, the
situation in Fig. 1(a) is good since b is elongated in the direction of
its adjacency with A and B. In order to model this, instead of using
the complete perimeter of b, the total arc length LðbÞ of the
contour portions of b adjacent to A or to B is used (see the
adjacent arcs indicated in Fig. 1(c)). Here, with the modified
definition of b (Eq. (1)), these lines are actually the intersections
between A and b and between B and b. The new elongatedness
measure is then defined as

a2 ¼ fa
L2ðbÞ
SðbÞ

� �
: ð3Þ

The constraints on distance should now also be considered.
Although the measure a2 produces more adequate results than a1,
it does not take directly into account the distance between A and
B, which is useful in some situations. Also, because a2 is a global
measure over A and B, it fails in identifying if there are some parts
of A that are along some parts of B, i.e. it lacks the capability of
local analysis. These two potential limitations (depending on the
application) are solved by the next two measures, i.e. a3 (dis-
tance) and a4 (locality), respectively, as shown below.

We propose to incorporate these aspects in the present
approach by considering the distance between the two shapes
within the between area. Let x be an image point, and dðx,AÞ and
dðx,BÞ the distances from x to A and B respectively (in the digital
case, they can be computed in a very efficient way using distance
transforms [6,7,17]). Let DABðxÞ ¼ dðx,AÞþdðx,BÞ. Instead of using
the area of b to calculate how elongated it is, we define the
volume VðbÞ below the surface fðx,DABðxÞÞ, xAbg, which is calcu-
lated as

VðbÞ ¼
Z
b

DABðxÞ dx: ð4Þ

In the digital case, the integral becomes a finite sum. As an
example, see Fig. 6(a), which shows the distance map DAB(x)
between the shapes. By taking the region representing DAB(x) as a
topographic surface, VðbÞ is calculated as the volume below this
topographic surface.

This leads to an alongness measure taking into account the
distance between A and B:

a3 ¼ fa
L2ðbÞ
VðbÞ

� �
: ð5Þ

The distance DAB(x) may be used in a more refined way in
order to deal with situations where just some parts of A can be
considered along some parts of B. In such cases, it is expected that
such parts are near each other, thus generating a between region
with lower values of DAB(x). Let bt ¼ fx, DABðxÞotg, where t is a
distance threshold. Let LðbtÞ, SðbtÞ and VðbtÞ be the total adjacent
arc length, area and volume for bt . Two local alongness measures,
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in the areas which are sufficiently near to each other according to
the threshold, are then defined as

a4ðtÞ ¼ fa
L2ðbtÞ

SðbtÞ

� �
ð6Þ

and

a5ðtÞ ¼ fa
L2ðbtÞ

VðbtÞ

� �
: ð7Þ

It is important to note that a3 is similar to a4 except that
points which are farther are disconsidered. Therefore, the mea-
sure varies depending on the separation of the two objects.

Note that all measures are dimensionless, except a3 and a5, since
V is an integral of distance values over the spatial domain b. For
specific applications, it might be preferable to modify these mea-
sures, to make them also dimensionless, according to the needs of
the application at hand (e.g. by normalizing them by the maximum
distance). This question is not further addressed in this paper.

These measures will be tested and compared in Section 6 on
synthetic and real objects.
Fig. 3. Contour-based identification of the between region: (a) Original image with

two objects A1 (red) and A2 (green) (the white background represents AC \ BC).

(b) Respective contours. (c) Convex hull CHðA1 [ A2Þ with the intersection points

between b and CH identified by the red dots. (d) Inner contour CIN marked in blue.

(e) Outer contour COU marked in blue. (f) Contour of the between region Cb marked

in blue. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
4. Spatial relation along for crisp objects: model based on
contours and convex hull

In simple cases (e.g. objects without strong non-visible con-
cavities), a more efficient approach can be derived from a
different definition of the between region, based on the convex
hull of the union of the two objects. Although this approach
presents some limitations with respect to the visibility approach,
since it reduces the field of applicability to simple objects, it is
interesting because the between region can be calculated from the
object contours using efficient algorithms, and the computational
complexity is reduced from Oðn2Þ to O(n), where n denotes the
number of contour points of the objects.

4.1. Region between two objects

The region between two objects may be intuitively related to
the convex hull of the union of these objects. Let CH(X) denote the
convex hull of X and XC its complement. The region between two
objects A1 and A2 is defined as [4]

bCHðA1,A2Þ ¼ CHðA1 [ A2Þ \ AC
1 \ AC

2 : ð8Þ

Only the connected components adjacent to A1 and A2 should
be kept. This constraint and the definition itself are used to derive
the contour-based method to calculate the between region. The
basic idea behind the method is to extract the convex hull of the
union of the objects and to identify subsequent points on it which
belong to different objects. The contour of the between region is
composed of an alternate sequence of line segments of the convex
hull and the boundary of the two objects. In order to understand
the method, refer to Fig. 3, which shows two shapes in (a). The
respective contours are shown in Fig. 3(b) and the convex hull of
the union of both contours is shown in Fig. 3(c). It is important to
note that the convex hull may be represented as a polygonal
curve where the vertices touch the original contours. Pairs of
subsequent vertices belonging to different objects (as shown by
the red dots in Fig. 3(c)) are used to identify the between region.
These vertices are intersection points between the contour of the
convex hull and the contour of the between region Cb.

These intersection points lead to the definition of the contour
Cb of the between region and a straightforward algorithm to
extract it. The intersection points divide each contour into two
portions called inner and outer contours, denoted as CIN and COU,
respectively. The inner contours correspond to those contour
portions which belong to Cb (see Fig. 3(d) for an example).
Therefore, Cb is composed of an alternate sequence of line
segments and inner contour portions. Fig. 4 shows an example
of these concepts applied to a real image.

4.2. Degree of elongatedness

The alongness measures defined by Eqs. (2) and (3) are suitable
to be calculated from the contour of the between region Cb.
Efficient algorithms to calculate the perimeter and the area from
a digital contour are available. The perimeter may be calculated
from finite differences between subsequent points. On the other
hand, the area A of a polygon C may be calculated in linear time by
summing a series of signed triangle areas defined by subsequent
pairs of polygonal points. The area A of a polygon C represented
by a series of its vertices vi ¼ ðxi,yiÞ may be calculated as

A¼
1

2

Xn�1

i ¼ 0

ðxiyiþ1�yixiþ1Þ, ð9Þ

where n is the number of vertices of the polygon and xn ¼ x0.
Eq. (9) may be rearranged in order to decrease the number of
multiplications [14]:

A¼
1

2

Xn�1

i ¼ 0

ðxiðyiþ1�yi�1ÞÞ: ð10Þ

The alongness measures may then be calculated as

aC1
¼ PðbÞ2=AðbÞ, ð11Þ

aC2
¼ PðCINÞ

2=AðbÞ: ð12Þ

The notations aC1
and aC2

are used to emphasize the fact that
they are calculated using the contour-based representation (as
compared to a1 and a2 of the region-based approach described in
the previous section).



Fig. 4. (a) Original image. (b) Objects contours in yellow. (c) Convex hull CH with the intersection points marked in red. (d) Inner contour CIN marked in yellow. (e) Outer

contour COU marked in yellow. (f) Calculated region b (light blue) between the two children and the corresponding contour Cb (dark blue). (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)
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5. Spatial relation along for fuzzy objects

5.1. Region between two objects

Now we consider the case of fuzzy objects, which may be useful
to address cases such as spatial imprecision or rough segmentation.
We follow the approach in two steps as in the crisp case.

The visibility approach for defining the between region can be
extended to the fuzzy case by introducing the degree to which a
segment is included in AC \ BC (which is now a fuzzy region). Let
mA and mB be the membership functions of the fuzzy objects A and
B. The degree of inclusion mincl of a segment �a,b½ in AC \ BC is
given by [3,5]

minclð�a,b½Þ ¼ inf
yA �a,b½

min½1�mAðyÞ,1�mBðyÞ�: ð13Þ

This equation is derived from the degree of inclusion of a fuzzy
n in a fuzzy set m defined as infyTð1�nðyÞ,mðyÞÞ where T is a
t-conorm, the complementation of m is taken as 1�m and the
intersection as the minimum t-norm.

Let us denote the support of the fuzzy objects A and B by
SuppðAÞ and SuppðBÞ respectively. The region between A and B is
then defined as the fuzzy set in the spatial domain I with
membership function bF:

8xAI , bF ðxÞ ¼ supfminclð�a,b½Þ; aASuppðAÞ,bASuppðBÞ,xA ½a,b�g,

ð14Þ

i.e. the maximum inclusion degree of segments �a,b½ in AC \ BC ,
among all segments with extremities in A and B and containing x.

5.2. Degree of elongatedness

In order to define alongness measures analogous to
al,l¼ 1 � � �5, it is necessary to calculate the perimeter, area and
volume of bF . The perimeter PðmÞ and the area SðmÞ of a fuzzy set m
are usually defined as [15]

PðmÞ ¼
Z

SuppðmÞ
9rmðxÞ9 dx, ð15Þ

where rmðxÞ is the gradient of m, and

SðmÞ ¼
Z

SuppðmÞ
mðxÞ dx: ð16Þ

Similar equations can be derived for the discrete case.
The extension of a2 requires to define the adjacency region Radj

between the objects and bF . Here we simply consider the union of



Table 1
Alongness values for different shape configurations (synthetic shapes) with

parameters a¼0.125 and t¼10. A precision of three decimal places was adopted

in all results of the paper.

Shapes (a) (b) (c)

a1 0.907 0.450 0.874

a2 0.885 0.431 0.340

a3 0.172 0.011 0.010

a4ð10Þ 0.834 0.653 0.072

a5ð10Þ 0.165 0.127 0.010

Fig. 5. Results using the visibility approach to calculate b. (a) Synthetic shapes (in

blue) and the region b between them (cyan). The adjacent arcs are also indicated

in red. (b) The distance map DAB(x) in b is represented as a color map (higher

values of DAB(x) are associated to light red colors). (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article.)

Fig. 6. Results using the visibility approach to calculate b and bt . (a) The distance

map DAB(x) in b is represented as a color map (higher values of DAB(x) are

associated to light red colors). (b) The thresholded between region

bt ¼ fx, DABðxÞo tg, indicating that only nearby contour portions are taken into

account by this approach. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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the intersection of the supports of A and bF and the intersection of
the supports of B and bF:

RadjðbF ,mA[BÞ ¼ ðSuppðbF Þ \ SuppðAÞÞ [ ðSuppðbF Þ \ SuppðBÞÞ, ð17Þ

where mA[B represents the union of the fuzzy objects A and B, and
extend L as

LðbF ,mA[BÞ ¼ SðRadjðbF ,mA[BÞÞ: ð18Þ

Finally, it is also necessary to calculate the distance of any
point x of the between region to A and to B. We propose the use of
the length of the admissible segments:

DABðxÞ ¼ inffJb�aJ,�a,b½ admissible,xA �a,b½g; for xA ðSuppðAÞ [ SuppðBÞÞC :

ð19Þ

Then, we define the volume VðbF Þ below the surface fðx,DABÞ,
xAbFg by weighting each point by its membership to bF ðxÞ, as

VðbF Þ ¼

Z
SuppðbF Þ

bF ðxÞDABðxÞ dx: ð20Þ

The notation aFi
is used to emphasize the fact that they are

calculated using the fuzzy-based representation (as compared to
ai of the region-based approach described previously). The fuzzy
alongness measures are defined as

aF1
¼ fa

P2ðbF Þ

SðbF Þ

� �
, ð21Þ

aF2
¼ fa

L2ðbF ,mA[BÞ

SðbF Þ

� �
, ð22Þ

aF3
¼ fa

L2ðbF ,mA[BÞ

VðbF Þ

� �
, ð23Þ

aF4
ðtÞ ¼ fa

L2ðbFt
,mA[BÞ

SðbFt
Þ

 !
, ð24Þ

aF5
ðtÞ ¼ fa

L2ðbFt
,mA[BÞ

VðbFt
Þ

 !
: ð25Þ

The interpretation of the above equations is similar to a1�a5.
The measure aF1

considers the overall elongation while aF2

considers the adjacency region. The distance is taken into account
by aF3

�aF5
analogously to a3�a5.

In order to keep the fuzzy nature of the model, instead of
thresholding the distance function as in the crisp case, we
propose to select the closest area based on a decreasing function
g of DAB. We thus have bFt

ðxÞ ¼ bF ðxÞgðDABðxÞÞ. In our experiments,
we have chosen g as

gðtÞ ¼ 1�fa1
ðtÞ, ð26Þ

with a1 ¼ 0:3.
6. Experimental results

Extensive results with a large number of pairs of shapes have
been successfully produced. Some of these results are presented
and discussed in this section.

6.1. Region-based approach applied to crisp objects

Table 1 shows some results obtained on synthetic objects
illustrating different situations. The adjacent lines and distance
values of the object in Table 1(a) are shown in Fig. 5(a) and (b),
respectively. High values of DAB(x) correctly indicate image
regions where the shapes are locally far from each other.
In the example of Table 1(a), the two objects can be considered
as along each other, leading to high values of a1, a2 and a4.
However, some parts of the objects are closer to each other than
other parts. When the distance increases, the corresponding parts
can hardly be considered as along each other. This is well
expressed by the lower values obtained for a3 and a5. These
effects are even stronger on the example of Table 1(b) where only
small parts of the objects can be considered as being along each
other. The between regions b and bt (i.e. thresholded) are shown
in Fig. 6.

The third case in Table 1(c) is a typical example where the
region between A and B is elongated, but not in the direction of its
adjacency with A and B. This is not taken into account by a1, while
the other measures provide low values as expected: a2 is much
smaller than a1 and the other three values are almost 0.
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Table 2 shows results obtained on real objects, which are some
brain structures extracted from magnetic resonance images.
Similar values are obtained for all measures in the two first cases
where the relation is well satisfied. It is important to emphasize
that the modification introduced by the definition of Eq. (1)
allows the characterization of adjacent objects (such as in
(a) and (b)), since the region between the objects may include
the object boundaries. The third example (c) shows the interest of
local measures and distance information (in particular the similar
values obtained for a2 and a4 illustrate the fact that only the parts
that are close to each other are actually involved in the computa-
tion of the between region for this example), while the last one
(d) is a case where the relation is not satisfied, which is well
reflected by all measures except a1, as expected.

6.2. Contour-based approach applied to crisp objects

The contour-based approach has been applied to the same
shapes discussed in the previous section. Both synthetic and
medical imaging cases have been analyzed. The contours have
Table 2
Alongness values for different shape configurations (brain structures from medical

imaging) with parameters a¼0.25 and t¼10.

Shapes (a) (b) (c) (d)

a1 0.746 0.677 0.487 0.708

a2 0.746 0.677 0.438 0.289

a3 0.717 0.611 0.133 0.015

a4ð10Þ 0.746 0.677 0.438 0.001

a5ð10Þ 0.717 0.611 0.133 0.000

Table 3
Alongness values for different shape configurations (synthetic fuzzy shapes) with p

corresponding adjacent points with the convex hull identified. (3) Region between.

Objects (a)

(1)

(2)

(3)

aC1
0.965

aC2
0.939
been extracted from the segmented images and analyzed by the
methods described in Section 4. The results obtained for the
contour-based approach (Tables 3 and 4) agree with the region-
based approach, for these types of objects. Also refer to the
discussion above.

Table 3 shows the analyzed shapes in row (1), the extracted
contours and convex hulls in row (2) and the resulting region
between the objects in row (3). The results in Table 3 are similar
to those in Table 1. In both cases, the shapes that most satisfy the
along relation are presented in Table 3(a). A case where the
between region is not elongated is shown in Table 3(b), and this
is reflected by the lower values of a1, a2, aC1

and aC2
. In Table 3(c),

the region between is elongated but not in compliance with the
along definition, which explains the high aC1

value. In this case, a2

and aC2
are low, thus showing the suitability of this measure.

A similar analysis applies to the cases of real objects in medical
imaging shown in Table 4, with similar results as the ones
obtained with the region-based approach in Table 2. The object
contours are shown in violet, the between contour in green and
the convex hull in black. aC1

shows expected decreasing values for
the cases (a)–(c). However, it fails when applied to the case (d),
where a counter-intuitive high satisfaction degree is obtained.
arameter a¼0.05. (1) Original image. (2) Outer and inner contours, and the

(b) (c)

0.563 0.928

0.516 0.385

Table 4
Alongness values for different shape configurations (brain structures from medical

imaging) for a¼0.0375. Outer and inner contours and the intersection points are

indicated.

Objects (a) (b) (c) (d)

aC1
0.798 0.540 0.371 0.718

aC2
0.628 0.315 0.225 0.282
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This is due to the limitations of a1 mentioned above, and that led
us to propose other measures. In particular in this example, both
structures are quite elongated, without being along each other.
The second measure avoids this problem by taking into account
only the part of b adjacent to the two structures. This leads to a
much lower satisfaction degree, as expected.

Table 5 shows the running times of the following procedures:
(T1) calculation of the between region using visibility; (T2) a1�a5

computation; ðT 01Þ computation of the between region by means of
convex hull and contour approach; ðT 02Þ aC1

�aC2
computation; ðT 03Þ

contour computation. (T) and ðT 0Þ are the overall execution time of
the a1�a5 and aC1

�aC2
computation, respectively. All values are

in seconds. The computer’s configuration for these experiments
is: AMD Athlon(tm) XP 1500þ , 1 G memory. The size of the test
Table 5
Running time for contour and visibility approaches, given in seconds (see text for

notations).

Objects (a) (b) (c) (d)

Size of contours

9C19 205 123 207 219

9C29 101 121 219 121

Computation time (in seconds)

T1 4477 4596 4591 4591

T2 0 0 0 0

T 01 0.100 0.114 0.014 0.014

T 02 0.569 0.270 0.301 0.260

T 03 0.015 0.008 0.007 0.023

T 4477 4596 4591 4591

T 0 0.684 0.392 0.322 0.297

Fig. 7. Results using the fuzzy visibility approach to calculate bF and bFt
. (a) Original sh

between region bFt
ðxÞ ¼ fx,DABðxÞotg.

Fig. 8. (a) The distance map DABðxÞ in bF of the objects
images are (256�256) and the length of the contours is given in
Table 5 ð9C19 and 9C29Þ.

The visibility approach was implemented in C, while the
convex hull approach using contours was developed in Java.
Although it is difficult to perform a precise benchmark using
such different implementations, these results are presented to
provide some general idea of the differences between the
approaches (in terms of running times). The major time consum-
ing step in the computation of a1�a5 is the computation of the
region between the objects. In the case of aC1

�aC2
, the computa-

tional bottleneck is the extraction of the b contour. These
experiments indicate that the proposed measures can be effi-
ciently implemented and used in real situations where computa-
tional performance is an issue.

6.3. Fuzzy objects

The experiments concerning the fuzzy approach are based on
the construction of synthetic fuzzy objects by a Gaussian smooth-
ing of the crisp ones, only for the sake of illustration. In real
applications, fuzzy objects may be obtained from a fuzzy seg-
mentation of the image, from imprecision at their boundaries or
from partial volume effect modeling, for instance. Fig. 7 illustrates
an example of fuzzy objects along with the between region and
the fuzzy regions bF and bFt

. The distance map and the selected
area are depicted in Fig. 8.

Some results obtained on fuzzy synthetic shapes are given in
Table 6, while some results on fuzzy real objects are given in
Table 7. In these tables, aFi

denotes the fuzzy equivalent of ai. The
results are again in accordance with what could be intuitively
expected, thus showing the consistency of the proposed extension
to fuzzy sets.

Since the computation of L, S and V in the fuzzy case is based
on the support of the fuzzy objects, which is larger than the
corresponding crisp objects, we have to choose a different value
for the parameter a, in order to achieve a better discrimination
between the different situations. However, a has the same values
for all objects in each table, for the sake of comparison. Note that
apes. (b) Shapes and the region bF between them. (c) Shapes and the thresholded

in Fig. 7(a). (b) The decreasing function g of DABðxÞ.



Table 6
Alongness values for different shape configurations (fuzzy synthetic shapes) with

parameters a¼0.50 and a1 ¼ 0:30.

Shapes (a) (b) (c)

aF1
0.990 0.815 0.982

aF2
0.999 0.948 0.881

aF3
0.879 0.531 0.515

aF4
0.975 0.755 0.572

aF5
0.686 0.552 0.508

Table 7
Alongness values for different shape configurations (fuzzy brain structures from

medical imaging) with parameters a¼0.25 and a1 ¼ 0:30.

Shapes (a) (b) (c) (d)

aF1
0.996 0.997 0.980 0.997

aF2
0.984 0.965 0.972 0.971

aF3
0.888 0.840 0.675 0.536

aF4
0.812 0.764 0.781 0.544

aF5
0.675 0.643 0.579 0.503

Fig. 9. The two complex shapes (in green) lead to a space-filling between region.

This may affect the circularity-based elongatedness measure, thus requiring

alternative approaches to evaluate how elongated is the between region. (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
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in Table 6 as well as in Table 7 the results obtained on fuzzy
synthetic and real objects are qualitatively the same as the results
obtained on crisp objects: in particular, aF3

and aF5
well reflect the

distance constraint on the alongness degree.
7. Conclusion

We proposed in this paper an original method to model the
relation along and to compute the degree to which this relation is
satisfied between two objects of any shape. Several measures are
proposed, taking into account different types of information:
region between the objects, adjacency between the objects and
this region, distance, parts of objects. The definitions are symme-
trical by construction. They inherit some properties of the visibi-
lity method for computing the between area such as invariance
under translation and rotation. Measures a1, a2 and a4 are also
invariant under isotropic scaling. Finally, the proposed measures
fit well the intuitive meaning of the relation in a large class of
situations, and provide a ranking between different situations
which is consistent with the common sense. One of the advan-
tages of the proposed approach is the decomposition of the
solution in two parts, i.e. to find the region between the objects
and to calculate its elongatedness.

The inverse of compacity (sometimes called circularity) has
been adopted to measure how elongated is the region between
the shapes. This is by no means the unique way of characterizing
elongatedness. In fact, if the region between the shapes becomes
very complex (e.g. Fig. 9), the area starts to increase fast with
respect to the perimeter (i.e. space-filling property), and circular-
ity-based measures may produce poor results. In such cases,
alternative elongatedness measures may be adopted to replace
circularity in our proposed approach (e.g. shape measures that
characterize thinness of a shape).
Alternative approaches to the computation of length of the
adjacent regions and distances can be tested. We can restrict, for
example, the adjacent region to the watershed line of this
intersection, and compute its length in a classical way. On the
other hand, instead of using Eq. (19), we can calculate DmA[B

with
the distances to the a-cuts. The distance dðx,mÞ from a point x to a
fuzzy set with membership function m can indeed be defined by
integrating over a the distance from x to each a-cut. Another
option is to calculate dðx,mÞ as the distance of x to the support of m,
i.e. dðx,mÞ ¼ dðx,SuppðmÞÞ. These definitions are useful for imple-
mentation purposes since for each a-cut, a fast distance transform
can be used.

Extensions to 3D are straightforward: the computation of the
between relation does not make any assumption on the dimension
of space; the measures of elongatedness can be simply performed
by replacing lengths by surfaces and surfaces by volumes.

In the present paper, we are not addressing the case of
disconnected objects, which is an important situation. For
instance, refer to Fig. 1 and suppose the situation of a series of
Ais and Bis in a row, which would mean that fAig is along fBig. This
is an important topic that should be addressed in future works,
possibly taking into account grouping and perceptual analysis
(i.e. where a series of connected components are perceived as a
single object).

Future work also aims at introducing this relation as a new
feature in structural pattern recognition or content-based image
retrieval schemes.
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