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Abstract—This paper describes a probabilistic method of inferring the position of a point with respect to a reference point knowing

their relative spatial position to a third point. We address this problem in the case of incomplete information where only the angular

spatial relationships are known. The use of probabilistic representations allows us to model prior knowledge. We derive exact formulae

expressing the conditional probability of the position given the two known angles, in typical cases: uniform or Gaussian random prior

distributions within rectangular or circular regions. This result is illustrated with respect to two different simulations: The first is devoted

to the localization of a mobile phone using only angular relationships, the second, to geopositioning within a city. This last example

uses angular relationships and some additional knowledge about the position.

Index Terms—Probabilistic geometry, spatial reasoning, geometrical inference.
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1 INTRODUCTION

HUMAN beings have the amazing capability of being able
to find their way using very incomplete references. For

instance, when visiting a city, one may find without (too
much) difficulty the small souvenir shop “in the direction of
the cathedral” and“on the leftwhenwalking toward the sea.”
Such an ability may be called “spatial reasoning.” Indeed,
spatial reasoning consists in representing knowledge con-
cerning spatial entities and spatial relationships and reason-
ing on them. It is different from classical geometrical
reasoning which, for instance, allows the third side of a
triangle, of which two sides and an angle are known, to be
calculated. To address the common tourist problem pre-
sented above, our reasoning ismadeup of several deductions
derived under uncertainty and incomplete information.

In the first instance, the pieces of information are not
accurate.“Onthe leftof”and“inthedirectionof”are instances
of information which have no exact value. They convey a
rather loose meaning which may be interpreted in different
ways depending on the context [1]. These elements carry the
“uncertainty” aspect of the spatial information dealt with in
spatial reasoning.

Furthermore, no piece of information is complete enough
to solve the reasoning problem at hand entirely. Each one
provides a degenerated solution (to a localization problem,
for instance), where a large part of space is acceptable. This
constitutes the “incomplete” aspect of spatial information.
We expect that combining these pieces of information will
somewhat reduce the level of uncertainty. But, how can we
combine such elements which do not share any common

reference and can hardly be projected in a consistent
framework? This is the objective of this paper which
primarily addresses the “incompleteness” of spatial infor-
mation, more than its “uncertainty.”

In Section 2, we present previous work devoted to
reasoning with spatial information. We first present a brief
overview of the literature dealing with uncertainty reduc-
tion and information compounding. We subsequently deal
with spatial knowledge representation with emphasis on
the two aspects of quantitative and qualitative representa-
tions. The problem we are trying to solve is precisely stated
and formalized in Section 3. In particular, we detail the
cases where we have reduced prior information and we
assume that points are uniformly distributed in a bounded
space (circle or rectangle) in Section 4, or follow a Gaussian
distribution in Section 5 according to some prior informa-
tion. Inference is then performed in a Bayesian framework
(Section 6). Two illustrative examples are described in
Section 7, one dealing with small objects such as in the case
of localization of mobile phones, and one addressing the
problem of georeferencing in a city.

2 RELATED WORK

2.1 Spatial Reasoning under Uncertainty and
Compounding for Position Estimation

Although uncertainty management is not the primary goal
of this paper, it is worth mentioning the attempts at dealing
with uncertainty on positioning and combining uncertain
measurements on relative position. Indeed, a large body of
literature addresses this problem, in particular, in the
robotics community. Mobile robotics is a typical domain
where uncertainty degrades the robot’s knowledge about
the geometry of its environment [2], [3], [4].

Since the early work based on error modeled as Gaussian
distributions or covariance matrices (see, e.g., [5], [6]), and
on the notion of occupancy grid [7] and position probability
grid [8], several solutions have been proposed in order to
take into account successive relative position estimates. In
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[4], stochastic maps are built under complete but uncertain
spatial information. A stochastic map consists of two
features: The first represents spatial relationships (distance
and angle) reflecting the spatial location of object with
respect to the world reference frame, and the second is an
associated covariance matrix which models the uncertainty
of each location. Using an algebraic composition of approx-
imate estimates, the authors propose a procedure to build
this map, extract information from it, and update it
incrementally as new information (a new object or a new
constraint) is obtained. Successive sensor measurements
lead to uncertainty reduction. In this work, the distance
information plays an important role. Other approaches
assume a known environment, or a model of it. Positioning
is then achieved by matching estimates from measurements
and the model. Active sensing allows a position probability
grid to be updated, for instance, using Markovian error
estimation [9]. Other methods use Kalman filters to track
observed beacons and match them with a prior map of their
location [10], or geometric reasoning with complex numbers
in order to solve the triangulation problem with respect to
noisy data and matching with the environment map [11].

Note that in several of these robotics problems, incom-
pleteness of information is not the central issue. Incomplete
measures are often obtained, for instance, when localizing is
performed only with respect to the directions of landmarks.
But, under these constraints, several landmarks are usually
combined to provide an estimate of the sensor position.

An interesting issue is addressed in [12]: The authors
propose a linear programming technique able to efficiently
solve one part of the problem we propose, namely, the
determination of the admissible domain of localization. The
position is bounded by some angular sector and range
limits, which define constraints on the possible set of
positions. Several such constraints in multirobot applica-
tions are combined and lead to a polytope. We will make
use of some of these results. In case of incomplete
information, for instance, when only angular information
is available, we can extend this work by considering the
uncertainty domain as an angular sector, infinite in range.

A dual problem was addressed in [13] for mobile
communication optimizationwhere the range of information
is bounded, but no information is available on angular
positions. This is obtained by exploiting the connectivity of
the network which imposes constraints on node proximity.
Theproblemisexpressed in termsof linearmatrix inequalities
and solved by convex optimization. Furthermore, because it
only focuses on the solution domain, the method reaches its
limits in case of loose constraints (i.e., important incomplete-
ness). In this case, it provides one possible solution, but does
not guarantee that the most likely ones are exhibited. As
mentioned by the authors, angular information has to be
introduced to achieve a better degree of convergence.

2.2 Further Approaches in Spatial Knowledge
Representation and Spatial Reasoning

Several other scientific communities have addressed the
problem of spatial knowledge representation. Two main
classes of methods can be distinguished. The first consists of
qualitative representations and are usually based on formal
logics [14], [15]. Typically, spatial entities are elements of
language or propositional terms, while relationships are
expressed as operators, modalities, etc. (see, e.g., [14] for a

survey). The second class consists of (semi)quantitative
approaches and are often based on fuzzy set or probability
theories. While qualitative methods are most often applied
to geographic information systems (GIS) and natural
language processing, quantitative approaches are mostly
found in image processing, computer vision, and robotics.

As far as directional relations are concerned, qualitative
representations are less developed than for topological
relationships. Cardinal directions (i.e., North, South, East,
and West) are used in [16]. Other approaches are inspired
by the temporal interval representations [17], and one of the
most used representations (in particular in GIS) is 2D strings
[18] which use relations between the projections of the
considered objects on two orthogonal axes and interval-
based representations on each axis. Finally, we mention the
approach in [19] which represents the relative position of a
point with respect to two other points as a 5� 3 matrix
based on a subdivision of the space into six sectors related
to the two reference points.

Quantitative representations of directional relations are
more developed and try to define how expressions such as
“to the left of” can be quantified. The ambiguity of such
relations lead to fuzzy representations, already suggested in
[20]. Most existing methods for defining fuzzy relative
spatial positions rely on angular measurements between
points of the two objects of interest [21], [22] and concern
2D objects. A fuzzy relationship is defined as a fuzzy set,
and the correspondence between the relationship and the
angle measurements is then evaluated. A method based on
linear cross-sections of the objects instead of just points has
been developed in [23]. Finally, methods based on whole
objects have been proposed, based either on learning from
human evaluation [24], on projections of the objects [25], or
on a morphological approach [26]. A detailed comparison of
these approaches can be found in [27]. Besides these
knowledge representation approaches, probabilistic models
have been largely developed, as described in Section 2.1.

While the problem of inference and reasoning about
spatial relations [28] has beenwidely addressed in logical and
qualitative representations, where the strong apparatus of
formal logic is very useful, there has been less development
when quantitative representations are used. Some geometric
reasoning approaches in a probabilistic framework or on
linear constraints have been developed, as described above,
as well as methods based on fuzzy logic (see, e.g., [29]).
Detailing these methods is beyond the scope of this paper.

A large source of inspiration for knowledge representation
and reasoning is found in the literature on linguistics and
cognitive science (see, e.g., [1]). Interestingly enough, spatial
language is rather nonmetric (or metric information is
digitized inaveryroughway),but intensivelyusesdirections,
mainly, three coordinate axes [30]. This advocates reasoning
processes based on linguistic descriptions of a scene or a
situation where distance plays almost no role. A remarkable
feature of linguistic expressions is that representation and
communication are then achieved without using numbers.

2.3 Outline of the Proposed Approach

In this paper, we use a quantitative representation of spatial
uncertain information based on probabilities and propose a
contribution to spatial reasoning and inference under
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incomplete information. More specifically, we model the
inferenceof the relationsbetween twopoints fromknowledge
about the relations (angularposition)of eachof thesepoints to
a third point.

As in [12], we first compute the admissible domain. The
main difference with respect to this work is that, instead of
only considering the acceptability domain as a binary set,
we compute a probability distribution on this domain.
When no prior information is available on the objects, we
use uniform or Gaussian prior distributions, which allow us
to derive analytical expressions of the distributions. If prior
information is available, it is modeled as specific distribu-
tions, which do not always lead to analytical solutions, but
to numerical ones, as shown in our second example.

In summary, themain contribution of this paper is to show
how complex spatial reasoning activities can be performed
based on incomplete information (only angular information,
no model or map) in a probabilistic framework and derive
formal expressions in case of simple prior distributions. We
illustrate the method on two examples, one with prior
uniform distribution and the second showing how more
complex information can be incorporated.

3 PROBLEM STATEMENT AND PROBABILISTIC

FORMULATION

We consider the problem of localization where points are
only known through the direction where they are with
respect to a reference point and not through their distance
to this point. More precisely, we address the simplest
problem which may be stated as:1

Problem 1. Let C be an unknown point. Let C be in the direction
� from a point B, this point B being itself in the direction �
with respect to a reference point A. What can we say about the
position of point C with respect to A?

We will demonstrate that, under rather loose assump-
tions, by assuming the statistical distribution of the
unknown points, we may derive the exact distribution
function of point C and propose good estimates of its
relative positioning with respect to A. Statistical distribu-
tions of the unknown points reflect the prior knowledge of

the exact spatial position of these points. If no prior
knowledge is available, the weakest assumption is made
and we use a uniform distribution, which is the least
committed distribution, derived from maximum entropy
considerations [31], in the solution space.

We first introduce some notations. We choose, without

loss of generality, point A as the origin of the Cartesian

plane limited to some region (disk or square in the

following). Any point M may be represented by its

Cartesian coordinates xM and yM , or by its polar coordi-

nates rM and �M . As a convention, rM is a positive number

and �M belongs to ½��; �½. The notation ½x� dx� denotes the
interval ½x� dx; xþ dx�.

We consider that points M are distributed in the image
according to a random distribution fMðr; �Þ:

fMðr; �Þ ¼ lim
drd�!0

P ðM : rM 2 ½r� dr=2�; �M 2 ½�� d�=2�Þ
rdrd�

:

ð1Þ

We will need in the sequel that fM be an almost every-
where continuous function of the two variables r and �.

Fig. 1 represents the configuration expressed in Problem1.

We are interested in the probability P ðC;�; �Þ which

expresses the probability distribution of point C and the two

angles�and�.According to Fig. 2, thisprobability is equal to:

P ðC;�; �Þ ¼ P ðCÞ
Z
�

P ðBÞdB; ð2Þ

where � ¼ SA;� \ SC;���, and SA;� and SC;��� are the two

angular sectors described in Fig. 2.

The domain � is limited by four lines with equations:

r ¼ rc
sin½�c � ð� � �� d�=2Þ�
sin½�� ð� � �� d�=2Þ� ð3Þ

� ¼ �� d�=2: ð4Þ

This domain is empty if �c 62 ½�; ��. The probability P ðC;�; �Þ
is equal to 0 for �c 62 ½�; ��.

Denoting by gr;�ð�Þ the function of IR ! IR:

gr;�ð�Þ ¼ r
sin½�c � ð�� �Þ�
sin½�� ð�� �Þ� : ð5Þ
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1. Directions in the 2D space are defined by the angle with respect to the
horizontal axis.

Fig. 1. Problem 1 may be stated as: “Where is point C with respect to A,
knowing that it is in direction � with respect to an unknown point B, itself
in direction � with respect to A?”

Fig. 2. Every point B in the dashed area fulfills the two conditions
to be in direction � with respect to point A (sector SA;�) and to
have point C in direction � (sector SC;���) within the respective
tolerances � d�=2;� d�=2.



Equation (2) becomes:

P ðC;�; �Þ ¼ fCðrc; �cÞ�

lim
d�d�!0

1

d�d�

Z �þd�=2

��d�=2

Z grc;�b ð�þd�=2Þ

grc;�b ð��d�=2Þ
fBðrb; �bÞrbdrbd�b:

ð6Þ

If the functionfB is continuous, somecomputation leads to:

P ðC;�; �Þ ¼
2r2c

cosð���Þ�cosð�þ��2�cÞ
3 sinð���Þ�sinð3��3�Þ �

fCðrc; �cÞfBðrc sinð�c��Þsinð���Þ ; �Þ if � � �c � �

0 otherwise:

8>><
>>:

ð7Þ

This probability distribution (7) holds for any continuous
distribution of points B in the plane which represents the
prior knowledge of the spatial position of this point.

4 SOLUTION IN THE CASE OF A UNIFORM

DISTRIBUTION

We consider here the case of a uniform distribution. We first
express P ðC;�; �Þ for this distribution, from which we
derive P ð�; �Þ. Finally, we compute P ðCj�; �Þ and P ð�j�; �Þ
from which inference will be performed (see Section 6).

This case can be considered as the reference case when
no information is available on fB and fC in (7).

4.1 Uniform Distribution in a Circular Region

Let us now assume that the points B and C have a uniform
distribution in a circular region of radiusR and originA, i.e.:

fCðr; �Þ ¼ fBðr; �Þ ¼ fðr; �Þ ¼
1
�R2 ¼ K if r � R
0 otherwise:

�
ð8Þ

Then, (7) becomes:

P ðC;�; �Þ ¼ 2r2cK
2 cosð�� �Þ � cosð�þ � � 2�cÞ

3 sinð�� �Þ � sinð3�� 3�Þ : ð9Þ

Fig. 3 illustrates this distribution for � ¼ �
6 and � ¼ 2�

3 , and

Fig. 4 for � ¼ �
6 and � ¼ �.

The probability P ðC;�; �Þ has to be computed in an

angular sector of radius R, thus limiting its support to a

region D�;� . This region corresponds to the area covered by

the angular sector SB;� of origin B, angle �, and aperture d�

when B belongs to the angular sector SA;� (with origin A,

angle �, and aperture d�). This region can have two

different shapes depending on � � � (see Fig. 5):

. If ð� � �Þ 2�2k�; �=2þ 2k��, then D�;� is a complete
angular sector.

. If ð� � �Þ 2��=2þ 2k�; ð2kþ 1Þ�½, then D�;� consists
of a complete angular sector (for � 2 ½2� � �� �; ��)
and a triangle (for � 2 ½�; 2� � �� ��).

. The case where ð� � �Þ 2�ð2kþ 1Þ�; 2ðkþ 1Þ�� is
symmetric with respect to the two first ones.

These different cases are illustrated in Fig. 5 and

represent the polytope solution of spatial constraints

proposed by Spletzer and Taylor [12] in the case of

unknown distance.

We can now derive an expression for P ð�; �Þ:

P ð�; �Þ ¼
Z
D�;�

P ðC;�; �ÞdC; ð10Þ

which leads to two different expressions depending on

the shape of D�;� . In the first case (complete angular

sector), we get:
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Fig. 3. P ðC;�; �Þ for � ¼ �
6 and � ¼ 2�

3 . Note that the displayed
distribution is normalized so that the integral of P ðC;�; �Þ sums up to
P ð�; �Þ (in this example, P ð� ¼ �

6 ; � ¼ 2�
3 Þ ¼ 0:0127, see (11)).

Fig. 4. P ðC;�; �Þ for �¼�
6 and �¼� (P ð� ¼ �

6 ; � ¼ �Þ ¼ 0:0586, see (12)).

Fig. 5. Definition of the domain D�;� and its two possible shapes.



P ð�; �Þ ¼ ð�� �Þ cosð�� �Þ � sinð�� �Þ
2�2

�
sinð3�� 3�Þ � 3 sinð�� �Þ

� ; ð11Þ

while, in the second case (complete angular sector plus
triangle), we get:

P ð�; �Þ ¼
5 sinð�� �Þ þ sinð3�� 3�Þ � 3 sinð5�� 5�Þ þ sinð7�� 7�Þ

8�2
�
10 sinð�� �Þ � 5 sinð3�� 3�Þ þ sinð5�� 5�Þ

�
þ 2ð� � �� �Þ cosð�� �Þ � sinð�� �Þ þ sinð3�� 3�Þ

4�2
�
sinð3�� 3�Þ � 3 sinð�� �Þ

� :

ð12Þ
We note that the probability P ð�; �Þ is normalized so that:

Z 2�

0

Z 2�

0

P ð�; �Þd�d� ¼ 1: ð13Þ

The conditional probability P ðCj�; �Þ is expressed as:

P ðCj�; �Þ ¼ K1r
2
c
cosð���Þ�cosð�þ��2�cÞ
3 sinð���Þ�sinð3��3�Þ if C 2 D�;�;

0 otherwise;

�
ð14Þ

where:

K1 ¼
2K2

P ð�; �Þ ; ð15Þ

which takes two different expressions depending on the
value of � � �.

If we want now to assess the spatial relations between C
and A, we need to compute the probability of angle �
(between A and C) conditionally to � and �:

P ð�j�; �Þ ¼
Z
D�;�

P ð�jC;�; �ÞP ðCj�; �ÞdC

¼
Z
SA;�\D�;�

P ðCj�; �ÞdC;
ð16Þ

where SA;� is the angular sector of origin A, angle �, and
aperture d�. The probability P ð� j C;�; �Þ is equal to 1 if C is
in this sector and to 0 if it is outside, which explains the
formula in (16).

Again, we have to distinguish between two cases:

. If ð� � �Þ 2�2k�; �=2þ 2k��, we obtain:

P ð�j�; �Þ ¼ K1
R4

4
cosð���Þ�cosð�þ��2�Þ
3 sinð���Þ�sinð3��3�Þ if � � � � �;

0 otherwise:

�

ð17Þ

. If ð� � �Þ 2��=2þ 2k�; ð2kþ 1Þ�½, we obtain:

P ð�j�; �Þ ¼

K1

R
sinð���Þ
sinð���Þ

� �4

4 �
cosð���Þ�cosð�þ��2�Þ
3 sinð���Þ�sinð3��3�Þ if � � � � 2� � �� �;

K1
R4

4
cosð���Þ�cosð�þ��2�Þ
3 sinð���Þ�sinð3��3�Þ if 2� � �� � < � � �;

0 otherwise:

8>>>>>>><
>>>>>>>:

ð18Þ

Fig. 6 illustrates the shape of P ð�j�; �Þ for � ¼ �
6 and for

� ¼ �
2 ,

2�
3 , and 5�

6 , respectively.

To check this theoretical result, we ran a Monte Carlo

simulation, where the position of point C with respect to

point A is computed according to a uniform distribution of

the position of points B and C. The superposition of the two

curves obtained for a large number of trials (1010) are

presented in Fig. 6. Very similar shapes are obtained.

In the limit cases where � ¼ �þ k�, different equations

are obtained:

. For even values of k, we have:

P ðCj�; �Þ ¼
4r2c
R4 if C 2 SA;�;
0 otherwise;

�
ð19Þ

P ð�j�; �Þ ¼ 1 if � ¼ �þ k�;
0 otherwise:

�
ð20Þ

. For odd values of k, we have:

P ðCj�; �Þ ¼
12ðR�rcÞ2

7R4 if C 2 SA;�;
12
7R2 if C 2 SA;�þ�;
0 otherwise;

8<
: ð21Þ

P ð�j�; �Þ ¼
1
7 if � ¼ �þ ðk� 1Þ�;
6
7 if � ¼ �þ k�;
0 otherwise:

8<
: ð22Þ

4.2 Uniform Distribution in a Square Region

In most cases in image processing applications, the solution

space represents a rectangular or square region of the plane.

So, let us now consider the case of a square region of side

length equal to 2R, still with a uniform distribution. The
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Fig. 6. P ð�j�; �Þ for � ¼ 0 and for � ¼ �
2 , 2�

3 , and 5�
6 . Gray: theoretical curves. Black: numerical simulations.



formula for P ðC;�; �Þ remains the same, except for the

constantK, which is now:

K ¼ 1

4R2
: ð23Þ

In this section, we just give the results for P ð�; �Þ and

P ð�j�; �Þ. The detailed computation can be found in [32].

The domain D�;� is more complex than for the circular

window, and more cases have to be distinguished. We

assume that � 2 ½��=4; �=4� (the other cases are easily

deduced) and � 2��; �þ 2�½ (without loss of generality).

Fig. 7 represents the possible shapes of D�;� . The last five

cases are symmetric with respect to the five first ones,

therefore, only the five first cases are dealt with in the

following:

1. Case � < � � �=4:

P ð�j�; �Þ ¼ 1

32P ð�; �Þ �

cosð���Þ�cosð�þ��2�Þ�
3 sinð���Þ�sinð3��3�Þ

�
cos4 �

if � � � � �;

0 otherwise;

8<
:

ð24Þ

with

P ð�; �Þ ¼ 1

384 cos2 � cos2 �
: ð25Þ

2. Case �=4 < � � �=2:

P ð�j�; �Þ ¼ 1

32P ð�; �Þ �

cosð���Þ�cosð�þ��2�Þ�
3 sinð���Þ�sinð3��3�Þ

�
cos4 �

if � � � � �=4;

cosð���Þ�cosð�þ��2�Þ�
3 sinð���Þ�sinð3��3�Þ

�
sin4 �

if �=4 < � � �;

0 otherwise;

8>>>><
>>>>:

ð26Þ

with

P ð�; �Þ ¼ cos2ð�þ �=4Þ ��
8 sinð���Þ�4 sinð�þ�Þþ4 cosð�þ�Þþ4 cosð�� �Þ

�
192 cos2 �

�
3 sinð�� �Þ � sinð3�� 3�Þ

�
þ cosð� þ �=4Þ2 ��
8 sinð���Þþ4 cosð���Þ�4 cosð�þ�Þ�4 sinð�þ�Þ

�
192 sin2 �

�
3 sinð�� �Þ � sinð3�� 3�Þ

� :

ð27Þ

3. Case �=2 < � � 3�=4:

P ð�j�; �Þ ¼ 1

32P ð�; �Þ �
�
cosð���Þ�cosð�þ��2�Þ

�
sin4ð���Þ

sin4ð���Þ cos4 �
�
3 sinð���Þ�sinð3��3�Þ

� if � � � � ’;

cosð���Þ�cosð�þ��2�Þ�
3 sinð���Þ�sinð3��3�Þ

�
sin4 �

if ’ < � � �;

0 otherwise;

8>>>><
>>>>:

ð28Þ

with

P ð�; �Þ ¼ sin2ð’� �Þ sin2ð’þ �Þ
128 cos4 �

�
cos2 � � cos2 ’

�2
þ sin2ð� � ’Þ ��
3 cosð����’Þ�cosð��� þ ’Þ � 2 cosð�þ � � ’Þ

�
192 sin3 ’ sin2 �

�
3 sinð���Þ�sinð3��3�Þ

� ;

ð29Þ
and ’ is the angle limiting the two triangles building

the domain D�;� (see Fig. 8):

’ ¼ cot�1 cos� cos � þ sinð� � �Þ
cos� sin �

� �
: ð30Þ
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Fig. 7. Possible shapes of D�;� for a square region.



4. Case � > 3�=4 and ’ � 3�=4:

P ð�j�; �Þ ¼ 1

32P ð�; �Þ �
�
cosð���Þ�cosð�þ��2�Þ

�
sin4ð���Þ

sin4ð���Þ cos4 �
�
3 sinð���Þ�sinð3��3�Þ

� if � � � � ’;

cosð���Þ�cosð�þ��2�Þ�
3 sinð���Þ�sinð3��3�Þ

�
sin4 �

if ’ < � � 3�=4;

cosð�þ��2�Þ�cosð���Þ�
3 sinð���Þþsinð3��3�Þ

�
cos4 �

if 3�=4 < � � �;

0 otherwise;

8>>>>>>>>><
>>>>>>>>>:

ð31Þ
with

P ð�; �Þ ¼ sin2ð’� �Þ sin2ð’þ �Þ
128 cos4 �ðcos2 � � cos2 ’Þ2

þ 4 cosð�� �Þ þ 2 sinð�þ �Þ � sinð�� �Þ
48ð3 sinð�� �Þ � sinð3�� 3�ÞÞ

� cos’ cosð�� �Þð2 cos2 ’� 3Þ þ cosð�þ � � 3’Þ
96 sin3 ’ð3 sinð�� �Þ � sinð3�� 3�ÞÞ

þ sinð�þ �Þ þ 2 sinð�� �Þ
96 cos2 �ð3 sinð�� �Þ � sinð3�� 3�ÞÞ :

ð32Þ

5. Case � < �þ � and ’ > 3�=4:

P ð�j�; �Þ ¼ 1

32P ð�; �Þ �
�
cosð���Þ�cosð�þ��2�Þ

�
sin4ð���Þ

sin4ð���Þ cos4 �
�
3 sinð���Þ�sinð3��3�Þ

� if � � � �  ;

cosð���Þ�cosð�þ��2�Þ�
3 sinð���Þ�sinð3��3�Þ

�
cos4 �

if  < � � �;

0 otherwise;

8>>>><
>>>>:

ð33Þ
with

P ð�; �Þ¼ sin2ð � �Þ sin2ð þ �Þ
128 cos4 �

�
cos2 � � cos2  

�2 þ sin2ð� �  Þ�
�
2 sinð�� þ�Þ�3 sinð� þ  � �Þ � sinð� �  � �Þ

�
192 cos3  cos2 �

�
3 sinð���Þ�sinð3�� 3�Þ

�
ð34Þ

 ¼ cot�1 cosð� � �Þ þ cosð� þ �Þ
sinð� þ �Þ þ 3 sinð� � �Þ

� �
; ð35Þ

 is the angle limiting the two triangles building the

supportD�;� of the probability P ðC;�; �Þ (see Fig. 9).

5 SOLUTION IN THE CASE OF A

GAUSSIAN DISTRIBUTION

Since (7) holds for any distribution, the previous computa-
tions can be extended to other distributions, such as
Gaussian distributions, for instance, which are widely used
to model sensor errors and to express uncertain localiza-
tions in case of approximate positioning. Let us briefly
present the results obtained in this case.

We assume that the point distribution has the following
form:

fðr; �Þ ¼ 1

2�
e�

r2

2 : ð36Þ

In the general case where � 6¼ �þ k� ðk 2 ZZÞ, we obtain:

P ðC;�; �Þ ¼
r2c

�
cosð���Þ�cosð�þ��2�cÞ

�
2�2

�
3 sinð���Þ�sinð3��3�Þ

� � e�
r2c
2 ð1þðsinð�c��Þ

sinð���Þ Þ
2Þ if � � �c � �

0 otherwise:

8<
:

ð37Þ

The derivation of probability P ð�; �; �Þ leads to:

P ð�; �; �Þ ¼
cosð���Þ�cosð�þ��2�Þ

�2ð3 sinð���Þ�sinð3��3�ÞÞðsin
2ð���Þ

sin2ð���Þ
þ1Þ2

if � � � � �

0 otherwise:

8<
:

ð38Þ

As for the other distributions, the special case of � ¼
�þ k� ðk 2 ZZÞ needs specific consideration and different
equations are obtained that are not detailed here (see [32]
for more results).

Fig. 10 illustrates the obtained results for various values
of � and �.

6 BAYESIAN DECISION

We now address the problem of inference, defined here as a
decision ruleDð�; �Þwhichassigns toobservations�and� an
angle � corresponding to the directional relative position of
point C with respect to point A. This decision rule has to
minimizea cost function that canbedefined indifferentways.

For instance, the cost function could be the mean decision
error over the complete set of distributions of points. Let us
denoteby �� the exact positionofpointCwith respect topoint
A. The global error probability is expressed as:

Perr ¼
Z �

��

Z �

��
P ðDð�; �Þ 6¼ ��ÞP ð�; �Þd�d�: ð39Þ

DEHAK ET AL.: SPATIAL REASONING WITH INCOMPLETE INFORMATION ON RELATIVE POSITIONING 1479

Fig. 8. Support of probability P ðC; �; �Þ in Case �=2 � � � 3�=4. Fig. 9. Support of the probability P ðC; �; �Þ in Cases � < �þ � and

’ � 3�=4.



The probabilityP ðDð�; �Þ ¼ ��Þ is the probability thatC be in

directionDð�; �Þ conditionally to�and�. Therefore,wehave:

Perr ¼ 1�
Z �

��

Z �

��
P ðDð�; �Þj�; �ÞP ð�; �Þd�d�: ð40Þ

Minimizing the global error amounts to maximizing
P ðDð�; �Þj�; �Þ ¼ P ð�j�; �Þ.

In the case of a uniform distribution in a circular window
of radius R, the unique maximum of P ð�j�; �Þ is reached for
a value of � (denoted �0) which depends on � � �, which
leads to:

Dð�; �Þ ¼ �0 ¼
�þ�
2 if � 2�

3 � � � � � 2�
3 ;

2� � �� � otherwise:

�
ð41Þ

The first case corresponds to a complete angular sector, for
which the probability depends on cosð�þ � � 2�Þ and has a
unique maximum for the given value. The second case
corresponds to an incomplete sector, for which the prob-
ability depends additionally on sinð���Þ

sinð���Þ. If � � � � 2�=3, then
the maximum is obtained for the same value as in the first
case. Otherwise, it is obtained for � ¼ 2� � �� �.

Another possible cost function is the likelihood. Max-

imizing the likelihood P ð�; �j�Þ amounts to maximize the

quantity:

P ð�j�; �Þ
P ð�Þ ð42Þ

and, finally, to maximize the posterior probability P ð�j�; �Þ
since no direction is favored. The results are therefore the

same as in the previous case.
As a last example, let us consider the minimization of the

average decision risk, which generalizes the first criterion

by introducing a cost function �ðDð�; �Þj�Þ. Minimizing the

average risk amounts to minimizing the conditional risk

expressed as:

RðDð�; �Þj�; �Þ ¼
Z �

��
�ðDð�; �Þj�ÞP ð�j�; �Þd�: ð43Þ

For instance, if � is defined as the squared difference

ðDð�; �Þ � ��Þ2, then the minimum is obtained for the

following value of � (for a uniform distribution in a disk):

1480 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 9, SEPTEMBER 2005

Fig. 10. Examples of P ðC;�; �Þ (surfacic representation on the left and level curves in the middle) and P ð�j�; �Þ (superposition of the theoretical
curves and numerical simulation on the right) for various values of � and � in the case of a Gaussian distribution. The simulated curves were
obtained as in Fig. 3.



�0 ¼

�þ�
2 if ð� � �Þ 2 ½2k�; �=2þ 2k��;

 ð�;�Þ
’ð�;�Þ if ð� � �Þ 2 ½2k�þ �=2; ð2kþ 1Þ�½;
�þ 6�

7 if � ¼ �þ �;

8><
>: ð44Þ

with

 ð�; �Þ ¼ �4
�
ð2� � �� �Þ2 � �2 þ 1

�
cosð�� �Þ

þ 5 cosð3�� 3�Þ � cosð5�� 5�Þ
�
�
12�� 20� þ 8�

�
sinð�� �Þ

þ
�
8�� 10� þ 5�

�
sinð3�� 3�Þ

� ð2� � �Þ sinð5�� 5�Þ;
ð45Þ

and

’ð�; �Þ ¼ 8
�
�� � þ �

�
cosð�� �Þ

þ 8 sinð�� �Þ � 2 sinð3�� 3�Þ � 2 sinð5�� �Þ:
ð46Þ

7 ILLUSTRATIVE EXAMPLES

To illustrate how we can use these results, we give two
examples of spatial localization. In the first one, we assume
that we have no knowledge about the exact position of the
points B and C, so we have used a uniform distribution for
the prior distribution probability P ðBÞ and P ðCÞ. In the
second example, we use a distribution which reflects the
knowledge of the spatial localization of points B and C. In
this case, the prior distributions are synthetically built from
the available knowledge. In real applications, they could be
obtained by another approach such as the one used in robot
localization [33], [9].

7.1 Localization of Mobile Phone Simulation

Let us first consider the problem of inference of directional
spatial relations in case of small (quasipoints) objects, for
which the previous results can be directly used. An example
is given in Fig. 11. The problem addressed in this simulated
example is to find the position of pointCwith respect to point
A, knowing its positionwith respect to some reference points
Bi (this is a quite common situation when trying to localize
mobile phones). In the absence of any prior knowledge, we
assume here a uniform distribution in a circular window.

In this simulated example, the solution is known:
�� ¼ 0:64rad. The values for �0 (obtained with inference
based on minimization of error probability, see (41)), j�0 �
��j (estimation error with respect to the true value) and
j� � �j are given in Table 1 for the six instances Bi of B.

The smallest estimation errors occur for both low and
large values of j� � �j. This was expected since the
localization is more difficult if the angular sector D�;� is
larger, which results from average values of j� � �j.

The error probability decreases if several intermediary
objects are used, by combining the corresponding prob-
abilities P ð�j�; �Þ. The probabilistic distributions are given
in Fig. 12, each curve corresponding to one of the Bi. All
curves have a peak close to the exact value of �� (i.e., 0.64).
They are more or less spread depending on the uncertainty
that remains in the location (i.e., depending on j� � �j). For
instance, the angular sector for B6 is reduced (see Fig. 11),
which leads to a good estimation (Fig. 12). The product of
these probabilities clearly tends towards a Dirac function
(corresponding to an intersection of several domains D�;�),
showing that using several reference points improves the
localization, as expected. Note that if many point measure-
ments are available, which may be prone to errors, methods
dealing with outliers should be added in the procedure [34].

The idea briefly presented here was further explored for

mobile location in wireless communication in [35].

7.2 Georeferencing in a City

In this example, we address a more complex situation,
where we have to localize a point, here, the ENST (Ecole
Nationale Supérieure des Télécommunications), in a real
city map, based on knowledge about relations to other
geographical locations (subway stations in our example).
This example aims at showing how qualitative information
may be used in improving a localization problem.

We assume that two fixed points are known: “Place
d’Italie” and “Porte d’Italie” (see the map2 of the considered
area in Fig. 13). They will be referred to as points A1 and A2

and will successively play the role of the starting point A
according to the notations of Section 3. The different pieces of
knowledge which will be used in the sequel are as follows:
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Fig. 11. Example of small objects. The reference point A is the center of
the figure. One instance of point C and six instances of the intermediary
point B are given (B1 . . .B6). Angular sectors for B1, B2, and B6 are
displayed.

2. http://www.maporama.com.

TABLE 1
Values of �0, j�0 � ��j, and j� � �j for the Points of Fig. 11

For low (close to 0) or large (close to �) values of j� � �j, the error
j�0 � ��j is small.



. K1: “Tolbiac” is in the direction of A2 with respect
to A1.

. K’1: “Tolbiac” is in the direction of A1 with respect
to A2.

. K2: ENST is West of “Tolbiac.”

. K3: ENST is not far from “Place d’Italie.”

. K4: “Tolbiac” is not far from the mid point of the
segment A1A2 (“Place d’Italie” - “Porte d’Italie”).

Such pieces of knowledge, expressed as linguistic
expressions, can be easily understood by human beings,
despite their imprecision, thanks to links between language
and cognition [1]. Using them in our framework requires us
to quantify them in some way. Each piece of knowledge is
therefore expressed as a probability distribution. Although
this may sound rather ad hoc, the distributions have a
sufficiently large support to correspond to what is intui-
tively understood.

In order to exploit the results of Section 3, in a first
experiment,wemakeuse only ofK1 andK2.We start fromA1

(“Place d’Italie”) as point A. “Tolbiac” is the unknown
intermediary point B, and “ENST” the point C we are trying
to localize. At this point, no knowledge is available on the
position of ENST, thus, we assume a uniform distribution
inside the map. By applying the equations derived in
Section 4.2, we obtain the distribution described in Fig. 14a.
The solution given by the maximum posterior probability
provides, as a candidate forENST, thepoint in the bottom-left
corner. Note that a point at the border of the admission
domain is likely to be obtained with the uniform distribution
assumption as demonstrated in Sections 3 and 4.2 (see, in
particular, (7) and Fig. 7b).With such aweak information, the
obtained result is rather poor and disappointing.

To improve the positioning, we now make use of knowl-
edge K3, along with K1 and K2. In order to translate
quantitatively the linguistic expression “not far from,” we
adopt a Gaussian probability distribution for P ðCÞ, centered
atA1withastandarddeviationequal to1km(Fig.14b), instead
of theuniformdistribution.This corresponds to theusualway
of communicating approximate distance information ex-
pressed as linguistic expressions: For instance, when indicat-
ing a distance, even using a crisp number, the meaning is not
exactly thisnumber,but it shouldbeunderstoodinasmoother
way, expressed here by the choice of the Gaussian. A better
solution isnowobtained (Fig. 14c),which isno longerpeaking
at the border of the admissible domain. The maximum of the
distribution is somewhat closer to what is expected.

A second improvement may be obtained by providing a
more realistic information on the intermediary point
“Tolbiac.” For this purpose, we make use of knowledge
K4. The prior probability distribution of this intermediary
point B is now no longer uniform in the direction of A2 with
respect to A1. As for K3, we choose for the distribution of B
according to K4 a Gaussian distribution centered at the
midpoint of A1A2 (Fig. 14d). The use of the starting point A1

and the 4 pieces of knowledge K1, K2, K3, and K4, provides
a solution which is closer to the true solution (Fig. 14e).

From this series of examples, the exact position of “Porte
d’Italie” has never been used. Can this information improve
our estimate? Let us take A2 as starting point A and
evaluate the position of ENST from K’1, K2, and K4 and by
using the last distribution obtained in Fig. 14e as prior
distribution for ENST. We obtain a new distribution, better
than the previous ones, presented in Fig. 14f. The solution
becomes more accurate and the maximum of the probability
is very close to the exact position of ENST.

These series of examples illustrate the contribution of
every piece of information to the modeling of the posterior
probability. The compounding of probabilities, made under
the Bayesian formalism, provides a convenient framework.
One may discuss the translation of every qualitative piece of
knowledge into a quantitative prior probability distribution
and substitute any distribution to the Gaussian or uniform
distributions when some evidence advocates it. It appears
from these results that the quality of the results is only
depending on the quality of the prior information and not
on the way the knowledge is processed. Improving
constraints and knowledge allows to refine the positioning.

8 CONCLUSION

In the field of spatial reasoning and inference of spatial
relations, we proposed in this paper a probabilistic
formulation for this problem in the case of punctual objects.
We derived analytical formulae in case of circular and
square domains and for different types of point distribu-
tions. The joint probability P ðC;�; �Þ is valid for any
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Fig. 13. Map of an area around ENST (square) in Paris. Two reference

points, “Place d’Italie” and “Porte d’Italie,” are indicated too.

Fig. 12. Probability distributions P ð�j�; �Þ obtained for some points

of Fig. 11. The vertical dashed line indicates the correct solution.



distribution, while the conditional probability P ð�j�; �Þ has
to be derived specifically for each distribution.

In the general case, where we have to deal with spatial
entities having any shape and spatial extension, two cases
have to be distinguished. The first one corresponds to quite
compactobjects,eitherofsmall sizeor far fromeachother.Asa
first approximation, such objects can be considered as points
and the proposed approach applies directly. The second case
corresponds toextendedobjects, forwhich the size is too large
with respect to the distance between them to allow us to
consider them as points. In such cases, the computation on
points is no more sufficient. One possibility consists in
combining theprobability distributionwith angle histograms
[21]. This approach has been investigated in [32], but still
needs to be further developed. In particular, estimating the
conditional probability P ð�j�Þ seems to be a necessary step.

Extensions to 3D are also possible, but the derivations
are likely to be much more complex since positioning a
point in a 3D space requires two angles instead of one. This
is left for future work.

In cases where the knowledge is deduced from many
measurements, not only the uncertainty due to errors should
be taken intoaccount, butalsopossiblebiasoroutliers.Robust
methods should then be combinedwith our approach [34].

In the examples we have presented, we focused upon
relating the position of one point A to another point C
through an intermediary location B. We also demonstrated
this for multiple intermediaries taken one at a time. An

interesting extension would be to deal with cases where we
have a list of constraints relating the relative positions
across a large group of points (or objects) in order to derive
a probability distribution for each point simultaneously
conditioned on all of the relative spatial information. Such a
problem was addressed in [12], where an efficient method is
proposed to determine the domain of all the possible
solutions. An extension of our work could provide an
information on the probability of every point in this
admissible region.

Foreseen applications concern, for instance, the localiza-
tion of mobile phones as shown in our first simulated
example, and experienced in [35]. This application could be
useful typically in rescue issues.
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munications (Telecom Paris) in Paris where he is
a professor. His research includes work on
image analysis, image understanding and com-
puter vision, and applications in the domains of

satellite and aerial image processing. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1484 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 9, SEPTEMBER 2005


