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We present here a new method for cerebral activa-
tion detection over a group of subjects. This method is
performed using individual activation maps of any
sort. It aims at processing a group analysis while pre-
serving individual information and at overcoming as
far as possible limitations of the spatial normalization
used to compare different subjects. We designed it
such that it provides the individual occurrence of the
activations detected at a group level. The localization
can then be performed on the individual anatomy of
each subject. The analysis starts with a hierarchical
multiscale object-based description of each individual
map. These descriptions are then compared, rather
than comparing the images directly. The analysis is
thus performed at an object level instead of voxel by
voxel. It is made using a comparison graph, on which a
labeling process is performed. The label field on the
graph is modeled by a Markov random field, which
allows us to introduce high-level rules of interrogation
of the data. The process has been evaluated on simu-
lated data and real data from a PET protocol. © 2000

cademic Press

Key Words: functional neuroimaging; functional ac-
tivation detection; scale space; Markov random fields.

INTRODUCTION

Understanding the neural correlates of human brain
function is a growing field of research. Due to the
highly noisy nature of cerebral functional images, like
positron emission tomography (PET) or functional
magnetic resonance imaging (fMRI), brain activation
detection has essentially been approached so far in
terms of statistical analysis (Friston et al., 1995; Wors-
ley et al., 1996a; McIntosh et al., 1996; Ledberg et al.,
998) using a common anatomical reference. Although
hey have been validated in a wide range of applica-
ions, these analyses lead to some problems in terms of

1 Corresponding address: Dept. of Computer Sciences, University
College London, Gower Street, London WC1E 6BT, UK. E-mail:
O.Coulon@is.ucl.ac.uk.
767
ocalization and/or detection with regard to anatomy,
ainly because the spatial normalization performed to

ompare images from different subjects matches only
ross (functional) features. As the comparison is made
t a voxel level, and anatomical information being
oorly considered, the process becomes very sensitive
o intersubject variability and normalization limita-
ions.

After a statistical analysis, it is also generally diffi-
ult to estimate from the group result the individual
ctivated areas in terms of shape, extent, or position
ith respect to anatomical landmarks. This knowledge

hould help to study intersubject functional variability
nd would improve localization with regard to anat-
my. Moreover, the contribution of each subject to the
roup result remains unknown and recent interest has
een taken in the link between group and individual
esults (Friston et al., 1999).
Among all the analysis methods proposed so far,

everal have considered looking at the data at different
evels of scale (smoothing) or resolution (Poline and

azoyer, 1994a,b; Worsley et al., 1996b; Unser, 1995;
indeberg et al., 1999) to improve the detection sensi-

ivity. Poline and Mazoyer (1994a) showed that a hier-
rchical description of the gray-level “landscape” pro-
ides a better structure extraction than the simple
hresholding procedure usually performed. However,
hey analyze every level of scale separately. It has been
roven in the field of computer vision that looking at all
cales simultaneously provides a relevant and exhaus-
ive description of the considered image structure
Koenderink, 1984; Koenderink and van Doorn, 1986;
izer et al., 1986; Lindeberg, 1993a; Vincken et al.,
997). More precisely, making explicit the behavior of
he image through the scales leads to this description.
uch multiscale methods can provide an analysis of the

mage in terms of singular points, objects, or particular
eatures such as cores or boundaries.

Recent works (Lindeberg et al., 1999; Coulon et al.,
997a) use that kind of multiscale approach to perform
nalyses of statistical maps. However, in the case of a
roup analysis, these works which use a multiscale
1053-8119/00 $35.00
Copyright © 2000 by Academic Press

All rights of reproduction in any form reserved.



o
i
f
v
h
n
i
r
s
f
r
s
a

d
t
b
d
d
p
a
c
(
t

B

1
s
t
(
l
u
b
F

768 COULON ET AL.
method to analyze a single map have to face problems
of intersubject variability and spatial normalization.
To overcome these problems of variability, we advocate
that the comparison of images should be done in terms
of objects instead of voxels. Using objects permits the
use of additional information such as individual ana-
tomical location, shape, or extent.

A group analysis should thus be done using individ-
ual activation maps and comparing these maps at an
object level, a higher level of description that can in-
clude semantic information.

We propose here a new method, based on a multi-
scale hierarchical description of individual activation
maps in terms of structures. This is followed by a
graph-based comparison of these descriptions across
subjects, rather than comparing directly the images in
a stereotactic space at a voxel level. This comparison is
the starting point of an activation detection process
using Markov random fields. The method is designed to
overcome, as far as possible, the problems induced by
spatial normalization. After detection over a group of
subjects, the method allows an easy way back to the
individual structures and more generally permits high
level, and in the future more informed, interrogation of
functional data sets.

METHOD

Overview

The method presented here is applicable to any kind
f “activation maps,” for instance, PET/fMRI difference
mages or statistical t maps. It is divided into the three
ollowing steps, illustrated by Fig. 1: first, each indi-
idual map involved in the study is described by a
ierarchical object-based multiscale representation,
amely the scale-space primal sketch. Second, a graph

s built, which contains all of the primal sketches and
epresents the potential repetitions of objects from one
ubject to another. Finally, a labeling process is per-
ormed on the graph, which aims to identify the objects
epresenting functional activations and those repre-
enting noise. The label field on the graph is modeled
s a Markov random field.

The Scale-Space Primal Sketch

The scale-space primal sketch is a multiscale image
escription, proposed by Lindeberg (1993a), similar to
he primal sketch suggested by Marr (1976, 1982). It is
ased on well-known properties of linear scale space to
escribe the first-order structure of images (Koen-
erink, 1984; Koenderink and van Doorn, 1986). We
resent here a brief description of linear scale space
nd the way the primal sketch is built. For more pre-
ise details, we invite the reader to refer to Lindeberg
1992) or to Coulon et al. (1997a,b) for the particular

hree-dimensional case applied to activation maps.
ackground on Linear Scale Space

The linear scale-space representation of a N-dimen-
sional image f[ consists in building a one-parameter
family of N-dimensional images L(z, t) derived from the
original under precise assumptions, namely homogene-
ity, isotropy, and causality (Koenderink, 1984; see also
Alvarez et al., 1993). The parameter t is continuous and
is called scale. Under these assumptions, the scale-
space representation is proved to verify a diffusion
equation, the heat equation,

­L

­t
5

1

2
DL,

with the initial condition L(z, 0) 5 f[. In the continu-
ous case, there is a strict equivalence between this
representation and building L(z, t) by convolution of the
original image with Gaussian functions of increasing
parameter t:

L~ z , t! 5 f[ 3 Gt[,

with Gt~xW ! 5
1

~2pt! N/2
expS2

xW z xY

2t D .

The effect of these convolutions is a smoothing which
progressively removes details, as illustrated in Fig. 2
for an activation map. Practically, one has various
ways to build the scale space of an image, either by
using the diffusion equation or by implementing the
Gaussian convolution, although the accuracy of dis-
crete scale spaces and the verification of causality de-
pend strongly on the choice of the implementation. In
our case, the scale space is built using approximation of
Gaussian convolutions with recursive filtering (De-
riche, 1993), shown to have an appropriate speed and
precision. Theoretical properties of the linear scale
space of an image have been widely investigated and
are now well known (Koenderink, 1984; Florack et al.,
992; Nielsen et al., 1994). Particularly, for image de-
cription, a major topic concerns how to relate struc-
ures at different scales, namely the deep structure
Koenderink, 1984), and what is the behavior of singu-
ar points (local extrema and saddle points) or partic-
lar features (e.g., ridges) through the scales (Linde-
erg, 1992; Pizer et al., 1986; Lifshitz and Pizer, 1990;
idrich, 1997; Morse et al., 1994; Vincken et al., 1997).

The scale-space primal sketch is based on that type of
description and is presented below.

The Primal Sketch

The primal sketch is a multiscale hierarchical de-
scription making explicit the behavior through the

scales of objects in the image. The only assumption
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required to use it is that the objects of interest, func-
tional activations, are blob-like.

The first step is to compute a linear scale space from
the considered three-dimensional activation map. The
scale parameter is continuous, but for obvious practical
reasons we sample the scale space along the scale axis.
This sampling is done in the classic logarithmic way,
due to the fact that the number of events occurring in
the scale space (e.g., changes in the number of singular
points) increases logarithmically with the scale (Linde-

FIG. 1. An over
FIG. 2. A slice of a 3D activation map and t

FIG. 4. A slice of 3D gray-level blobs extracted fro
berg, 1993b).
At each computed level of scales, objects—called
gray-level blobs—are extracted in a fully automatic
way, based on singular points in the image (local ex-
trema and saddle points), as illustrated in Fig. 3 for the
two-dimensional case.

Gray-level blobs have a mathematical definition
(Lindeberg, 1993a), but their building is easy and in-
tuitive to understand: from each local maximum, let a
region gradually grow around this maximum, until it
meets another region of the same kind or a point

w of the process.
corresponding scale levels t 5 1, 2, 4, 8, 16, 32.
n activation map at scale levels t 5 1, 2, 4, 8, 16, 32.
vie
he
m a
known as belonging to the “background.” The “growth”
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770 COULON ET AL.
of a blob is stopped at a saddle point, whose intensity
defines the base level of the blob. Each gray-level blob
is then defined by a local maximum and the associated
saddle point. This definition is interesting in three
ways: it provides an automatic extraction without any
threshold, it guarantees the theoretical knowledge of
gray-level blobs’ behavior through the scales (since the
behavior of singular points is known), and it associates
one blob with each local maximum, which makes sense
for our activation detection problem. We perform the
gray-level blob extraction in a 3D fashion, following the
same process as the one previously presented. Figure 4
illustrates the extraction for the different scale levels
presented in Fig. 2.

In Fig. 4, one can see that the two blobs circled at
scale level t 5 4 still exist at t 5 8 and t 5 16. But at t 5
2 they have merged into a single blob. This roughly
eans that at t 5 4 the gray level landscape is locally

omposed of two peaks and that these two peaks lie on
n underlying structure which is represented by the
ingle blob at t 5 32. The primal sketch aims to make
his kind of information explicit. Therefore, gray-level
lobs have to be linked from one scale to another, and
vents in the scale space have to be detected. These
vents can be theoretically itemized into four types
Lindeberg, 1992) and are called bifurcations. They

refer to the relative behavior of extrema and saddle
points (annihilation and creation of saddle point/extre-
mum pairs) and can be annihilation of a blob, merge of
two blobs, creation of a blob, or split of a blob, as
illustrated by Figs. 5b–5e.

FIG. 3. Two-dimensional illustration of the gray-level blob defi-
ition reproduced, by permission of the publisher, from Lindeberg,
993a).

FIG. 5. The matching relations between gray-level blobs throug

split.
If one considers a gray-level blob at a given scale
level, there is generally a corresponding blob at a
slightly finer scale and at a slightly coarser scale. We
want to link these gray-level blobs, and we use a simple
overlap of the spatial support criterion for that (assum-
ing that a gray-level blob hardly moves out of its sup-
port with a small increase of the scale parameter).
Either this linking is possible or we detect a bifurca-
tion. Performing such a linking is practically difficult,
and the reader can find the exact algorithm in Coulon
et al. (1997b). Between two bifurcations, a single gray-
level blob evolves through the scales and is identified
as a multiscale object called scale-space blob. The pri-
mal sketch is then composed of scale-space blobs linked
by bifurcations, as described in Fig. 6.

This description is completed with measurements
associated with each scale-space blob. These measure-
ments are first defined for each gray-level blob and are
related to the average and maximum intensity, con-
trast, extent, and geometrical volume of the blob. After
a normalization step, to make them independent of the
scale level, they are integrated along the scale, during
the lifetime (Lindeberg, 1993b) of the corresponding
scale-space blob. Precise details about the measure-
ments and their normalization can be found in Coulon
et al. (1997b). In Lindeberg et al. (1999) the authors
also study the influence of various ways to perform the

e scales: (a) plain link, (b) annihilation, (c) merge, (d) creation, (e)

FIG. 6. Symbolic representation of the scale-space primal
sketch.
h th
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771STRUCTURAL GROUP ANALYSIS
normalization. This results in a set of multiscale mea-
surements for each scale-space blob. The primal sketch
is then composed of scale-space blobs linked by bifur-
cations and the associated multiscale measurements.

It has been shown that scale-space blobs are a reli-
able and exhaustive way to describe objects of interest
in activation maps (Coulon et al., 1997a). However,
measurements are not efficient enough to characterize
which of these blobs represent actual activations, rel-
evant to the experiment. We therefore need to look at
several subjects to make the detection decision, and
this is the aim of the process presented in the following
sections.

The Comparison Graph

From here, unless stated, “blob” will refer to “scale-
space blob.” We aim at creating a comparison graph
such that it contains the primal sketches of all the
subjects involved in the analysis and such that this
graph makes explicit the potential repetitions of a
structure (i.e., a scale-space blob) over subjects. Indeed,
repetition over subjects is the second criterion, along
with intensity in the map, to decide whether an object
is an activation or noise. The graph nodes are scale-
space blobs of the primal sketches, and the graph links
are built between blobs belonging to different primal
sketches and which may represent the same structure
(activation). At this point, we do not yet want to decide
if these repetitions are real (i.e., associated with an
activation repeated over subjects) or random. The de-
tection decision is to be made at the next step. There-
fore, the construction has to be exhaustive in the sense
that no real repetition should be forgotten.

To compare different primal sketches we normalize
hem in a common referential frame, with usual nor-
alization procedures (Ashburner and Friston, 1997).
his is the only way we have, at the moment, to com-
are different subjects, but a longer term aim is to
uild the spatial referential using the subjects’ individ-
al anatomy (Mangin et al., 1995a) and a high-level
escription of this anatomy, in terms of landmarks and

FIG. 7. Direct links between two primal sketches P1 and P2.
dentified structures (Mangin et al., 1995b). The com-
parison graph should be a convenient framework for
this purpose.

The first criterion to link two blobs belonging to two
different primal sketches is the overlap of their spatial
support. If two blobs have this overlap, they may rep-
resent the same activation. We combine this spatial
overlap criterion with a scale overlap (since scale-space
blobs have a scale dimension), as far as the considered
individual maps have the same inner scale. If these two
criteria are fulfilled, we create a direct link [b1–b2]out1

between the two scale-space blobs b1 and b2 as illus-
trated by Fig. 7.

Since we want to introduce some flexibility in the
position of activations, to overcome possible normaliza-
tion problems, we have to allow blobs which are “close
enough,” but without any spatial overlap, to be linked
in the graph. Note for instance that very small focal
activations may have no overlap. We therefore use the
fact that information becomes more stable (but grosser)
as scale increases: two blobs being linked by a direct
link out1 may not represent an activation but may
oughly indicate an area in which there is a more focal
ctivation. This situation suggests that at a finer scale
here might be a blob that represents an activation,
his blob being in the part of the primal sketch which is
under” the first blob. This experimental observation
ed us to define a second type of link, which we call
nduced links (or out2 links for mathematical nota-
ions): if b1 and b2 are two blobs having no direct link

between them, they have an induced link [b1–b2]out2 if
hey are “under” (in their primal sketches) two blobs c1

and c2 and if there is a direct link [c1–c2]out1. Such links
are created only when b1 and b2 overlap in the scale
dimension, which reduces the combinational possibili-
ties and keeps coherence in scale. Induced links are
illustrated by Fig. 8.

We point out the fact that allowing blobs without
spatial overlap to be linked is a key point of the pro-
cess, since it is the solution for a greater flexibility in
overcoming spatial normalization limitations. Notice
also that the graph topology is not only determined by
inter-primal-sketch links but also by intra-primal-
sketch information. Particularly, we will see later that
FIG. 8. The links induced by the direct links of Fig. 7.
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772 COULON ET AL.
blobs belonging to the same primal sketch are consid-
ered neighbors in the graph.

The Detection Model: Use of a Markov Random Field

Activation detection is performed using a labeling process
that uses the intersubject comparison graph previously
described. Our aim is to associate a positive label with
each activation in the graph and a null label with struc-
tures of noninterest. An activation (i.e., a nonnull label) is
associated with a localization and can therefore have only
one occurrence in each of the individual primal sketches.

We present here the basic model used to perform the
detection. This model is defined using the following set
of rules:

i. A blob representing an activation is likely to have
high measurements.

ii. Two blobs representing the same activation must
be linked in the graph and have the same nonnull
label.

iii. Two blobs representing the same activation
(same nonnull label) are likely to have spatial supports
close to each other.

iv. An activation is represented only once in each
subject, i.e., one positive label must have only one
occurrence per primal sketch.

One can see that these criteria define local depen-
dencies only: the value of a blob label depends only on
he characteristics of the blob and on the knowledge of
he labels of its neighbors in the graph. In other words,
he model specifies that a blob represents an activation

if it is endowed with high enough measurements in the
map and if the corresponding structure is repeated of-
ten enough over the other subjects. These contextual
dependencies allow us to model the label field in the
graph as a Markov random field (MRF). We briefly
present in the following subsection how this Mark-
ovian hypothesis is used to perform the labeling in a
Bayesian framework.

Maximum a Posteriori and Energy Minimization

We want to perform the labeling by maximizing the
posterior probability P(XuY), X being the label field on
the graph and Y being the data, i.e., the characteristics
of the blobs (measurements, scale) and the topology of
the graph. In other words, we want to find the optimal
labeling given the data. We follow a classical maximum
a posteriori process. The Bayes rule,

P~XuY! 5
P~YuX! z P~X!

P~Y!
,

tells us that this maximization is equivalent to maxi-
mizing the product P(YuX) z P(X). The probability

P(YuX) expresses the measurements probability given w
the labels, and the prior probability P(X) expresses the
a priori knowledge (the model itself).

Considering the usual (and justified in our case)
independence hypotheses,2 one has P(YuX) 5 )s51

N

P(ysuxs), where s 5 1 . . . N is the N sites (blobs) in the
graph and ys and xs are the realizations of X and Y at
site s. Finally, if P(YuX) is not null, which we will verify,
one can write

P~YuX! } exp~2O
s51

N

V~ ysuxs!! 5 exp~2U~YuX!!,

here V(ysuxs) is a data-driven potential function.
The Markov hypothesis tells us that P(xsuXS \ s) 5

P(xsuxns), where S stands for the site set: the probability
of realization of X on a site depends only on the field
realization in a neighborhood ns of this site. If the
positivity condition is respected, i.e., no realization has
a null probability (@X, P(X) . 0), the Hammersley–
Clifford theorem (Besag, 1974; Geman and Geman,
1984) tells us that the Markov field is equivalent to a
Gibbs field, i.e., one can write

P~X! 5
exp~2U~X!!

Z
,

where Z is a normalization constant (the partition
function). U(X) is an energy function and is defined as
a sum of contextual potential functions Vc on the
liques in the graph. Cliques are sets of sites that are
ll neighbors in the graph. The order of the clique is the
umber of elements of this set. Thus, one has U(X) 5
c[C Vc(Xuc), where c [ C are the cliques in the graph.

The maximization of the posterior probability P(XuY)
can then be written as the minimization of the follow-
ing energy:

U~XuY! 5 O
s51

N

V~ ysuxs! 1 O
c[C

Vc~Xuc!.

Such a representation is of great interest because we
do not need to know the exact form of the label field
distribution: the model is directly defined through the
potential functions. If two sites are neighbors in the
MRF graph, there is an interaction between their la-

2 These hypotheses are: (a) Independence of the observations.
P(YuX) 5 )sP(ysuX), i.e., the measurements on two different blobs are
independent: true in every case except when the two blobs belong to
the same primal sketch and share the same bifurcation. In this case,
the dependency is complex and is a function of the surrounding noise
and of the third blob involved in the common bifurcation. In practice,
this case is shown not to disrupt the model. (b) Observations depend
only on the label of the site at which they are made. P(ysuX) 5

(ysuxs), i.e., the measurements on one blob depend only on this blob,

hich is true.
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bels, and the aim is to define properly these interac-
tions with the Vc functions. Let us point out the fact
that such a representation is not a strict probabilistic
interpretation of the problem and should be seen as a
convenient way to define the above-mentioned model.

More precisely, rule (i) is modeled using the data-
driven potential V(ysuxs), rules (ii) and (iii) are modeled
using potential functions on second-order cliques, and
rule (iv) appears in potential functions on cliques de-
fined over individual primal sketches. The minimiza-
tion of the energy defined by these functions is then a
competition process between configurations in the
graph decreasing the energy and those increasing the
energy. The potential functions must then express
which are the suitable configurations we encourage
(associated with negative potentials) and which is the
one we want to avoid (associated with positive poten-
tials). We present in the following subsections our
choice for these potential functions.

Second-Order Clique Potential Functions

Rules (ii) and (iii) concern blobs which do not belong
to the same primal sketch and are linked in the graph.
A set of two such blobs defines a second-order clique in
the graph. We then express the two rules through a
potential defined on second-order interprimal sketch
clique, C2 , C. This potential function is particularly
important since it aims at giving the same label to
blobs being neighbors in the graph. The idea here is to
measure, for two neighboring blobs in the graph having
the same positive label, how similar these two blobs
are. The more similar they are, the lowest the potential
function is, and then the more it encourages them to
have the same positive label. We therefore define the
potential Vc2(b1, b2) between two blobs b1 and b2, with
labels lb1 and lb2, belonging to different primal sketches
and being linked in the graph by an out1 or out2 link:

● if lb1 . 0, lb2 . 0, lb1 5 lb2,
● [b1–b2]out1 f Vc2 5 2Kout1 z

((e2f(b1,b2) 2 1)/(e21 2 1)) 2 Kout2,
● [b1–b2]out2 f Vc2 5 2Kout2 z e2f(b1,b2),

FIG. 9. The second-order inter-primal-sketches clique potential
function.
● else Vc2 5 0,
where lb stands for the label of blob b, Kout1 and Kout2 for
onstant weights of the potential, and f(b1, b2) for a

similarity function. The potential function Vc2 is shown
in Fig. 9 for the case lb1 . 0, lb2 . 0, lb1 5 lb2.

The similarity function f(b1, b2) is the second way, in
the whole process, to overcome the limitation of spatial
normalization. If one could identify any location in the
brain according to individual anatomy, we would be
able to tell how far b1 and b2 are from each other with
respect to anatomical individual landmarks. Measur-
ing this “anatomical distance” is the aim of the simi-
larity function f, which would somehow define a new
kind of spatial normalization. At the moment we use a
more conventional type of measurement: if b1 and b2

are linked with an out1 link, f(b1, b2) is defined by an
overlap rate between 0 and 1, as follows,

f~b1, b2! 5
2 z #~b1 ù b2!

#b1 1 #b2
,

where #b stands for the area of blob b. If b1 and b2 are
linked with an out2 link, f(b1, b2) is defined by a Eu-
clidean distance function:

f~b1, b2! 5 min@ix2 2 x1i, x1 [ b1, x2 [ b2#.

A longer term aim is to define a real anatomy-related
similarity function.

Intraprimal Sketch Maximal Clique Potential
Functions

Rule (iv) is a strong condition on the label occur-
rences inside the graph. It is modeled through a poten-
tial function Vcps, defined over each primal sketch. This
definition means that we consider primal sketches in-
side the graph as special kind of cliques, Cps , C,
which, as previously noticed, implies that the topology
in the graph is such that two blobs belonging to the
same primal sketch are neighbors. Figure 10 shows
three different intra-primal-sketch configurations in
the graph.

Figure 10a illustrates the ideal configuration with
respect to constraint (iv): no activation is represented
more than one time for a subject, i.e., no positive label

FIG. 10. Three different intra-primal-sketch configurations.
Light gray, dark gray, and black represent three different nonnull

labels.



1
t
(
T
p

(

t

774 COULON ET AL.
has more than one occurrence in the primal sketch. We
associate the potential Vcps 5 0 with this configuration.
Figure 10b shows a limit case that we tolerate in the
graph: an activation having one occurrence within a
subject’s map can be represented by two focal compo-
nents within another map. This is tolerated if these
two components are close enough in the graph, which
for us means that the two concerned blobs are “under”
the same bifurcation. Therefore, we associate the po-
tential Vcps 5 0 with this configuration as well. Figure
0c represents the nonsuitable configuration: a posi-
ive label has more than one occurrence in the graph
and we are not in the situation described by Fig. 10b).
he potential associated with this situation is then
ositive and defined by

Vcps 5 Nps z Kps z O
lÞ0,l[L

nl,

where Nps is the number of primal sketches involved in
the process, Kps the weight of this potential, nl the
number of occurrences in the primal sketch of any
nonnull label l, and L the set of labels concerned by the
configuration described in Fig. 10b. The farther away
we are from the ideal configuration, the higher Vcps is.
This potential function is made proportional to the
number of primal sketches involved in the process to
keep the whole analysis independent of this parame-
ter. The influence of function Vc2 is implicitly propor-
tional to the average number of neighbors of a blob in
the graph which have the same label as this blob, and
this average number increases with Nps in a linear
way. We therefore balance Vcps and Vc2.

Data-Driven Potential Functions

We then have to model constraint (i), that is to say
the consistency between the label given to a blob and
the measurements associated with this blob. This is
done with the data-driven potential function V(ysuxs),
where xs stands for the label at site s and ys the mea-
surements associated with the blob at this site. In our
case, we simply define it with ys being the measure-
ment relative to the maximum intensity (normalized
and integrated as mentioned under “The Primal
Sketch.” Since we have no a priori about measure-
ments of blobs representing noise, we define V(ysu0)
5 0.

Constraint (i) tells that if the measurements of a blob
are low this blob has few chances to represent an
activation, and if the measurements are high the blob
is likely to represent an activation. We then define two
values ylow and yhigh such that

● ys , ylow f V(ysuxs Þ 0) 5 Nps z Kd,
● ys . yhigh f V(ysuxs Þ 0) 5 0,
● ylow # ys # yhigh f V(ysuxs Þ 0) 5 (Nps z Kd/
ylow 2 yhigh)) z (ys 2 yhigh),
where Kd is a constant weight. This function is illus-
rated by Fig. 11. It is proportional to Nps for reasons

similar to those already explained for Vcps.
This potential function, in particular ylow and yhigh, is

empirically deduced from measurement observation,
but will be directly derived from the distribution of the
considered measurements over populations of scale-
space blobs representing activations and noise. Fur-
thermore, we use only the maximum intensity mea-
surements as a first definition, but we aim at taking
into account several types of measurements to define
the data-driven potentials. A brief study of what mea-
surements represent the data the best is presented in
Coulon et al. (1997a).

Minimization

Once all potential functions are defined, the total en-
ergy function is defined. To minimize it, we use a stochas-
tic algorithm, the Gibbs sampler with annealing (see
Geman and Geman, 1984, Section XI, for details on the
algorithm), whose convergence has been proven in the
case of Gibbs random fields (Geman and Geman, 1984).

After minimization, the process gives a set of positive
labels, each one representing an activation and having
an occurrence in a number of primal sketches. We
therefore know the occurrence, or the absence of occur-
rence, of each activation for any subject. This occur-
rence can then be mapped on the individual anatomy of
the subject for localization considerations.

EVALUATION AND RESULTS

In order to assess the performance of the system we
simulated individual activation maps. These activation
maps were of two sorts: pure noise to evaluate a rate of
false positive and noise plus activations to study the
performance of the system in limit cases. The detection
process has also been tested on experimental data from
a PET experiment. All experiments have been done
with the same set of parameters, given in Table 1.
These parameters have been chosen empirically, first

FIG. 11. The data-driven potential function.
on the basis of the relative influence we wanted be-
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tween all the different terms of the model, then with
adjustment to have results as good as possible on the
simulations. A single set of parameters is needed for
both simulations and real data, and the model is very
stable with variations of the parameters around the
chosen values.

Simulations

Pure Noise

Activation maps were simulated using white noise
convoluted with a Gaussian kernel of variance s 5
0.72, which is equivalent to a full width at half-maxi-
mum (FWHM) of 2 pixels. Five hundred activation
maps of size 64 3 64 3 48 voxels were simulated and
divided into 50 groups of 10 maps. For each group we
then computed the primal sketch of each map and
performed the group analysis using the 10 primal
sketches.

The number of detected false positive was then
counted, with the number of occurrences (between 1
and 10) of these false positive. Ideally, since we are
using pure noise images, we should not detect any
activation. Over the 50 groups, the estimated average
number of false positives per group was 2.03, with an
average number of occurrences of 5.63 per false posi-
tive. The estimated average number of false positives
per map was 1.138.

We define the local energy Ul associated with a pos-
itive label l as

Ul 5 O
s[Sl

V~ ysuxs! 1 O
c[Cl

Vc~Xuc!,

where Sl is the set of sites having the label l and Cl the
et of cliques including these sites.
It is interesting to look at the local energy associated
ith these false positives since it gives a relative mea-

ure of consistency between the activation and the
odel we propose: the lower the energy is, the more

onsistent it is. First, the average energy is 20.54,
hich is much higher than the energy associated with

eal activations in real data (see below). Second, we
otice that some of the false positives have a positive
nergy. This shows that the energy minimization does
ot reach a global minimum. This comes from the
efinition of the energy which leads to a non-convex-

TABLE 1

Values of the Parameters

ylow yhigh Kd Kout1 Kout2 Kps

2 8 0.3 1.8 0.5 1
nergy landscape and from the fact that the theoretical
conditions of convergence of our stochastic minimiza-
tion algorithm cannot be used practically (in particular
the decrease rate of the temperature (Geman and
Geman, 1984)). Nevertheless, an activation with posi-
tive energy can be removed and the resulting global
configuration is a “better” minimum. By doing so, the
average number of false positive per group falls to
1.32, with an average number of occurrences equal to
5.74. The average number of false positives per map is
then 0.76.

What we measure here is not an error rate but an
average number of misclassified objects (false positive)
per map. (For information, a single map contains sev-
eral hundreds of objects.) These average numbers of
false positive are acceptable since the detected false
positives are associated with high energy and rela-
tively low number of occurrences. This information
together with the knowledge of neuroscientists inter-
preting the results should lead to a discrimination of
errors. Moreover, the presence of a real activation in
the group will reduce the chances of having false pos-
itives in the neighborhood of this activation, due to
interactions between the activation and other struc-
tures, both in the primal sketches and in the compar-
ison graph. Finally, a better evaluation of the data-
driven potential functions should improve these
results.

Noise and Activations

Using 10 maps similar to the previous ones, we
added two synthetic “activations” in each map. These
activations are defined by a Gaussian function of stan-
dard deviation equal to 5. Their positions vary in each
image around a fixed position according to

~x, y, z! 5 ~x0 1 e z Vm, y0 1 e z Vm, z0 1 e z Vm!,

with (x0, y0, z0) the reference position of the object, e a
uniform law of amplitude [21; 1], and Vm the maxi-
mum variation around (x0, y0, z0).

The amplitude of each object can vary as well accord-
ing to

Imax~object! 5 k z Imax~noise!,

with Imax(object) the maximum intensity of the object,
Imax(noise) the maximum intensity of noise (measured
in the images), and k the ratio between both.

The rate of false negatives has been studied with Vm

and k varying, to test the resistance of the process to
intersubject variations of amplitude and to low-inten-
sity activations. The results are presented in Table 2.
One can see that the process is resistant to low-inten-
sity signal and important variations of localization,

which was one of the aims of the method.
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Furthermore, these results show the role that in-
duced out2 links play in the process: for high values of

m such as 10 or 15, a lot of occurrences of the objects
have no overlap from one map to another. Their match-
ing in the graph is therefore performed only with out2
links.

Real Data

The process presented here has been tested on a PET
motor protocol, including 10 subjects and 12 images
per subject. For each subject, an individual statistical t
map was first computed using the SPM software
(Functional Imaging Laboratory, London; Friston et
al., 1995). A primal sketch was then built from each of
the maps, and the 10 primal sketches were compared
using the labeling process.

Three different conditions (four images per condi-
tion) were performed by the subjects: a rest condition
(R), a periodic auditory-cued right-hand movement
(M1), and a self-paced right-hand movement (M2). In-
dividual maps were made using the 12 images of each
subject and looking at the contrast (M1 2 R). A group
analysis was performed using the SPM software and
used as a reference to validate our results. Numerous
activations were found at a very significant level in the
group map in expected brain regions.

After the labeling process, 11 positive labels were
found. Table 3 shows the identification of these de-
tected objects, sorted by increasing associated energy.
The more negative this energy is, the better the struc-
ture fits with the model. Individual occurrences of
these activations are presented in the Appendix, to-
gether with the SPM group analysis. Expected activa-
tions were detected together with two false positives,
both outside the brain and caused by border effects
during the blob extraction. (They are therefore easy to
eliminate and do not prevent the correct interpretation
of the maps. An addition to the process can be to use a
mask of the brain and to take into account during the
analysis only the blobs which are located inside this

TABLE 2

Number of Occurrences (Nocc) and False Negatives (NFN) of
Simulated Activations Depending on Intensity and Position
Variations of These Activations

Vmax k Nocc(object1) Nocc(object2) NFN

3 1.25 10 10 0
5 1.25 10 10 0

10 1.25 10 10 0
15 1.25 — 8 1
3 1 10 10 0
3 0.8 10 10 0
3 0.6 10 10 0
mask.) Some of the activations (labels 17, 10, 5, 18) had
no occurrence in one or two of the individual maps, and
we could check that these activations had very low
intensity in the corresponding individual maps. A clas-
sical threshold on the individual maps yielded poor
results, either too selective or too noisy, and this shows
a crucial advantage of our process: the detection is
processed for each subject taking into account not only
the intensity in the map but also the knowledge of the
other subjects’ maps. On the contrary, the number of
occurrences of labels 7, 14, and 9 is greater than the
number of subjects. It means that these activations
were detected as one connected component for most of
the subjects and two connected components for some of
them. This illustrates the situation described in Fig.
10b and the definition of potential function Vcps.

This study also showed that the local energy function
associated with each label is a good measure of the
consistency with the model. Particularly, when a pos-
itive label corresponds to no real activation, its local
energy might be high enough to discriminate it from
labels associated with real activations. In our case, the
best activation had an energy of 244.34 while the
worst had an energy of 22.82. These values confirm the
observation made about false positive in synthetic data
(see “Simulations”) having an average energy of 20.54,
the minimum energy found over the 50 groups being
25.46. However, let us notice that the local energy is
not an absolute measurement but should be considered
a clue when one looks at the result of a group analysis.

Figure 12 shows the occurrence of the right-hand
motor activation on four subjects, on a rendering of
their individual anatomy (Mangin et al., 1998). Their
location is very coherent since they are all in the right-
hand sensorimotor area in front of the higher knob of
TABLE 3

Result of the Structural Analysis of PET Data

Label Energy
No. of

occurrences Brain region

7 244.34 14 R cerebellum
14 238.99 15 L sensorimotor area (hand)
9 222.93 11 L sensorimotor area (hand

and SMA)
3 220.83 10 L and R thalamus

20 210.95 10 FP, outside brain
6 29.77 10 R auditory cortex

17 26.53 8 L posterior insula
10 26.30 8 FP, outside brain
5 25.38 9 R parietal cortex

13 23.31 10 L cerebellum
18 22.82 9 L SMA

Note. Activations detected are sorted by increasing associated en-

ergy, with their localization (FP means false positive).
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that the shape and extent vary across subjects, al-
though the four corresponding blobs have been de-
tected as representing the same activation (same pos-
itive label in the graph). This can be caused by the
intersubject variability, but also by the choice of the
scale we used to represent the activation. Indeed, the
objects labeled during the process are multiscale ob-
jects (scale-space blobs) and the choice of the represen-
tation scale changes their size and shape. The detec-
tion process automatically chooses a range of scale (the
interval during which the blob exist) but not a single
scale of observation. Automatic scale selection is an
important issue in multiscale methods, and it will be
addressed in the near future. At the moment, for the
display of the results, we use the criterion proposed by
Lindeberg (1993a): for a scale-space blob the scale of
display is selected at which the (normalized) gray-level
blob measurement assumes its maximum over scale.

Comments

In simulations the process was shown to be sensitive
enough to detect structures with an important inter-
subject variation of position. It was also shown to be
resistant to poor signal-to-noise ratio. Faced with the

FIG. 12. Four three-dimensional renderings of individual anat-
omies with the corresponding occurrences of the primary motor
activation.
intersubject variability, this good flexibility preserves
a sensible false-positive rate: although the matching
constraints between subjects are loosened, the increas-
ing combinatory possibilities do not lead to a high
false-positive rate. Moreover, the difficulty of not hav-
ing a theoretical control of the risk error is compen-
sated by the explicit information available at the end of
the detection: each detected activation is described by
its occurrence on the individual anatomy of subjects,
which makes the interpretation easier. The number of
occurrences of these activations within the group, and
above all their local energy, provides useful informa-
tion about the relevance of the results.

The results on real data are more difficult to validate
since we have no “ground truth.” Apart from obvious
activations, should a difference with a standard group
analysis be interpreted as an error or as an effect of
intersubject variability? Further experiments should
provide a better validation, especially with fMRI data,
for which individual observations are more reliable.

CONCLUSION

We have presented here a new method to analyze
brain functional images that considers the detection at
a structural level and permits a way back to individual
results after detection over a group of subjects. The
user then has an interpretation of the data which allow
him to know:

● What are the group results?
● What is the behavior of each subject relative to

these group results? Are there “subgroups,” e.g., six
subjects who show an activation and four other sub-
jects who do not?

● What is the exact localization of the group results
at an individual level? Knowing the individual occur-
rence of an activation, the user can check how and
where it fits in the anatomy of the subject. This would
improve the localization and the interpretation of the
results and possibly provide a better understanding of
the correlation between anatomy and function.

The method uses the power and comprehensiveness
of multiscale methods to describe image structure, by
looking at their whole scale space without any a priori
hypothesis about scales of interest and without any
“coarse-to-fine” strategy. A major difference from clas-
sical methods is the comparison of several subjects at
an object level instead of at a voxel level, which permits
one to introduce higher level criteria for the analysis
and which is a way to overcome the intersubject vari-
ability effects.

Spurious spatial normalization effects can be re-
duced by means of the comparison graph combined
with an appropriate definition of similarity between
blobs from different subjects. With this similarity func-
tion one can introduce more flexible rules to decide

whether two blobs represent the same activation. For



FIG. 13. Group results from the SPM group map.
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instance, one could use individual anatomical or func-
tional localization. We illustrated that by allowing the
matching of structures that have no spatial overlap.

The process has been proved to be able to efficiently
detect expected activations on a PET data set. It is
promising for functional MRI studies, since fMRI pro-
vides much more reliable individual maps than PET.
Further research still has to be undertaken to solve
outstanding questions, particularly concerning the
choice of the optimal scale used to represent (as op-
posed to detect) a scale-space blob. Detection and in-
terpretation of the results are in fact not completely
independent of this representation scale since the ex-
tent of the reported activations depends on it. Second,
a precise evaluation of the data-driven potential func-
tions still has to be further investigated. For the latter,
it is important to provide data-driven potential func-
tions directly and properly evaluated from the distri-
bution of the measurements associated to the blobs. In
that way, the detection will be more accurate, espe-
cially with fMRI for which we have a better confidence
in each subject map.

Although it is difficult to relate the proposed analysis
to standard statistical analyses, it is worth noting that
there is some kind of analogy with analyses that use
random effects linear models (Friston et al., 1999), in
the sense that activation detection is performed using
a subject-by-subject variability rather than on a scan-
by-scan variability. Note that our approach is not op-
posed to classical statistical methods, since it uses in-
dividual maps made with these methods. We advocate
that both approaches are complementary: statistical
methods present the great advantage of summarizing
the information related to a particular question in a
single map. This quality makes these statistical maps
particularly interesting to analyze.

Finally, we would like to point out the fact that using a
Markovian model for the detection allows the user of such
a system to interrogate the data in ways that can be
designed according to what is looked for. It is very easy to
define new potential functions in which one can intro-
duce, for instance, a priori information about a precise
expected location or about the search for a network of
activations instead of isolated activation. That makes the
system able to investigate functional data sets at a much
higher level than what has been done so far.

APPENDIX

We present here (Figs. 13–16) the group results from
the SPM group analysis and the individual occurrences
of the Markovian group analysis. All results are pre-
sented on a template 3D rendering from the SPM soft-
ware. For examples of results on individual anatomy,

see Fig. 12.
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FIG. 14. Individual occurrences for subjects 1, 2, 3, and 4.
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FIG. 15. Individual occurrences for subjects 5, 6, 7, and 8.
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