
Medical Image Analysis 48 (2018) 75–94 

Contents lists available at ScienceDirect 

Medical Image Analysis 

journal homepage: www.elsevier.com/locate/media 

The challenge of cerebral magnetic resonance imaging in neonates: A 

new method using mathematical morphology for the segmentation of 

structures including diffuse excessive high signal intensities. 

Yongchao Xu 

a , b , c , 1 , ∗, Baptiste Morel b , d , 1 , Sonia Dahdouh 

b , Élodie Puybareau 

c , e , Alessio Virzì b , 
Héléne Urien 

b , Thierry Géraud 

c , Catherine Adamsbaum 

b , f , Isabelle Bloch 

b 

a School of EIC, Huazhong University of Science and Technology (HUST), Wuhan, China 
b LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France 
c EPITA Research and Development Laboratory (LRDE), Le Kremlin-Bicêtre, France 
d Faculty of Medicine, Pediatric Radiology, François Rabelais University, CHRU Tours, France 
e ESIEE, Université Paris-Est, LIGM, France 
f Faculty of Medicine, Pediatric Radiology Department, Paris Sud University, Bicêtre Hospital APHP, Paris, France 

a r t i c l e i n f o 

Article history: 

Received 28 April 2017 

Revised 4 May 2018 

Accepted 9 May 2018 

Available online 17 May 2018 

Keywords: 

Neonatal brain MRI 

Preterm brain MRI 

Semi-automatic tissue segmentation 

White matter hyperintensities 

Mathematical morphology 

Max-tree representation 

a b s t r a c t 

Preterm birth is a multifactorial condition associated with increased morbidity and mortality. Diffuse 

excessive high signal intensity (DEHSI) has been recently described on T2-weighted MR sequences in 

this population and thought to be associated with neuropathologies. To date, no robust and reproducible 

method to assess the presence of white matter hyperintensities has been developed, perhaps explaining 

the current controversy over their prognostic value. The aim of this paper is to propose a new semi- 

automated framework to detect DEHSI on neonatal brain MR images having a particular pattern due to 

the physiological lack of complete myelination of the white matter. A novel method for semi- automatic 

segmentation of neonatal brain structures and DEHSI, based on mathematical morphology and on max- 

tree representations of the images is thus described. It is a mandatory first step to identify and clinically 

assess homogeneous cohorts of neonates for DEHSI and/or volume of any other segmented structures. 

Implemented in a user-friendly interface, the method makes it straightforward to select relevant markers 

of structures to be segmented, and if needed, apply eventually manual corrections. This method responds 

to the increasing need for providing medical experts with semi-automatic tools for image analysis, and 

overcomes the limitations of visual analysis alone, prone to subjectivity and variability. Experimental re- 

sults demonstrate that the method is accurate, with excellent reproducibility and with very few manual 

corrections needed. Although the method was intended initially for images acquired at 1.5T, which cor- 

responds to the usual clinical practice, preliminary results on images acquired at 3T suggest that the 

proposed approach can be generalized. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Thanks to the progress in neonatology, more than 85% of pre-

ature newborns survive ( Victora et al., 2016 ). However, prema-

ure birth remains a leading cause of morbidity and mortality. The
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rain develops rapidly during the third trimester of pregnancy and

an be explored precisely by magnetic resonance imaging (MRI) in

he prenatal and the postnatal periods ( Parazzini et al., 2008; Tilea

t al., 2009; Viola et al., 2011 ). Indeed, automated quantification

f the cortical folding in a population of preterms, newborns

nd infants has been investigated in ( Dubois et al., 2016 ), showing

romising results. This highlights the need for robust knowledge of

ormal versus pathological patterns in terms of volume, morphol-

gy, and signal intensities. An important issue related to premature

ewborns is the presence of excessive white matter hyperinten-

ities (WMH) on T2-weighted sequences, known also as diffuse

xcessive high signal intensities (so called DEHSI), initially de-

cribed in ( Counsell et al., 2003 ) then in ( Woodward et al., 2006 ),

nd recently correlated with neuropathlogy in ( Parikh et al., 2016 ).
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2 http://wmh.isi.uu.nl/ 
3 Note that “supratentorial” refers to the cerebral hemispheres, i.e., the region lo- 

cated above the tentorium cerebelli, which separates the cerebellum from the brain. 
Yet, the prognostic value of DEHSI continues to be debated and

is very controversial, ranging from a normal transient feature to a

predictive factor for a mental retardation, ( de Bruïne et al., 2011;

Jeon et al., 2012; Parikh et al., 2013 , e.g.). A hypothesis to explain

this controversy may be the lack of robustness and reproducibility

in the assessment itself of the presence of DEHSI ( Morel et al.,

2016 ). A reproducible automatic (or semi-automatic) segmentation

of DEHSI may benefit from the segmentation of newborn brain

MR images into different brain tissues, i.e., cortical gray matter

(CoGM), basal ganglia and thalami (BGT), white matter (WM),

ventricles (Vent), and cerebrospinal fluid (CSF). Furthermore, the

segmentation of newborn brain MR images also provides new,

quantitative information ( Cheong et al., 2016; Setänen et al., 2016 )

about the maturation of the brain: in particular the gyration

process ( Garel et al., 2003 ) and the myelination process ( Counsell

et al., 2002; Wang et al., 2016 ). 

Counsell et al. (2002) have reported that myelination was ev-

ident in numerous gray and white matter structures in the very

preterm brain. For example, myelin was observed for example in

cerebellar vermis and peduncles, dentate nucleus, ventrolateral nu-

clei of the thalamus at 28 weeks gestational age. Myelin was then

visualized in the corona radiata, posterior limb of the internal cap-

sule, corticospinal tracts of the precentral and postcentral gyri, and

lateral geniculate bodies at 36 weeks gestational age. So, the white

matter is physiologically mainly unmyelinated at term equivalent

age and thereby associated with a particular signal intensity. As

mentioned in some of the cited references, the contrast between

gray and white matter seems to be inverted compared to chil-

dren after 2 years of age and adults. The lack of myelination in

neonates also has major implications to determine the presence of

white matter hyperintensities because of low image contrast be-

tween normal and abnormal appearing white matter. 

Therefore a reproducible and accurate method for segmenting

MR images of neonatal brains on daily acquisition examinations at

1.5 Teslas (T) would be a powerful tool for improving medical in-

terpretation and reproducibility. 

Of major concern is that the white matter is physiologically

partially unmyelinated in fetuses and neonates (i.e., children under

28 days of age), and thereby associated with a particular signal

intensity. This is very different from what is observed in older

children and adults. Indeed, neonatal brain segmentation is chal-

lenging not only because of its small size that is responsible for

significant partial volume effect, but also because of its particular

contrast between white and gray matter ( Gui et al., 2012; Mewes

et al., 2006; Prastawa et al., 20 05; Weisenfeld and Warfield, 20 09;

Xue et al., 2007 ). The lack of complete myelination in neonates

also has major implications to determine the presence of DEHSI

because of low image contrast between normal and abnormal

appearing white matter (see Fig. 1 ). Thereby, despite the huge

amount of work on segmentation (see Despotovi ́c et al., 2015 and

the references therein), the methods proposed in the adult context

cannot be directly used for segmenting neonatal brain images. 

The difficulties related to the neonatal period impact both

computer-aided segmentation and tedious manual methods. The

“gold standard” for neonatal brain segmentation ( Prastawa et al.,

2005 ) is manual delineation, which must follow precise guidelines

(e.g., the protocol proposed in Gousias et al., 2012 ) to be repro-

ducible, and which relies on anatomical landmarks when possible.

Yet, due to the challenging issues mentioned above, one may have

different manual segmentation results at different times, and dis-

agreement among experts can be significant ( Morel et al., 2016 ).

This non-reproducible issue is especially important in the evalua-

tion of DEHSI. 

Most existing semi-automatic or automatic methods for clas-

sical neonatal brain tissue segmentation are based on atlases

and/or classification. For instance, atlases were developed and used
n ( Cardoso et al., 2013; Gousias et al., 2012; Shi et al., 2010;

arfield et al., 20 0 0; Weisenfeld and Warfield, 20 09 ), in various

orms (probabilistic atlases, different atlases according to age, etc.).

lthough some atlases are now available for children, it is diffi-

ult to have atlases for newborns, at different ages, in a period

here the brain evolves rapidly ( Makropoulos et al., 2018 ). More

mportantly, atlas-based methods are usually efficient in normal

ases, but less when additional structures are present in the im-

ges (and not in the atlas). This is typically the case for white mat-

er hyperintensities, where the above mentioned difficulty in case

f changes in geometry is increased by changes in topology. Exam-

les of classification and learning-based approaches can be found

n ( Anbeek et al., 2013; Moeskops et al., 2015; Wang et al., 2015 ),

ometimes combined with atlases, or more recently in ( Moeskops

t al., 2016; Guerrero et al., 2018; Moeskops et al., 2018 ) using

onvolutional neural networks. Methods relying on mathematical

orphology (mainly watershed and filter by reconstruction) have

een proposed in ( Beare et al., 2016; Gui et al., 2012 ). Some meth-

ds focus on specific tissues, such as white matter in ( Ismail et al.,

016 ), in order to detect abnormalities based on curvature analy-

is. More references can be found in ( Devi et al., 2015; Moeskops

t al., 2016 ). 

Most of the existing methods focus on images of good qual-

ty, acquired with 3 T or stronger field MRI scanners. Yet, until

ecently, most installed MRI scanners operate at field strengths

round 1.5 T and result in images of inferior quality (see Fig. 1 ).

he segmentation of brain MRI at 1.5 T is more challenging than at

 T due to the lower spatial resolution, thus inducing more partial

olume effect, and lower contrast. This occurs particularly in pre-

ature newborns, which have anatomical brain structures of small

ize. One way to obtain a higher image quality at 1.5 T would be to

ncrease the acquisition duration, but it is most of the time impos-

ible in clinical practice, including for ethical reasons. White mat-

er abnormalities are also more difficult to identify at 1.5 T than at

 T. Besides, to the best of our knowledge, no semi-automatic nor

utomatic method for detecting and segmenting DEHSI is available

or newborn brain images, although a lot of methods have been

eveloped for adult brain images (see the recent MICCAI challenge

n WMH segmentation 

2 for 3 T MR images of adults, the work in

 Admiraal-Behloul et al., 2005; Anbeek et al., 2004; Caligiuri et al.,

015; Griffanti et al., 2016; Klöppel et al., 2011; 2008; Samaille

t al., 2012; Wen and Sachdev, 2004 ) and the references therein). 

In this paper, we propose a complete pipeline dedicated to

.5 T images for segmenting different neonatal brain tissues

nd white matter hyperintensities usually observed in supraten-

orial 3 slices, extending our preliminary work for some tissues

n Morel et al. (2016) . In particular, we exclude brainstem and cere-

ellum from the segmentation to focus mainly on the supratento-

ial white matter. The proposed segmentation method sequentially

xtracts each brain tissue from the axial T2-weighted neonatal

rain images: first cerebrospinal fluid (CSF) in the extracerebral

pace, then ventricles (Vent), basal ganglia and thalami (BGT), cor-

ical gray matter (CoGM), unmyelinated white matter (UWM), and

nally areas of white matter hyperintensities (i.e. DEHSI) (WMH).

e rely on some morphological methods, notably the max-tree

epresentation proposed in Salembier et al. (1998) , which is a hier-

rchical representation of the image based on threshold decompo-

ition. Two examples of segmentation results are depicted in Fig. 1 .

In order to improve the generalizability and the adaptability of

he segmentation method, we propose to make it semi-automatic,

hich enables the user to place some markers and carry out some

http://wmh.isi.uu.nl/
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rdinary manual corrections. The manual interaction allows the

ser to better understand and control the segmentation process

ased on each user’s own objective and clinical application, which

s an important aspect for clinical researchers and practitioners.

he manual corrections allow the user to correct the segmenta-

ion process on the fly if needed, and to further improve the accu-

acy of the segmentation, according to each user’s need. Indeed, as

emonstrated in Morel et al. (2016) , variability among radiologists

ould be very significant. As demonstrated in Sections 3 and 4 ,

hese manual interactions and corrections are easy to apply. Conse-

uently, the proposed method constitutes a powerful tool for clin-

cal research, and can serve as an efficient tool for preparing very

recise annotations. 

The main contributions of this paper include: (1) a semi-

utomatic method implemented as a complete pipeline, relying on

he specific anatomy and image properties of neonates, that seg-

ents the neonatal brain MR images into different tissues: CSF,

ent, BGT, CoGM, UWM, and performs equally well on images ob-

ained with MRI scanners at different field strengths; (2) a first

ethod that extracts the diffuse excessive high sigal intensities

DEHSI) in neonatal brain MR images; (3) a user-friendly interface

ntegrating the proposed method, without any critical parameter to

une and with the possibility given to the user to control each step

nd eventually perform minor corrections according to the applica-

ion needs. 

The rest of this paper is organized as follows. A global overview

f the proposed method is given in 2 . Section 3 is dedicated to de-

ail the proposed segmentation pipeline, followed by a number of

xperimental results and discussion in Section 4 . We then conclude

n Section 5 . 

In an effort to support and encourage reproducible research, the

ource code of the proposed method and a graphical interface with

ome ordinary manual corrections for different tissues are freely

vailable for research purposes on https://www.lrde.epita.fr/wiki/

eoBrainSeg . All of the results presented in this paper were ob-

ained with this graphical interface. 

. Method overview 

The proposed method is based on common anatomical charac-

eristics of different brain tissues and on their appearance on T2-

eighted MR images. Let us first recall such prior knowledge. 

.1. Anatomical characteristics in T2-weighted MR images of neonatal 

rain 

As depicted in the manual segmentations shown in Fig. 1 , dif-

erent neonatal brain tissues feature distinct characteristics on T2-

eighted sequences. There is usually a dark gap corresponding to

hin structures between the intracranial cavity (ICC) and the skin

fat/skull). The CSF and ventricles correspond to bright regions in-

ide of the ICC which are relatively easily differentiated from their

urroundings. The ventricles are approximately in the middle of

he image. The BGT correspond to the dark and compact regions in

he middle of each image slice; they are usually composed of two

arts approximately symmetrically distributed on the left and right

emispheres. The CoGM consists of the dark and thin regions that

re close to the ICC border, CSF, or the inter-hemispheric plane.

he unmyelinated white matter corresponds to the regions that are

arker than the CSF, but brighter than CoGM and BGT. The UWM

egions are usually surrounded by CoGM, BGT, and ventricles. The

EHSI are in the white matter and slightly brighter than the nor-

al surrounding white matter. The DEHSI are usually located close

o the anterior and/or posterior ventricular horns, but could be lo-

ated everywhere in the white matter. 
This prior knowledge is common in the T2-weighted neonatal

rain MR images no matter which scanners and acquisition param-

ters are used, and will be used to a great extent in the proposed

egmentation method. More precisely, thanks to the dark gap be-

ween ICC and the skin, we start with extracting ICC by a morpho-

ogical opening followed by a simple image thresholding. The CSF

nd ventricles are brighter than their surroundings, which makes

hem present in the max-tree representation ( Salembier et al.,

998 ), an intensity-based hierarchical representation of the image

ased on the inclusion relationship between the sets obtained by

pper thresholdings. For each given marker (which can be eas-

ly obtained automatically or manually), we resort to the context-

ased energy estimator ( Xu et al., 2012 ) whose minimum repre-

ents a meaningful region to be selected as the segmented tissue.

his concept is also adopted to extract the BGT, which are present

n a modified max-tree constructed on the image of difference be-

ween area closing and the original image. The remaining UWM

including DEHSI) and CoGM have relatively different intensities.

e use Otsu’s threshold ( Otsu, 1979 ) method on local regions to

eparate them. The DEHSI are also present in the max-tree, since

hey correspond to regions that are brighter than the surroundings,

y definition. Consequently, we rely again on the max-tree repre-

entation and context-based energy estimator for DEHSI segmen-

ation. 

.2. Proposed pipeline 

An overview of the proposed pipeline is depicted in Fig. 2 .

he T2-weighted image f is first smoothed by anisotropic diffu-

ion ( Perona and Malik, 1990 ) to reduce image noise. This filtered

mage f ′ is considered as the input for the rest of the pipeline sum-

arized as follows: 

a) Extract the intracranial cavity (ICC) as the region of interest (see

Section 3.2 ). 

b) Extract the CSF and ventricles using the max-tree and the

context-based energy based on the selection strategy relying on

markers (see Section 3.3 ). 

c) Extract the BGT using a modified max-tree built on the im-

age of difference between area closing φa ( f 
′ ) and f ′ (see

Section 3.4 ). 

d) Separate the gray matter and white matter from the remain-

ing tissues based on the optimal histogram-based thresholding

proposed in ( Otsu, 1979 ) (see Section 3.5 ). 

e) Extract the white matter hyperintensities using again the max-

tree and the context-based energy (see Section 3.6 ). 

Note that the input T2-weighted volumes at 1.5 T are strongly

nisotropic and the slice thickeness is too large to allow for a true

D processing with acceptable spatial consistency between slices.

herefore the proposed pipeline is applied in 2D on the set of axial

lices. 

. Details of the proposed segmentation method 

.1. Forewords about some morphological tools 

ome morphological operators and the max-tree representation 

The most fundamental operators in mathematical morphology

re the dilation δB and the erosion εB ( Serra, 1982 ), relying on a

tructuring element B . These operators are adjoint and dual. Two

ther dual fundamental operators are the opening γB = δB ◦ ε B and

he closing φB = ε B ◦ δB ( Serra, 1982 ). The effects of these fun-

amental morphological operators depend on the shape and size

f the structuring element. In mathematical morphology, the area

pening γ a and its dual operator, the area closing φa ( Vincent,

993; 1994 ), do not rely on any structuring element. They belong

https://www.lrde.epita.fr/wiki/NeoBrainSeg
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Fig. 1. Some examples of segmentation results. Note that not all the pixels inside the intracranial cavity (ICC) are manually segmented for the 1.5 T image in (a). 
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to the more general morphological operators named connected op-

erators ( Salembier et al., 1998 ). An area opening (respectively clos-

ing) consists in filtering out small bright (respectively dark) regions

from the image. 

A popular implementation of the connected operators relies on

hierarchical representations of the image based on threshold de-

compositions, such as the upper level sets. For any λ ∈ R 

+ or Z 

+ ,
the upper level sets X λ of an image f : � → R 

+ or Z 

+ is de-

fined by X λ( f ) = { p ∈ � | f (p) ≥ λ} . Upper level sets have a nat-

ural inclusion structure: ∀ λ1 , λ2 , λ1 ≤ λ2 ⇒ X λ1 
⊇ X λ2 

, which

leads to the max-tree representations of an image, first introduced

in Salembier et al. (1998) . An example of the max-tree is depicted

in Fig. 3 . Each node (i.e., green circle) of the max-tree corresponds

to a connected component (i.e., red region) in X λ. The parenthood

is given by the inclusion relationship (i.e., green lines) between the

regions in the tree. Note that only a simplified tree is shown in

Fig. 3 . 

In this paper, we use the immersion algorithm ( Berger et al.,

20 07; Najman and Couprie, 20 06 ) based on the union-find pro-

cess ( Tarjan, 1975 ) to construct the max-tree. This algorithm is de-

picted in Fig. 4 by the black part, where N (p) denotes the set of

neighboring pixels of pixel p . The construction process starts with

sorting the pixels in increasing order of intensity, i.e. root to leaves

order (see line 9 in Fig. 4 (b)), then relies on the union-find pro-

cess (in reverse order) to merge disjoint sets (see Fig. 4 (a), initially,

each pixel is considered as a singleton) to form a tree structure,

followed by a canonization process to compute the final tree (see

line 11 in Fig. 4 (b)). The time complexity is quasi-linear with re-

spect to the number of pixels n . The interested reader can refer

to Carlinet and Géraud (2014) for more details about the max-tree

computation. 

n  
ontext-based energy for extracting objects from the max-tree 

Following the scale-space theory ( Guigues et al., 2006 ), and

ince the parent of a node is a larger region, the max-tree repre-

entation is a multiscale image representation that provides a re-

uced search space for object spotting. As described in Section 2.1 ,

everal neonatal brain tissues are present in the max-tree repre-

entation, then segmenting them amounts to spot objects from the

earch space given by the max-tree. 

Object spotting from a search space is usually achieved by se-

ecting the “most likely” objects based on a measurement charac-

erizing the objects of interest. In this paper, we use the context-

ased energy introduced in Xu et al. (2012) . It is inspired by

he error term of the cartoon segmentation model ( Mumford and

hah, 1989 ). Given a region R , let us consider the error when f is

pproximated by f (R ) in region R , where f (R ) is the mean value

f f in this region: V ( f, R ) = 

∑ 

p∈ R ( f (p) − f (R )) 2 , which can be

nterpreted as a segmentation error. Let ∂R be the boundary of re-

ion R . We define the interior context region R 

ε
in 
(∂R ) and exterior

ontext region R 

ε
out (∂R ) as the sets of points at a distance less than

from ∂R , respectively inside and outside the region R . We use the

easurement defined as: 

( f, ∂R ) = 

V ( f, R 

ε
in 
(∂R ) ) + V ( f, R 

ε
out (∂R ) ) 

V ( f, R 

ε
in 
(∂R ) ∪ R 

ε
out (∂R ) ) 

. (1)

n our experiments the parameter ε was set to 2 pixels. This mea-

urement is a value between 0 and 1. Specifically, when the in-

erior and exterior context regions have similar intensity distribu-

ions, the sum of segmentation errors in the two regions would be

lose to the segmentation error for the union of these two regions.

onsequently, the measurement E is close to 1, meaning that the

ontext region is composed of the same one class, and that ∂R is

ot an object contour. For the case of interior and exterior regions
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Fig. 2. Overview of the proposed pipeline for the segmentation of different neonatal brain tissues. The process is performed in sequential order from Step 1 to Step 12 

(Step 4 for ICC refinement being optional). The blocks (a) to (e) are detailed respectively in Sections 3.2 to 3.6 . 

Fig. 3. Partial max-tree representation of the image given in Fig. 1 (a). Each node (i.e., green circle) of the tree represents a connected component (i.e., red region) in the 

upper level sets X λ; note that only a very small subset of nodes of the max-tree are shown. We can observe that, starting from the leaves (bottom) and going up to the root 

of the tree (top), the components grow and merge; some components correspond to anatomical objects. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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aving very different intensity distributions, the sum of segmenta-

ion errors for the two individual regions is much lower than that

f grouping them together. Therefore, the measurement E is close

o 0, meaning that the boundary ∂R is an object contour, and that

e have two distinct classes from either side. 

.2. Extraction of the intracranial cavity (ICC) 

To retrieve the intracranial cavity (ICC), which is a large con-

ected region in each slice, we can use the fact that the skull is a
ark gap between the ICC and the extracranial tissues. We then ap-

ly a morphological opening γB = δB ◦ ε B on f ′ with the structuring

lement B being a disk of 5 mm radius. The effect of the opening

s to attenuate the bright and thin regions exterior to the ICC but

onnected to it (see Fig. 5 (a) and (d)). The resulting image is then

hresholded with a thresholding value λICC ; the default value is

ICC = 0 . 3 for an image normalized by simply dividing the inten-

ity values by the maximal value. To clean up the binary result, we

eep only the largest region, and we fill its holes. Two examples

re depicted in Fig. 5 (c) and (e). We apply an optional refinement
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Fig. 4. Tree construction (b) relying on a modified union-find process (a)—modifications are in red. One can see that computing such a tree-based representation of an image 

can be done with a very few lines of code. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Extraction of ICC from (a) by an opening γ (b), and a thresholding (c). On another slice (d) from the same patient, the result is (e), and an optional refinement by 

removing pixels outside the CSF is depicted in (f). 
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Fig. 6. Extraction of the CSF and ventricles based on markers M . Some CSF markers are obtained automatically by image thresholding in (a), and some are added manually 

in (b) to retrieve the small CSF regions. Some inside markers and outside markers for Ventricles are manually putted in (d) and (e), respectively. The extractions in (c) and 

(f) are achieved by object spotting on max-tree representation with their corresponding markers. 
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tep after the CSF extraction (this extraction is explained later

n Section 3.3 ), to further remove bright and thin structures (i.e.,

at/skull), that can remain strongly connected to ICC. Precisely, we

efine the ICC border by the set of CSF pixels having distances

ess than 20 mm to the background, and further belonging to the

SF regions whose shortest distance to the background is less

han 2.5 mm. A result of this refinement step, applied on the ICC

epicted in Fig. 5 (e), is given in Fig. 5 (f). However, note that a very

recise delineation of the ICC is not a goal of the method, and that

t has a minor impact on the final DEHSI extraction. 

.3. Extraction of CSF and ventricles 

The extraction of CSF and ventricles amounts to identifying the

orresponding nodes in the max-tree representation. Following the

rior knowledge about CSF and ventricles being brighter than their

urroundings, described in Section 2 , it is easy to obtain some in-

ide markers M for the CSF and ventricle regions by thresholding

he image with a large value λm 

. Specifically, we first normalize

he image into the range between 0 and 1 by dividing the pixel

ntensities by their maximal value. The default thresholding value

or λm 

is set to 0.85. This thresholding process generates inside

arkers M (see Fig. 6 (a)) that lie in most of the CSF and ventricle

egions. One may also manually add some markers (see Fig. 6 (b))

or some small bright regions if a very precise segmentation is re-

uired. For each marker m ∈ M , the region that has the smallest

ontext-based energy among all the ancestor regions of m is ex-

racted as one CSF or ventricle region (see Fig. 6 (c)). It is notewor-
hy that the CSF and the ventricle regions are not yet separated at

his stage. An example is illustrated in Fig. 6 (a–c). 

In order to separate the ventricle regions and the CSF, we begin

ith setting inside manual markers M V in 
(see Fig. 6 (d)) and outside

anual markers M V out 
(see Fig. 6 (e)) for the ventricles. This is fol-

owed by disabling the ancestor regions of M V out 
in the max-tree.

hen the same selection process as above is repeated for the non-

isabled nodes in the max-tree. An example is given in Fig. 6 (d–f).

.4. Extraction of basal ganglia and thalami (BGT) 

For the extraction of BGT, that are compact and dark regions

s described in Section 2.1 , we rely on a novel modified max-tree

uilt on the difference between the original image and its area

losing (see Fig. 7 (b)) with a large area value (set to 66% of the ICC

ize, based on usual proportions of these anatomical structures). It

s easier to extract the BGT on this difference image than on the

riginal one (see Fig. 7 (c)). Yet, the whole BGT region is not per-

ectly represented by a node of the max-tree. A novel modified

ax-tree is proposed to solve this based on two inside markers

 l and m r in the left and right parts of BGT, and on a constraint

ectangle R � that encloses the BGT. For the experiments in this pa-

er, the two markers and the constraint rectangle are set manually

see Fig. 7 (d)). Compared to the classical max-tree, the modifica-

ion lies in the union-find process by forbidding the merging of

he region containing the inside markers with the region which is

ot completely inside R �. The algorithm is depicted in Fig. 4 by

dding the red part to the classical union-find process (black part).

ore precisely, for each current pixel p during the union-find
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Fig. 7. An example of BGT extraction based on the modified max-tree depicted in Fig. 4 , constructed on the difference of f ′ and its area closing φa ( f 
′ ) in (b). We set manually 

two inside markers and a bounding rectangle in (d) to limit the area of BGT segmentation. A regularization is applied to further refine such extracted BGT in (e), resulting 

the final BGT segmentation in (f). See the corresponding text for more details. 
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process, we merge it with its neighboring regions that do not con-

tain the markers (see lines 11–14 in Fig. 4 (a)). Then, for its neigh-

boring region containing the markers (see lines 15–19 in Fig. 4 (a)),

if the former merged region R p is completely inside the constraint

rectangle, we merge them. Otherwise, we process the next pixel in

the propagation order. For each marker, the largest region contain-

ing it in the modified max-tree is selected as the extracted BGT

region (see Fig. 7 (e)) . 

We further apply a regularization based on maximal Cheeger

set proposed in Carlier et al. (2009) 4 to smooth the contour of BGT.

Basically, the idea is to approximate the region of the BGT (illus-

trated in Fig. 7 (e)) by the closest shape having a high compacity.

The smoothed BGT region is displayed in Fig. 7 (f). 

3.5. Extraction of gray matter and white matter 

After subtracting the CSF, the ventricles, and the BGT from the

ICC, the residual image (or residue, for short) is composed of gray

matter and white matter. The gray levels of these two tissues are

relatively separable. A simple way to separate them is to analyze

the histogram of the residue in order to estimate an optimal

threshold. This can be efficiently achieved by Otsu’s thresholding

method ( Otsu, 1979 ). Yet, due to an important overlap between

the distributions of white and gray matters (see Fig. 8 (a)), direct

thresholding on the entire ICC usually fails. We thus propose to

divide the residue into small blocks (e.g., 10 × 8 blocks); these

blocks are depicted in Fig. 9 (b). We then apply the Otsu’s method
4 The source code is available on https://github.com/gpeyre/2009- M3AN- cheeger 

 

c  
n each small block, which improves the separability of gray

atter and white matter. Indeed, as depicted in Fig. 8 (b–d), the

verlapping of distributions of gray levels for gray matter and

hite matter inside each small block is not significant. However, it

ay happen that a small block contains only white matter; in this

ase, the Otsu’s method applied on this block yields some false

ray matter pixels. We then rely on a local validation step to solve

his issue. Precisely, for each previously extracted gray matter

ixel p g , we apply the Otsu’s method on a local window centered

t p g . The local window is large enough (e.g., 41 × 41 pixels) so

hat it contains both gray matter and white matter; such a local

indow is depicted in Fig. 9 (c). If the second thresholding process

gain predicts pixel p g as gray matter, the pixel p g is confirmed as

 gray matter pixel. Otherwise, the pixel p g is identified as a white

atter pixel. A result of the cortical gray matter extraction on the

mage given in Fig. 9 (a) is depicted in Fig. 9 (d). 

The rest of the residue contains only white matter. As depicted

n Fig. 9 (e), there are some thin structures in the residue that do

ot belong to white matter. We apply an opening with a square of

 × 1 mm 

2 as structuring element to remove these thin structures.

his yields the extracted white matter. Note that this final opening

an result in a few pixels that are not assigned to any anatomical

tructure or tissue. An example of UWM extraction is illustrated in

ig. 9 (f). 

.6. Extraction of white matter hyperintensities 

The next step aims at segmenting DEHSI from the regions

orresponding to the extracted white matter (this extraction is

https://github.com/gpeyre/2009-M3AN-cheeger
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Fig. 8. Distribution of gray levels for cortical gray matter and unmyelinated white matter. 

Fig. 9. An example of CoGM and UWM extraction. Given an image (a), a local thresholding is performed on small blocks (b), and sometimes validated on a larger area (c), to 

obtain a segmentation of the CoGM (d). Subtracting the CSF, the ventricles, the BGT, and the CoGM from the ICC gives the residue (e), from which the UWM is extracted (f). 
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escribed in the previous section). There are two main steps: (1)

elect a set of DEHSI candidates on the max-tree; (2) filter out

ome candidates based on relative intensities with their surround-

ngs. 

Let us denote by f ′ wm 

the input image masked with the ex-

racted white matter regions (0 elsewhere). According to the

natomical characteristics described in Section 2 , the DEHSI are

isjoint regions, and are present in the max-tree of f ′ wm 

. We rely

n the context-based energy to identify the DEHSI. Yet, as man-

al segmentation of hyperintensities is very subjective, it is con-

equently difficult to obtain their inside markers. We use an al-

ernative selecting and discarding process to extract them. More

recisely, we first spot the “most likely” region R ∗1 having the min-

mum context energy among all the regions in the tree, and dis-
ard all the ancestors and descendants of R ∗
1 
. Then we retrieve a

econd “most likely” region R ∗
2 

having the minimum context en-

rgy among the remaining regions in the search space, and dis-

ard again its descendants and ancestors. This selecting and dis-

arding process is repeated until all the regions are either spotted

r discarded. In consequence, a set of regions { R ∗
i 
, i = 1 . . . N} will

e spotted, where the number of spotted objects N is decided by

he algorithm. An example of this process is depicted in Fig. 10 .

ote that we ignore the regions outside the extracted white mat-

er when computing the energy. 

Let us make clear that the context-based energy is very well

dapted to the task of locating the “best” possible DEHSI bound-

ries. Indeed, a node of the max-tree corresponds to a region

btained by thresholding. The energy computed on the context,
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Fig. 10. An example of object spotting on the max-tree based on selecting and discarding process. Spotting an object means finding the “best” tree node that corresponds to 

the expected object. For that, an energy is assigned to each node (depicted in blue on the left of the nodes), where minima values of the energy on the tree give candidate 

objects. The spotting strategy, depicted in (b), repeats the process of selecting the node R ∗
i 

having the smallest energy, and of discarding the ancestors and descendants of 

this node. Here, the first spotted node R ∗1 is R 06 , which has the smallest energy; its ancestors and descendants (within the red dotted line) are discarded. The smallest energy 

for the remaining nodes is 3 at node R 14 so we have R ∗2 = R 14 , and we discard the nodes within the blue dotted line. Last, R ∗3 = R 11 . (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Extraction of hyperintensities based on selecting regions from the max-tree constructed on the previously extracted UWM regions. This is followed by a validation 

process (see text for details) that provides the result (c). 
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that is, on the part of the image around the region boundary, ex-

presses how well this boundary separates the context into two

distinct classes ( Xu et al., 2012 ). So, applied on the max-tree, it

thus considers all the regions obtainable by any local threshold,

and then points out the region (corresponding to the node with

the lowest energy) whose boundary best separates locally the im-

age into two classes. This property also applies when the boundary

of a DEHSI region is very diffuse. Eventually, this spotting process

yields a number of regions. Only the regions having relatively small

energy values (e.g., smaller than 0.5) and high mean gray levels

(e.g., larger than a given threshold λf ) are considered as candidate

DEHSI regions (see Fig. 11 (b)). The threshold value λf is given by

λ f = f ′ ( UW M ) + α × σ ( f ′ ( UW M )) , where f ′ ( UW M ) denotes the

mean gray level on the previously extracted UWM, σ stands for

the standard deviation, and α is a parameter (set to α = 1 by de-

fault). 

For each candidate DEHSI region R h , we compute the rela-

tive difference λh of mean gray levels f ′ between R h and its sur-

rounding white matter regions R wm 

: ( f ′ (R h ) − f ′ (R wm 

)) / f ′ (R wm 

) . A

DEHSI region should have a rather important relative difference λh 

(0.05 by default). We use this criterion to further filter out some

candidate DEHSI regions. An example is illustrated in Fig. 11 . 

3.7. Implementation and graphical interface with manual corrections 

The proposed pipeline has been implemented in Matlab ©. For

the max-tree construction, as described in Section 3.1 , we use the
mmersion algorithm ( Berger et al., 2007; Najman and Couprie,

006 ) based on union-find process depicted in Fig. 4 , which has a

uasi-linear time complexity. For the computation of the context-

ased energy, we use an approximated version ( Xu et al., 2012 ),

hich is faster than its exact computation for the extraction of CSF

nd ventricles. The computation is performed incrementally dur-

ng the tree construction. For the extraction of hyperintensities, we

se an exact computation of the energy ( Xu et al., 2015 ). This ex-

ct version has a higher time complexity O ( n ε2 h ), where h is the

epth of the max-tree. Yet, it is applied only in the white matter

egion. So the computation is still rather efficient. 

A graphical interface has been developed, integrating each step

f the pipeline and a manual correction tool. This tool allows us

o improve the segmentation results with little effort by propos-

ng the following operations: (1) remove an entire existing re-

ion by selecting an inside point; (2) remove part of an existing

egion by drawing a closed contour; (3) add a region by draw-

ng a closed contour; (4) preserve only a region by drawing a

losed contour; (5) preserve only an existing region by choos-

ng an inside point. These manual corrections are easy to per-

orm, are not time consuming, and they help to improve the

esults. 

The graphical interface is illustrated in Fig. 12 . There are two

anels on the top showing the input image and the correspond-

ng results for each processing step. The principle interface is

omposed of three main blocks: (1) importing images and saving
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Fig. 12. Illustration of the graphical user interface integrating each step of the proposed pipeline and some ordinary manual corrections. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Summary of parameters involved in the proposed method. During all our experi- 

ments, we have only changed the values of the two parameters in italics. 

Module Parameter Default value 

Smoothing Number of iterations 10 

Diffusion coefficient 0.14 

Get ICC Disk’s radius for opening 5 mm 

Thresholding value for ICC 0.3 

Get CSF + Vent Thresholding value for markers 0.85 

Refine ICC Maximal distance defining ICC border 20 mm 

Maximal closest distance 2.5 mm 

Get BGT Size of area closing 0.66 × ICC size 

Get CoGM Horizontal number of blocks 8 

Vertical number of blocks 10 

Validation window size 41 × 41 pixels 

Get WM Square size for opening 1 × 1 mm 

2 

Get Hyper Maximal energy 0.5 

Parameter α for minimal mean gray level 1.0 

Minimal relative difference 0.05 
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orresponding results; (2) proposed processing pipeline; (3) some

anual corrections. 

.8. Parameter settings 

There are 14 parameters involved in all steps that have been de-

cribed in the corresponding sections (from 3.2 to 3.6 ); their val-

es are listed in Table 1 . The parameter setting for the anisotropic

iffusion process, using 1 / (1 + (∇ f/K) 2 ) as the conductance func-

ion, is also depicted in Table 1 . Most of these parameters are fixed

hanks to the prior knowledge about common anatomical char-

cteristics of the neonatal brain and their appearance on the T2-

eighted scans. During all our experiments presented in Section 4 ,

e modified only slightly the values of two parameters, λICC and

m 

(surrounded by the red rectangles in Fig. 12 ), which are used

o extract ICC and markers for CSF. These two parameters have an

ntuitive meaning with respect to the gray levels of the input im-

ge. It is therefore easy to tune them, even for a non-specialist in
mage processing. The other three parameters related to the hy-

erintensity extraction were also made available to the users in

he graphical interface described previously for the sake of trans-

arency, though we never changed them in any of the experiments.

n analysis of the robustness of the parameters is provided in

ection 4.5 . 

. Experimental results and discussion 

.1. Datasets and evaluation measures 

Datasets . The proposed method was tested on images acquired

ith both 1.5 T scanners and 3 T scanners, though it was ini-

ially dedicated to 1.5 T clinical data. To the best of our knowl-

dge, there is no publicly available 1.5 T neonatal brain MR im-

ge dataset providing manual segmentations. Consequently, some

xperimental results on our in-house clinical 1.5 T data are pre-

ented. First, we tested on 20 supratentorial slices including the

asal ganglia and the frontal horns of the periventricular system of

0 axial T2-weighted volumes of preterm newborns, obtained with

ifferent 1.5 T MR devices. Then we applied the proposed pipeline

n three axial T2-weighted volumes (whole image) of three differ-

nt preterm newborns. Note that these in-house 1.5 T MRIs were

erformed according to the local routine protocol, i.e., without any

edation, and retrospectively studied without the need for inter-

al review board approval. For 3 T images, we tested on five ax-

al T2-weighted volumes of preterm infants from the NeoBrainS12

ataset ( Išgum et al., 2015 ). 

All the tested images were acquired at term-equivalent age (be-

ween 39 and 40 weeks of gestation) of preterm infants born at

round 28 weeks of gestation. The basic information about these

mages is listed in Table 2 . More details are given in the following.

Slices containing white matter hyperintensities 

The first dataset consists of 20 axial T2-weighted supratentorial

lices from different 1.5T MR devices (Siemens Avanto, GE Signa

dxt, Philips Achieva, Philips Intera, Siemens Symphony, Toshiba)
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Table 2 

Acquisition parameters for the images used in this paper. 

Age 40 weeks 40 weeks 40 weeks 

Protocol 1.5T Axial T2 1.5T Axial T2 3T Axial T2 

Number of images 20 3 5 

Rec. matrix 512 × 512 × 20 or 256 × 256 × 20 512 × 512 × 20 or 256 × 256 × 20 512 × 512 × 50 

Voxel sizes (mm 

3 ) 0.36 × 0.36 × 2.0 to 0.70 × 0.70 × 4.0 0.39 × 0.39 × 5.0 to 0.78 × 0.78 × 5.0 0.35 × 0.35 × 2.0 

TR, TE (ms) 3750, 110 See Table 3 6293, 120 

Fig. 13. Some segmentation results using the proposed method on slices of some 1.5T T2-weighted volumes. See the electronic version of this paper for a better visualization. 

Table 3 

Acquisition parameters for the three patients illustrated in Fig. 15 (a–c). 

Parameter Patient 1 Patient 2 Patient 3 

TR (ms) 3821 3968 3747 

TE (ms) 110 110 110 

Rec. matrix 256 × 256 × 20 512 × 512 × 18 512 × 512 × 17 

Voxel sizes (mm 

3 ) 0.78 × 0.78 × 5.0 0.39 × 0.39 × 5.0 0.39 × 0.39 × 5.0 
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of preterm newborns whose clinical status, transfontanellar ultra-

sound, and electroencephalogram were all normal. White matter

hyperintensities may be present in these images. Some examples

are shown in Fig. 13 (a). Two senior observers manually and inde-

pendently segmented different brain tissues, and detected and seg-

mented white matter hyperintensities. 

Three in-house 1.5T T2-weighted volumes 

The detailed acquisition parameters for these three patients are

listed in Table 3 . Two senior observers independently annotated

the five tissues for these three volumes. The annotations given by

the first observer, who is a more experienced pediatric radiolo-

gist than the second one, are used as the reference segmentations.

Note that not all pixels are annotated due to the strong partial

volume effects and labor intensive work. This corresponds to the

usual clinical practice. The interest of the proposed approach is
o be reproducible and to provide less un-labeled pixels. The un-

abeled pixels are ignored when evaluating the proposed method,

.e., considered as true negative for the five main tissues to be seg-

ented. 

eoBrainS12 dataset ( Išgum et al., 2015 ) 

We have tested the proposed pipeline on the five axial

2-weighted images of preterm infants from the NeoBrainS12

ataset ( Išgum et al., 2015 ). These images were acquired on a

hilips 3T MRI scanner at University Medical Center Utrecht, The

etherlands, with parameters listed in Table 2 . On these images,

o brain pathology was visible. The manual segmentations were

erformed either by MDs who were working towards a Ph.D. in

eonatology, or by trained medical students, and further validated

y three neonatologists. A detailed description of the data is avail-

ble at http://neobrains12.isi.uu.nl/ and in ( Išgum et al., 2015 ). Note

hat the NeoBrainS12 dataset also provides two extra axial scans

f two preterm infants with reference segmentations for training

urpose. 

valuation measures 

The quantitative evaluation of the proposed method on the

hree datasets described above is based on Dice coefficient (DC),

odified (95th percentile) Hausdorff distance (HD), average vol-

me difference (AVD), and mean surface distance (MSD). For an

http://neobrains12.isi.uu.nl/
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Table 4 

Mean Dice coefficients, modified Hausdorff distances (HD), and average volume difference (AVD) between senior observers and two 

usages of the proposed semi-automatic method on the 20 images that potentially contain DEHSI. 

UWM CoGM BGT Vent CSF 

Dice HD AVD Dice HD AVD Dice HD AVD Dice HD AVD Dice HD AVD 

Obs.1 / Obs.2 0.88 2.5 14.3 0.78 2.1 17.7 0.97 1.5 02.7 0.94 0.9 07.5 0.88 1.6 16.1 

Obs.1 / Auto.1 0.86 2.8 10.1 0.79 2.6 09.9 0.96 1.7 02.7 0.89 1.7 17.1 0.88 3.6 13.5 

Obs.2 / Auto.1 0.88 3.9 05.4 0.86 1.8 08.8 0.96 1.6 04.3 0.88 1.8 18.0 0.83 8.8 16.1 

Auto.1 / Auto.2 0.97 1.5 02.4 0.98 0.4 02.1 0.99 0.6 01.0 0.98 0.3 02.3 0.98 5.7 04.0 
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utomatic segmentation S and a reference segmentation G of a cor-

esponding tissue, the Dice coefficient is defined as: DC = 2 × | S ∩
 | / (| S| + | G | ) , where | · | denotes the cardinality. The mean surface

istance is a contour-based measure which is the mean distance

etween ∂S and ∂G , where ∂S and ∂G denote the set of boundary

oints of S and G , respectively. 

.2. Results on 1.5 T clinical images containing white matter 

yperintensities 

We tested the proposed pipeline for segmenting neonatal brain

issues including white matter hyperintensities on supratentorial

lices of 20 axial T2-weighted volumes obtained with different

.5 T MR scanners (see Section 4.1 ). The predefined parameters

ere used. Only a small adaptation was made on the intracra-

ial cavity threshold value (decreased from 0.3 to 0.2) for a very

ew images, to precisely segment their ICC. Some boundaries were

anually delimited to avoid significant partial volume effect (see

ection 4.5 for details about the manual delimitation). The pro-

osed pipeline was applied twice by the same user with a one-

onth delay. Some qualitative results are depicted in Fig. 13 . Quali-

atively, the segmentation results of the main tissues and the white

atter hyperintensities obtained by the proposed method Seg are

ery close to the manual annotations GT 1 and GT 2. The differences

re better visualized in Fig. 13 (e). The violet pixels represent the

ixels inside the ICC that the proposed method did not assign with

 label of any of the five tissues, but that actually correspond to

ne of the five tissues. The other colored pixels are the false pos-

tives for the corresponding tissue represented by the color. The

ther gray pixels are the true positives of the corresponding tissue

r correct background. Note that we do not consider the segmen-

ation results for the non-annotated pixels, which are considered

s true negatives for all the tissues to be segmented. 

We have evaluated our results quantitatively based on the Dice

oefficient, modified Hausdorff distance, and average volume dif-

erence. Table 4 provides the results averaged over all cases for

he five main brain tissues, where the extracted white matter hy-

erintensities are considered as white matter for this evaluation.

e compared the results of the two usages described before of

he proposed method with potentially different manual interac-

ions denoted as Auto.1 and Auto.2, to the manual segmentation

y the senior observers (Obs.). As depicted in this table, the re-

ults of the proposed method have generally high Dice coefficients.

he fact that this measure is quite sensitive with respect to shape

smaller indices are generally observed on small or thin structures)

ay explain the smaller values obtained for the gray matter, which

s known to be very difficult to observe on such images, in par-

icular due to the strong partial volume effect on thin structures.

ote that we do not consider the segmentation results for the non-

nnotated pixels. Yet, as demonstrated by the relative low Dice co-

fficient between the two senior observers, the manually labeled

ixels do not only contain “easy” pixels. The high Dice coefficients

etween the two usages of the proposed pipeline with one-month

elay by the same user demonstrates the high reproducibility of

he proposed semi-automatic method. The same conclusions also

old based on the modified Hausdorff distance and average vol-
me difference. In general, the proposed method performs on par

ith the two senior observers. For the CSF, the proposed method

s more compatible with Obs. 1, whereas the proposed method is

ore consistent with Obs. 2 for the CoGM. 

Table 5 provides quantitative results for the DEHSI extraction.

ote that the average does not take into account two images (de-

oted P and Q in Fig. 14 ) in which no hyperintensity is detected

y the reference observer Obs.1. As shown in ( Morel et al., 2016 ),

eciding visually whether hyperintensities are present or not is

ighly subjective, and the precise delineation of the corresponding

egions is even more difficult. This is confirmed by the low val-

es of the Dice coefficient, and high values of HD and AVD. Yet,

he variability of the proposed method with respect to observers

s of the same order as the variability between observers (Obs.1

nd Obs.2), and the proposed method remains very reproducible,

hich is an important improvement over manual segmentation. A

etailed quantitative evaluation based on the Dice coefficient for

ach of the 20 images is depicted in Fig. 14 . Note that if there were

o hyperintensity marked in one segmentation result, but detected

n another segmentation result, the Dice coefficient between these

wo results would be 0 (e.g., for images C, P, and Q). 

.3. Results on clinical images obtained with 1.5T MRI 

The proposed pipeline was tested on three in-house 1.5T T2-

eighted volumes described in Section 4.1 . Some results can be

ompared qualitatively to the two manual annotations GT 1 and

T 2 in Fig. 15 . As illustrated in this figure (better visualized in the

ifference images on the right side), the results of the proposed

ethod Seg are very similar to the manual annotations. Note that

he pixels that are not annotated by the reference radiologist are

gnored when computing the segmentation differences. The inter-

ndividual variabilities between the two observers, and the inter-

ndividual variabilities between our results and the reference ob-

erver’s annotations are comparable. 

Quantitative analyses on these three patients (whole brains) are

epicted in Table 6 . The Dice coefficients are slightly worse com-

ared to the previous experiment. With the whole exploration of

he supratentorial stage, the partial volume effect and the com-

lexity of the segmentation could explain this slight decrease. Yet,

ur results are comparable with the manual annotations. Note that

he pixels not annotated by the reference pediatric radiologist are

gnored for this evaluation, i.e., considered as true negative for the

ve main tissues to be segmented. However, as depicted by the

elative low values of the Dice coefficient between the two senior

bservers, the evaluation is not only performed on the “easy” vox-

ls. Three usages of the proposed pipeline by the same user with

ifferent levels of manual segmentations are evaluated in Table 6 :

1) segmentation without any manual corrections denoted by Au-

oMin; (2) segmentation with very few manual corrections that are

asy to apply, denoted by Auto (e.g., Fig. 15 ); (3) segmentation

ith manual corrections to achieve a very precise segmentation

enoted by AutoMax (see Section 4.5 for details about the manual

orrections). As depicted in Table 6 , the proposed pipeline is quite

obust even if no manual corrections are applied. The same con-

lusions also hold based on the evaluation with HD and AVD. The
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Table 5 

Mean Dice coefficients, modified Hausdorff distances (HD), and average volume difference (AVD) for 

the DEHSI segmentation on 18 images. 

Obs.1 / Obs.2 Obs.1 / Auto.1 Obs.2 / Auto.1 Auto.1 / Auto.2 

Dice HD AVD Dice HD AVD Dice HD AVD Dice HD AVD 

0.49 22.5 132.6 0.42 22.5 244.7 0.51 27.3 78.3 0.96 7.2 8.2 

Fig. 14. Evaluation of Dice coefficient of DEHSI segmentation on 20 images. 

Table 6 

Mean Dice coefficients, modified Hausdorff distances (HD), and average volume difference (AVD) between senior observers and the proposed method 

with different level of manual corrections on 1.5 T T2 weighted volumes of three patients. See the corresponding text for details. 

Patient UWM CoGM BGT Vent CSF 

Dice HD AVD Dice HD AVD Dice HD AVD Dice HD AVD Dice HD AVD 

#1 Obs.1 / Obs.2 0.85 2.0 12.6 0.73 2.0 26.8 0.95 2.0 02.3 0.87 7.9 12.2 0.87 2.0 12.7 

Obs.1 / AutoMin 0.85 3.2 02.3 0.71 4.0 08.8 0.93 3.0 07.7 0.88 2.0 20.3 0.83 5.1 10.8 

Obs.1 / Auto 0.86 3.0 03.1 0.72 4.0 07.8 0.94 2.0 01.2 0.88 2.0 19.6 0.84 5.0 11.1 

Obs.1 / AutoMax 0.87 2.2 01.4 0.73 2.8 13.6 0.95 2.0 02.5 0.90 1.4 16.1 0.84 3.6 10.5 

#2 Obs.1 / Obs.2 0.84 5.0 06.7 0.66 4.1 33.1 0.96 4.0 00.4 0.91 2.8 08.6 0.86 6.1 11.4 

Obs.1 / AutoMin 0.75 6.4 05.6 0.65 5.1 02.0 0.94 5.7 09.7 0.73 14.0 37.3 0.80 5.7 18.7 

Obs.1 / Auto 0.76 6.2 05.7 0.64 5.1 00.2 0.94 4.6 00.2 0.73 17.7 38.2 0.81 7.0 15.3 

Obs.1 / AutoMax 0.81 5.5 05.5 0.66 5.0 08.1 0.96 4.0 02.1 0.79 15.2 32.4 0.81 10.8 12.4 

#3 Obs.1 / Obs.2 0.80 5.2 08.4 0.64 4.5 37.9 0.91 6.7 08.7 0.88 9.8 01.1 0.74 29.6 21.4 

Obs.1 / AutoMin 0.75 7.1 02.8 0.67 5.5 10.4 0.92 5.1 12.8 0.80 4.5 25.0 0.68 34.7 20.0 

Obs.1 / Auto 0.76 6.5 01.4 0.67 5.5 09.0 0.93 4.2 05.7 0.79 5.0 25.8 0.72 19.2 21.7 

Obs.1 / AutoMax 0.82 5.7 04.4 0.69 4.5 19.9 0.96 4.1 01.0 0.84 5.0 16.0 0.72 36.0 13.7 

Average Obs.1 / Obs.2 0.83 4.0 09.2 0.67 3.5 32.6 0.94 4.2 03.8 0.89 6.8 07.3 0.82 12.6 15.1 

Obs.1 / AutoMin 0.78 5.6 03.6 0.68 4.9 07.1 0.93 4.6 10.1 0.80 6.8 27.5 0.77 15.1 16.5 

Obs.1 / Auto 0.79 5.2 03.4 0.67 4.9 05.7 0.94 3.6 02.4 0.80 8.2 27.9 0.79 10.4 16.0 

Obs.1 / AutoMax 0.83 4.5 04.9 0.69 4.1 13.9 0.96 3.4 01.9 0.84 7.2 21.4 0.79 16.8 12.2 
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provided ordinary manual corrections allow us to improve easily

the segmentation accuracy. 

We have attempted to compare the proposed method with

other state-of-the-art methods (mostly dedicated for 3 T images)

on these 1.5 T images, we only found one publicly available source

code in Makropoulos et al. (2014) which is dedicated to 3T images.

It works very poorly on these 1.5 T images. Consequently, no qual-

itative nor quantitative comparison is given on these 1.5 T images. 

4.4. Results on images obtained with 3 T MRI 

We also tested our method on 3 T axial images from the Neo-

BrainS12 dataset ( Išgum et al., 2015 ) to illustrate the generalization

power of the proposed approach. These data have not exhibited

white matter hyperintensities, but our approach achieved very ac-

curate segmentation results, depicted in Fig. 16 . Please note that

the black pixels inside the ICC of manual segmentations in the

second row of Fig. 16 are myelinated white matter (MWM) that

we do not segment. For our segmentation results, not all the pix-

els inside the ICC were assigned to a tissue. The differences be-
ween our segmentation results and the reference were highlighted

n the bottom of Fig. 16 . Fig. 17 illustrates some segmentation re-

ults given by the proposed method on three preterm infants in

he test dataset of NeoBrainS12 ( Išgum et al., 2015 ). It should be

entioned that, in daily practice, no isotropic scan is performed

n 1.5T acquisition systems, since the age of the patients requires

ery short acquisition time. Although all steps of the method ap-

ly in 3D as well, such an extension was not tested because of the

ack of data. Noteworthy, the proposed method generalizes well to

he NeoBrains12 data test set, although it was not specifically de-

igned for it, alluding to the ability of the method in its current

tate to deal with isotropic scans. The 3D spatial consistency on

ut-of-plane slices is illustrated in Fig. 17 . Let us remark that there

s no topological constraint in the method and, as a consequence,

he final topology of the extracted structures is not guaranteed.

et, the limited spatial resolution does not allow for a rigorous 3D

opological analysis; furthermore, the intended applications require

erely volumetric analysis, where topology does not play an im-

ortant role. 
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Fig. 15. Some segmentation results using the proposed method on slices of three 1.5 T T2-weighted volumes. See the electronic version of this paper for a better visualization. 
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Fig. 16. Some segmentation results using the proposed method on several slices of the T2-weighted volume for a patient in the training set of NeoBrainS12 

dataset ( Išgum et al., 2015 ). See the electronic version of this paper for a better visualization. 
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The comparison with other state-of-the-art methods on this

dataset is presented in Table 7 . Note that the competitive method

UNC-IDEA ( Wang et al., 2015 ) is a learning-based approach that

makes use of a probability map for different tissues estimated

by other learning-based approaches. With the exception of DCU,

all the other methods are based on an atlas created from other

datasets and/or improved by the two provided training volumes.

As shown in Table 7 , the proposed method achieves results com-

parable to the state-of-the-art methods. 

4.5. Discussion 

These experimental results demonstrate the potential of the

proposed method for segmenting neonatal brain structures, par-

ticularly for automatic DEHSI segmentation for neonates that has

never been addressed. The high reproducibility of the algorithm is

an important improvement over existing visual DEHSI assessment

methods. It will thereby constitute a powerful tool prior to any
linical study for correlations and thus a better understanding of

he prognostic value for DEHSI. Though the proposed method was

riginally developed for 1.5 T MRI data from usual clinical practice,

t performs equally well for 3 T MRI data that are likely to be more

nd more developed in clinical practice. As compared to the clas-

ical atlas-based methods that may require different atlases and

egistration processes for different volumes, the proposed method

ased on their common anatomical characteristics and appearance

n T2-weighted MR images is more generic. 

For all the experiments in this paper, we set 12 of 14 involved

arameters thanks to the prior common knowledge about the cor-

esponding structures. We only changed the value for the two pa-

ameters λICC and λm 

that are used to extract ICC and respectively

SF markers. These two parameters have an intuitive meaning with

espect to the gray levels of the input image. Consequently, they

re easy to tune, even for a non-specialist in image processing. Be-

ides, we have changed their values at most twice for each vol-

me. Furthermore, even though these two parameters may have
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Fig. 17. (a–c): Segmentation results using the proposed pipeline on slices of T2-weighted volumes for three preterm infants from the NeoBrainS12 dataset ( Išgum et al., 

2015 ); each column corresponds to 3 slices of the same subject and their corresponding segmentations by the proposed method. (d): Although the pipeline processes the 

slices independently, the final 3D result is spatially consistent. 

Table 7 

Quantitative comparison of different methods on the NeoBrainS12 dataset ( Išgum et al., 2015 ). Note that the numbers in 

light gray for methods MCRI and UNC-IDEA ( Wang et al., 2015 ) are evaluation results for CSF+Ventricles. The methods using 

more training images than those provided in this dataset are not included. 

Method UWM CoGM BGT Vent CSF 

DC MSD DC MSD DC MSD DC MSD DC MSD 

DCU 0.83 0.40 – – – – – – – –

DTC ( Wang et al., 2012 ) 0.89 0.22 0.84 0.16 0.88 0.47 0.85 0.22 0.76 0.35 

Imperial ( Makropoulos et al., 2014 ) 0.90 0.18 0.85 0.17 0.90 0.62 0.81 1.38 0.79 0.32 

MCRI 0.88 0.25 0.84 0.19 0.88 0.70 0.77 0.35 0.73 0.56 

UCL ( Melbourne et al., 2012 ) 0.87 0.26 0.83 0.18 0.89 0.56 0.81 0.32 0.71 0.54 

UNC-IDEA ( Wang et al., 2015 ) 0.92 0.13 0.86 0.11 0.92 0.33 0.79 0.25 0.79 0.25 

UPenn ( Wu and Avants, 2012 ) 0.85 0.38 0.80 0.27 0.80 1.25 0.86 0.22 0.61 0.74 

Our 0.92 0.14 0.87 0.13 0.91 0.62 0.83 0.24 0.68 0.61 
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light impact on the extraction of ICC and CSF, leading to approx-

mately correct segmentation for the other structures, they do not

nfluence the segmentation of white matter hyperintensities. 

The proposed segmentation pipeline is a semi-automatic

ethod. It requires two types of human interventions: (1) Set-

ing several inside (and outside if necessary) ventricle markers for

ach slice containing ventricles; (2) Setting two inside BGT markers

nd a BGT constraint rectangle for each slice containing BGT. The

ounding rectangle has to be delimited approximatively around

he basal ganglia to limit the area of segmentation, which is an
asy task, that furthermore does not need to be very precise. Note

hat a marker is a point, so these settings require around 10 clicks

nly, which was found acceptable by the clinicians. These inter-

entions could be removed in the future by investigating auto-

atic settings based on their relative positions. To achieve very

recise segmentations, we have applied some simple manual cor-

ections summarized as follows: (1) Drawing a region to complete

he extracted ICC, if necessary (less than 20 times for all experi-

ents); (2) Adding inside markers for some missed small CSF re-

ions by clicking inside them (less than 10 clicks for each slice); (3)
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Fig. 18. Preliminary segmentation results on several slices of two coronal T2-weighted MR images of two infants acquired at 30 weeks (top two rows) and respectively 

40 weeks (bottom two rows) corrected gestational age from NeoBrainS12 dataset ( Išgum et al., 2015 ) 
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Delimiting boundaries of BGT by drawing regions to be removed;

(4) Delimiting some boundaries of CoGM by cutting several times

(i.e., drawing regions to be removed) to isolate it from the other

tissues (e.g., cerebellum), followed by several clicks to extract the

expected CoGM; 5) Clicking several times inside the expected

UWM to extract it, and if necessary (less than 20 times for all ex-

periments), delimiting some boundaries of UWM to isolate it from

other tissues before clicking. These corrections, that do not require

further precise anatomical knowledge, are easy to apply and are

not time consuming; they only take a dozen of seconds. Note that,

from our experiences, the ratio between subjects with and with-

out correction has been 1/3 (for example, a required correction

concerned the exclusion of pellucidum cyst). Yet, as depicted in

Table 6 , the proposed semi-automatic pipeline is also robust even

if no manual corrections are applied. 

Although the proposed pipeline required some user interactions

(discussed above), results were reproducible and robust. Semi-

automation is even an advantage since the functionalities offered

to the users, such as defining some markers manually and carrying

out some manual corrections, were in adequation with the increas-

ing need for providing medical experts with semi-automatic anal-

ysis tools. In particular, this allows obtaining results that fit each

specific clinical requirement. Moreover, semi-automation makes

the method more general and adaptable: there is no prior infor-

mation needed about the orientation of the brain MRI, and the
ethod could be adapted to other pathologies (such as ventricular

ilatation). This will be further demonstrated in our future works. 

Note also that the intended use of the method is in clinical ap-

lications, where the data of each subject will be processed just

fter their MRI acquisitions. 

The proposed pipeline enabled the precise segmentation of

 volume slice in approximately 2 min. This was considerably

aster than a manual annotation, which could take 45 min on

verage to produce similar segmentation results for each slice.

s compared to the classical atlas-based methods, which usually

nvolve a time-consuming registration process (e.g., the method

n Makropoulos et al., 2014 takes about 5 h to segment a 1.5 T vol-

me with 20 slices), the processing time for the proposed method

s acceptable. 

Feedback from radiologists is very positive: they could use the

rogram very easily in daily practice, without changing any pa-

ameters in almost all tested cases. They found the graphical in-

erface easy to understand and to use. They also found it conve-

ient to be able to check each step of each segmentation result,

hich is displayed immediately. The interface allows the user to

orrect one step if needed, thus preventing an incorrect result to

ave an impact on the subsequent ones. Besides, although fully au-

omatic methods can provide accurate segmentation in some cases,

he radiologists usually have to correct the segmentations accord-

ng to their own purposes. The proposed semi-automatic method
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s a good compromise between efficiency and generality, and is in

ncreasing need for radiologists in practice. Indeed, the prognostic

nd diagnostic clinical value of DEHSI is unknown yet as it would

equire a follow-up of several years to evaluate the neurocognitive

unctions of the subjects. Although such clinical data are not avail-

ble at this point, the proposed method provides a powerful tool

o achieve such a follow-up, explaining the effect of DEHSI. 

. Conclusion 

A complete segmentation pipeline for neonatal brain T2-

eighted MR images based on an original exploitation of max-tree

mage representations was proposed. Although the individual com-

onents of the method are based on existing methods and tools,

he main novelty of the method relies in the proposed pipeline

or DEHSI detection, in its adaptation to the specific anatomy of

eonates brains, in the absence of critical parameters to tune, and

n the compromise between automated steps and a reasonable

evel of control left to the user. The automatic and reproducible

etection of DEHSI of the white matter should allow for improved

nalysis of MR images. It could lead to a better understanding of

he DEHSI and improve medical care for premature newborns. The

igh reproducibility of the algorithm is an important improvement

ver existing visual assessment methods. The proposed method is

urrently tested on images of premature newborns acquired in dif-

erent hospitals, which could lead to a future study of its potential

se in multi-centric studies. Furthermore, a preliminary evaluation

n 3T MRI data confirmed the versatility of our approach, to pro-

ess images of variable quality and acquired under various condi-

ions. This was an important result, since 3 T MRI is likely to be

ore and more developed in clinical practice. The algorithm, along

ith its efficient implementation and user-friendly interface, will

hereby constitute a powerful tool with useful clinical applications.

A major perspective is to adapt the proposed pipeline to

he coronal slices. Indeed, axial and coronal slices feature sim-

lar anatomical characteristics used in the proposed pipeline.

onsequently, the adaptation would be straightforward. Some

reliminary results on the coronal images from NeoBrainS12

ataset ( Išgum et al., 2015 ) are illustrated in Fig. 18 . 
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