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Abstract: This paper addresses the issue of building a part-based representation of a dataset of images. More
precisely, we look for a non-negative, sparse decomposition of the images on a reduced set of atoms, in order
to unveil a morphological and explainable structure of the data. Additionally, we want this decomposition to
be computed online for any new sample that is not part of the initial dataset. Therefore, our solution relies
on a sparse, non-negative auto-encoder, where the encoder is deep (for accuracy) and the decoder shallow
(for explainability). This method compares favorably to the state-of-the-art online methods on two bench-
mark datasets (MNIST and Fashion MNIST) and on a hyperspectral image, according to classical evaluation
measures and to a new one we introduce, based on the equivariance of the representation to morphological
operators.

Keywords: Non-negative sparse coding, Auto-encoders, Mathematical Morphology, Morphological invari-
ance, Representation Learning, XAI.
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1 Introduction
Mathematical morphology is strongly related to the problem of data representation. Applying a morphologi-
cal filter can be seen as a test on how well the analyzed element is represented by the set of invariants of the
filter. For example, applying an opening by a structuring element B tells howwell a shape can be represented
by the supremum of translations of B. Themorphological skeleton [18, 24] is a typical example of description
of shapes by a family of building blocks, classically homothetic spheres. It provides a disjunctive decompo-
sition where components - for example, the spheres - can only contribute positively as they are combined by
supremum. A natural question is the optimality of this additive decomposition according to a given criterion,
for example its sparsity - the number of components needed to represent an object. Finding a sparse disjunc-
tive (or part-based) representation has at least two important features: first, it allows saving resources such
as memory and computation time in the processing of the represented object; secondly, it provides a better
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understanding of this object, as it reveals its most elementary components, hence operating a dimensionality
reduction that can alleviate the issue of model over-fitting. Such representations are also believed to be the
ones at stake in human object recognition [25].

Similarly, the question of finding a sparse disjunctive representation of a whole database is also of great
interest andwill be themain focus of the present paper. More precisely, we will approximate such a represen-
tation by a non-negative, sparse linear combination of non-negative components, and we will call additive
this representation. Given a large set of images, our concern is then to find a smaller set of non-negative image
components, called dictionary, such that any image of the database can be expressed as an additive combi-
nation of the dictionary components. As we will review in the next section, this question lies at the crossroad
of two broader topics known as sparse coding and dictionary learning [17].

Besides a better understanding of the data structure, our approach is also more specifically linked to
mathematical morphology applications. Inspired by recent work [1, 28], we look for image representations
that can be used to efficiently calculate approximations to morphological operators. The main goal is to be
able to apply morphological operators to massive sets of images by applying them only to the reduced set of
dictionary images. This is especially relevant in the analysis of remote sensing hyperspectral images where
different kinds of morphological decomposition, such asmorphological profiles [19] are widely used. For rea-
sons that will be explained later, sparsity and non-negativity are sound requirements to achieve this goal.
What is more, whereas the representation process can be learned o�ine on a training dataset, we need to
compute the decomposition of any new sample online. Hence, we take advantage of the recent advances in
deep, sparse and non-negative auto-encoders to design a new framework able to learn part-based represen-
tations of an image database, compatible with morphological processing. To that extent, this work is part
of the resurgent research line investigating interactions between deep learning and mathematical morphol-
ogy [9, 22, 23, 27, 32]. However with respect to these studies, focusing mainly on introducing morphological
operators in neural networks, the present paper addresses a different question.

The existing work on non-negative sparse representations of images is reviewed in Section 2, that stands
as a baseline and motivation of the present study. Then we present in Section 3 new results about part-based
approximations of morphological operators. The proposed model for part-based representation learning is
described in Section 4, a preliminary version of which can be found in [20]. Results on two image datasets
(MNIST [13] and Fashion MNIST [29]) are discussed in Section 5, and we show how the proposed model com-
pares to other deep part-based representations. An example on hyperspectral images is illutrated as well. We
finally drawconclusions and suggest several tracks for futurework. The code for reproducing our experiments
is available online¹.

2 Related work

2.1 Non-negative sparse mathematical morphology

The present work finds its original motivation in [28], where the authors set the problem of learning a rep-
resentation of a large image dataset to quickly compute approximations of morphological operators on the
images. They find a good representation in the sparse variant of Non-negative Matrix Factorization (sparse
NMF) [11], that we present hereafter.

Consider a family of M images (binary or gray-scale) x(1), x(2), ..., x(M) of N pixels each, aggregated into
a M × N data matrix X = (x(1), x(2), ..., x(M))T (the ith row of X is the transpose of x(i) seen as a vector). Given
a feature dimension k ∈ N* and two numbers sH and sW in [0, 1], a sparse NMF of X with dimension k, as

1 For code release, visit https://gitlab.telecom-paristech.fr/images-public/asymae_morpho

https://gitlab.telecom-paristech.fr/images-public/asymae_morpho


66 | S. Blusseau et al.

Figure 1: A subset of 30 images, extracted from a larger synthetic dataset of 1000 images, built as non-negative linear combi-
nations of the five atom images of Figure 2(a). Although some images may look identical they are not, as the gray levels slightly
differ.

defined in [11], is any solution (H,W) of the problem

min ||X −HW||22 s.t.

⎧⎪⎨⎪⎩
H ∈ RM×k ,W ∈ Rk×N

H ≥ 0, W ≥ 0
σ(H:,j) = sH , σ(Wj,:) = sW , 1 ≤ j ≤ k

(1)

where the secondconstraintmeans that bothHandWhavenon-negative coefficients, and the third constraint
imposes the degree of sparsity of the columns of H and lines ofW respectively, with σ the function defined
by

∀v ∈ Rp , σ(v) =
√p − ||v||1/||v||2√p − 1 . (2)

Note that σ takes values in [0, 1]. The value σ(v) = 1 characterizes vectors v having a unique non-zero co-
efficient, therefore the sparsest ones, and σ(v) = 0 the vectors whose coefficients all have the same abso-
lute value. Hoyer [11] designed an algorithm to find at least a local minimizer for the problem (1), and it was
shown that under fairly general conditions (and provided the L2 norms of H andW are fixed) the solution is
unique [26].

In representation learning, each row h(i) of H is called the encoding or latent features of the input image
x(i), andW holds in its rows a set of k images called the dictionary. In the following, wewill refer to the images
wj = Wj,: of the dictionary as atom images or atoms. As stated by Equation (1), the atoms are combined to
approximate each image x(i) := Xi,: of the dataset by an estimate x̂(i), which writes as follows:

∀i ∈ {1, ...,M}, x̂(i) = Hi,:W = h(i)W =
k∑︁
j=1

hi,jwj , (3)

where hi,j is the coefficient at row i and column j in matrix H (see Figures 3 and 4 for illustration). The
assumption behind this decomposition is that themore similar the images of the set, the smaller the required
dimension to accurately approximate this set. Note that only k(N + M) values need to be stored or handled
when using the previous approximation to represent the data, against the NM values composing the original
data.

For illustration purposes,we propose a toy example.We generated a dataset of 1000 images of size 32×32
pixels, as non negative linear combinations of the five atom images shown on Figure 2 (a).We call this dataset
the Rectangles dataset and show 30 samples of it in Figure 1. Here the matrix X counts M = 1000 rows and
N = 32 × 32 = 1024 columns. We apply the sparse NMF algorithm to recover five atoms (stored in a non-
negative matrixW ∈ R5×1024

+ ) and 1000 encodings (stored in a non-negative matrix H ∈ R1000×5
+ ) such that

X̂ = HW approximates well X. The five recovered atoms are shown in Figure 2 (b), and Figure 3 shows two
examples of approximate non-negative reconstructions. Note that the excellent results here are due to the
1000 images of the Rectangles dataset being created precisely as sparse, non-negative combinations of only
five, pairwise disjoint, atoms. As such, it is close to verify the hypothesis for which the NMF yields a unique
and accurate part-based representation of data [6]. In the remaining of the paper we will no longer work with
this dataset and focus on more realistic data.
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(a) (b)

Figure 2: (a) The five atom images used to build a dataset of 1000 images such as those of Figure 1. (b) Computed atoms by
the sparse NMF of the latter dataset. Up to a permutation in indexing, the computed atoms are very similar (but not strictly
identical) to the original ones.

≈ = 0.063 x +    0.088 x +     0.0065 x +           0 x +           0 x

≈ = 0 x +           0 x +       0.061 x +      0.10 x +     0.045 x

Figure 3: Approximation of two images of the Rectangles dataset by a sparse, non-negative matrix factorization. This illustrates
Equation (3) for two different indices i and for k = 5. The leftmost images are x(i)s, the second column images are their approx-
imations x̂(i)s, the gray coeflcients are the hi,j and the other images are the five computed atomswj, 1 ≤ j ≤ 5, also shown in
Figure 2 (b).

By choosing the sparse NMF representation, the authors of [28] aim at approximating a morphological
operator 𝜑 on the dataX by applying it to the atom imagesW only, before projecting back into the input image
space. That is, they want 𝜑(x(i)) ≈ Φ(x(i)), with Φ(x(i)) defined by

Φ(x(i)) :=
k∑︁
j=1

hi,j𝜑(wj), (4)

where the hi,j andwj are the same as in Equation (3). The operator Φ in Equation (4) is called a part-based
approximation to 𝜑. To understand why non-negativity and sparsity help this approximation to be a good
one, we can point out a few key arguments. First, sparsity favors the support of the weighted atom images
to have little pairwise overlap. Secondly, a sum of images with disjoint supports is equal to their (pixel-wise)
supremum. Finally, dilations commute with the supremum and, under certain conditions that are favored by
sparsity, this also holds for the erosions. This will be developed inmore details in Section 3. For now, Figure 4
illustrates the part-based approximation DB of the dilation δB by a structuring element B, expressed as:

DB(x(i)) :=
k∑︁
j=1

hi,jδB(wj). (5)
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Figure 4: Process for computing the part-based approximation to dilation, based on Equations (3) and (5).

2.2 Deep auto-encoders approaches

The main drawback of the NMF algorithm is that it is an o�ine process, and the encoding of any new sam-
ple with regards to the previously learned basisW requires either to solve a computationally extensive con-
strained optimization problem, or to relax the non-negativity constraint by using the pseudo-inverseW+ of
the basis. Some approaches proposed to overcome this shortcoming rely on Deep Learning, and especially
on deep auto-encoders, which are widely used in the representation learning field, and offer an online repre-
sentation process [8, 10, 15].

Input image Encoding
Reconstruction

Part-based
approximation

Decoder 

“Filtered 
Decoder

”

Encoder

Figure 5: The auto-encoding process and the definition of part-based approximation to a morphological operator 𝜑 in this
framework.

An auto-encoder, as represented in Figure 5, is a model composed of two stacked neural networks, an
encoder and a decoder whose parameters are trained by minimizing a loss function. A common example of
loss function is the mean square error (MSE) between the input images x(i) and their reconstructions by the
decoder x̂(i):

LAE =
1
M

M∑︁
i=1

L(x(i), x̂(i)) = 1
M

M∑︁
i=1

1
N ||x̂(i) − x(i)||22. (6)
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In this framework, and when the decoder is composed of a single linear layer (possibly followed by a non-
linear activation function), the model approximates the input images as:

x̂(i) = f
(︁
b + h(i)W

)︁
= f

⎛⎝b +
k∑︁
j=1

hi,jwj

⎞⎠ (7)

where h(i) is the encoding of the input image by the encoder network, b and W respectively the bias and
weights of the linear layer of the decoder, and f the (possibly non-linear) activation function, that is applied
pixel-wise to the output of the linear layer. The output x̂(i) is called the reconstruction of the input image x(i) by
the auto-encoder. It can be considered as a linear combination of atom images, up to the addition of an offset
imageb and to the application of the activation function f . The images of our learned dictionary are hence the
columns of the weight matrixW of the decoder. We can extend the definition of part-based approximation,
described in Section 2.1, to our deep learning architectures, by applying the morphological operator to these
atomsw1, ...,wk, as pictured by Figure 5. Note that a central question lies in how to set the size k of the latent
space. This question is beyond the scope of this study and the value of k will be arbitrarily fixed (we take
k = 100) in the following.

The NNSAE architecture (for Non-Negative Sparse Autoencoder), from Lemme et al. [15], proposes a very
simple and shallow architecture for online part-based representations using linear encoder and decoder with
tied weights (the weight matrix of the decoder is the transpose of the weight matrix of the encoder). Both the
NCAE architectures (Nonnegativity-ConstrainedAutoencoder), fromHosseini-Asl et al. [10] and thework from
Ayinde et al. [2], that aims at extending it, drop this transpose relationship between theweights of the encoder
and of the decoder, increasing the capacity of the model. Those three networks enforce the non-negativity of
the elements of the representation, as well as the sparsity of the image encodings using various techniques.

2.2.1 Enforcing sparsity of the encoding

The most prevalent idea to enforce sparsity of the encoding in a neural network can be traced back to the
work of H. Lee et al. [14]. This variant penalizes, through the loss function, a deviation S of the expected
activation of each hidden unit (i.e. the output units of the encoder) from a low fixed level p. Intuitively, this
should ensure that each of the units of the encoding is activated only for a limited number of images. The
resulting loss function of the sparse auto-encoder is then:

LAE =
1
M

M∑︁
i=1

L(x(i), x̂(i)) + β
k∑︁
j=1

S(p,
M∑︁
i=1

h(i)j ), (8)

where theparameter p sets the expected activationobjective of eachof thehiddenneurons, and theparameter
β controls the strength of the regularization. The function S can be of various forms, which were empirically
surveyed in [31]. The approach adopted by the NCAE [10] and its extension [2] both rely on a penalty func-
tion based on the KL-divergence between two Bernoulli distributions, whose parameters are the expected
activation and p respectively, as used in [10]:

S(p, tj) = KL(p, tj) = p log
p
tj
+ (1 − p) log 1 − p

1 − tj
with tj =

M∑︁
i=1

h(i)j (9)

The NNSAE architecture [15] introduces a slightly different way of enforcing the sparsity of the encoding,
based on a parametric logistic activation function at the output of the encoder, whose parameters are trained
along with the other parameters of the network.
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2.2.2 Enforcing non-negativity of the decoder weights

For the NMF (Section 2.1) and for the decoder, non-negativity results in a part-based representation of the in-
put images. In the case of neural networks, enforcing the non-negativity of the weights of a layer eliminates
cancellations of input signals. In all the aforementioned works, the encoding is non-negative since the ac-
tivation function at the output of the encoder is a sigmoid. In the literature, various approaches have been
designed to enforce weight positivity. A popular approach is to use an asymmetric weight decay, added to the
loss function of the network, to enact more decay on the negative weights that on the positive ones. However
this approach, used in both the NNSAE [15] and NCAE [10] architectures, does not ensure that all weights will
be non-negative. This issue motivated the variant of the NCAE architecture [2, 15], which uses either the L1
rather than the L2 norm, or a smooth version of the decay using both the L1 and the L2 norms. The source
code of this method being unavailable at the time the present work was done, we did not use this more recent
version as a baseline for our study.

Another type of approaches consists in initializing the decoder weights with non-negative values and
ensure they remain so after each update during the optimization process. The simplest strategy, as imple-
mented in the projected gradient descent [5], is to project the weights onto the positive orthant by setting
negative components to zero. More recently, the exponentiated gradient descent was proposed as an alterna-
tive to the projected gradient descent [8]. The idea is to update the weights by multiplying them by a positive
coefficient, which is an exponentially decreasing function of the partial derivative of the loss with respect
to the weights. Although promising, the latter proposition does not include any sparsity constraint and the
authors provide no quantitative measure on image reconstruction errors.

As far as non-negativity of weights is concerned, we may also mention [30], which uses an optimization
process inspired by the NMF to satisfy the non-negative probability constraints of Random Neural Networks
stacked in auto-encoders.

We will present in Section 4 our own auto-encoder solution for an online, non-negative and sparse rep-
resentation of data, compatible with the approximation of morphological operators. In the next section we
provide some mathematical insights on how non-negativity and sparsity are connected to such an approxi-
mation.

3 Equivariance of morphological operators to non-negative linear
combinations

In this section we precise the intuitions sketched in Section 2.1 about the part-based approximation of mor-
phological operators. LetL be the complete lattice of imageswith N pixels andwith values in [0, +∞] ordered
by the Pareto ordering (x ≤ y iff for any q, 1 ≤ q ≤ N, xq ≤ yq ). Consider a flat, extensive dilation δB on L and
its adjoint anti-extensive erosion εB, B being a flat structuring element. Let x ∈ L be an image approximated
by the non-negative combination x̂ =

∑︀k
j=1 hjwj of k atom images w1, . . . ,wk ∈ L. Following Equation (4),

we define the part based approximations of the four operators δB, εB, 𝛾B = δBεB and φB = εBδB as:

DB(x) :=
∑︀k

j=1 hjδB(wj), EB(x) :=
∑︀k

j=1 hjεB(wj)
GB(x) :=

∑︀k
j=1 hj𝛾B(wj), FB(x) :=

∑︀k
j=1 hjφB(wj).

(10)

We focus on establishing whether these expressions approximate well their exact counterparts δB(x), εB(x),
𝛾B(x) and φB(x), assuming x is well approximated by x̂ =

∑︀k
j=1 hjwj = Wh. It is likely to be so as soon

as DB(x) = δB(x̂), EB(x) = εB(x̂), GB(x) = 𝛾B(x̂) and FB(x) = φB(x̂), which is to say as soon as the four
operators commute with the non-negative linear application W = [w1, . . . ,wk] ↦→ Wh =

∑︀k
j=1 hjwj. As

sketched earlier, sums canbe identified to suprema if the involved imageshavedisjoint supports, and this also
favors the commutation of the erosionwith the supremum. This is whywe introduce the following hypothesis
that characterizes the disjunction of supports (i.e. the regions where the image is non-zero) of the hjwj.
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Let H1 denote the hypothesis:
H1: “For any 1 ≤ i ≤ k, 1 ≤ j ≤ k, i ≠ j, δB(hiwi)

⋀︀
δB(hjwj) = 0”

where 0 denotes an image equal to zero everywhere (i.e. with empty support), and more generally, for an
integer n,

Hn: “For any 1 ≤ i ≤ k, 1 ≤ j ≤ k, i ≠ j, δnB(hiwi)
⋀︀
δnB(hjwj) = 0”,

where δnB = δB ∘ · · · ∘ δB = δnB, denoting by nB the n-terms Minkowski sum B⊕ B⊕ · · ·⊕ B for n > 0, and δnB
is the identity for n = 0. Note that, since δB is extensive, Hn implies any Hp with p ≤ n. In particular, any Hn
implies H0, which simply states the disjunction of the supports of any two images hiwi and hjwj, i ≠ j. We
can now state the following result:

Proposition 1. If H1 holds for the representation x̂ =
∑︀k

j=1 hjwj, then:

DB(x) = δB(x̂), EB(x) = εB(x̂), GB(x) = δB
(︀
εB(x̂)

)︀
= 𝛾B(x̂).

If additionally H2 holds, then we also have:

FB(x) = εB
(︀
δB(x̂)

)︀
= φB(x̂).

A proof of this result is detailed in Appendix A. Proposition 1 implies that under the Hn hypothesis the error
||𝜑B(x) − ΦB(x)||2 between the actual transformed image and its part-based approximation only depends on
the quality of the reconstruction, that is to say on the error ||x − x̂||2. Indeed, if x = x̂ then DB(x) = δB(x),
EB(x) = εB(x) and so on. Obviously, the more constrained the representation, the smaller the class of images
that can be accurately represented. The non-negativity and sparsity constraints are therefore likely to in-
crease the representation error ||x− x̂||2. Hence, unless the data can be perfectly represented by non-negative
combinations of atoms complying with a hypothesis Hn, a trade-off needs to be found to achieve a good
approximation of morphological operators. This is the target of our asymmetric auto-encoder presented in
Section 4.

We shall now generalize Proposition 1 by applying it to the representation that we note x̂(n−1) =∑︀k
j=1 hjδ(n−1)B(wj). Notice that H1 holds for x̂(n−1) if and only if Hn holds for x̂. This yields the following

corollary.

Corollary 1. If Hn holds for the representation x̂ =
∑︀k

j=1 hjwj, then for any integer p ≤ n:

DpB(x) = δpB(x̂), EpB(x) = εpB(x̂), GpB(x) = δpB
(︀
εpB(x̂)

)︀
= 𝛾pB(x̂),

and for any integer p ≤ n − 1
FpB(x) = εpB

(︀
δpB(x̂)

)︀
= φpB(x̂).

Remarks
Choice of the complete lattice L. At the beginning of this section we chose L as the complete lattice of
images with N pixels and with values in [0, +∞] ordered by the Pareto ordering. However, in practice we deal
more commonly with images whose values are in a bounded interval such as [0, 1]. The previous results still
hold in the latter case, provided we add the hypothesis hj ∈ [0, 1]. More generally, we only need tomake sure
thatw ∈ L ⇒ hw ∈ L.
Interpretation of Hn. The hypothesis Hn, n ≥ 0, characterizes the degree of disjunction of the supports of
the hjwj involved in the part-based approximation of an image x. The dilation δB being extensive, the degree
of disjunction, intended as distance between supports of the initial images, “increases” with n. Note that no
assumption is made on the disjunction of the whole set of atom images wj, but only on those atoms that
are used in the approximation of x, in other words the wj weighted by a positive hj. This helps realize that
the number of atoms used to approximate an image matters. In the limit case where only one atom is used,
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Hn is verified for any n. By contrast, if as many as N atoms contribute to the approximation, then even H1
becomes impossible. In the context of the representation of a large dataset, the ideal case seems to be when
every image is well approximated by few atoms, as disjoint as possible. This indicates that the Hn are not
unrealistic hypotheses in practice, provided a sparse part-based representation approximates well the data,
and nB is small enough compared to the supports of the atoms.
Hownecessary isHn?Theproof of Proposition 1mainly stands onpoints 3 and 5 (seeAppendixA). Therefore,
we may ask whether the hypothesis δB(x)

⋀︀
δB(y) = 0 is necessary to have δB(x + y) = δB(x) + δB(y) and

εB(x + y) = εB(x) + εB(y), which comes down to questioning the necessity of H1 and H2 in Proposition 1, or
Hn in the corollary. The answer is they are not necessary in general. For example, for any increasing function
g : R+ → R+ and y = [g(x1), . . . , g(xN)] such that x + y ∈ L, we do have δB(x + y) = δB(x) + δB(y) and
εB(x + y) = εB(x) + εB(y). However, if we consider rather “independent” components, it is easy to build
fairly general configurations where a certain degree of disjunction is necessary. In particular, as shown in the
examples of Figures 6 and 7, a simple disjunction (corresponding to H0) is not sufficient in general.

(a) (b) (c)

Figure 6: An example of non-equivariance of the dilation to non-negative linear combination. (a) The components h1W1 and
h2W2 are piece-wise constant, equal to h1 > 0 (in green) and h2 > 0 (in red) respectively, where they are non-zero. (b) Dilation
of the sum δB(h1W1 + h2W2), where B is the cross structuring element shown in blue. The color yellow represents the value
h1 ∨ h2. (c) Sum of the dilations δB(h1W1) + δB(h2W2). The color purple represents the value h1 + h2 which is larger than
h1 ∨ h2. Thus although the two components do not overlap (H0 holds), (b) and (c) are not equal.

(a) (b) (c)

Figure 7: An example of non-equivariance of the erosion to the sum. (a) Two non-overlapping components x and y.(b) Erosion of
the sum εB(x+y) where B is the cross structuring element shown in dark blue. (c) Sum of the erosions εB(x)+ εB(y) by the same
structuring element. Again, although the two components do not overlap (H0 holds), (b) and (c) are not equal.

This section was meant to precise mathematically the role played by sparsity and non-negativity in the
part-based approximation of morphological operators. Motivated by previous approaches described in Sec-
tion 2.2, we present in the next section our proposed auto-encoder, designed to achieve the desired trade-off
between explainability, accuracy of the data reconstruction and accuracy of the approximation of morpho-
logical operators.
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4 Proposed model
We propose an online part-based representation learning model, using an asymmetric auto-encoder with
sparsity and non-negativity constraints. As pictured in Figure 8, our architecture is composed of two net-
works: a deep encoder and a shallow decoder (hence the asymmetry and the name of AsymAE we chose
for our architecture). The encoder network is based on the discriminator of the infoGAN architecture intro-
duced in [4], which was chosen for its average depth, its use of widely adopted deep learning components
such as batch-normalization [12], 2D-convolutional layers [7] and leaky-RELU activation function [16]. It has
been designed specifically to perform interpretable representation learning on datasets such as MNIST and
Fashion-MNIST. The network can be adapted to fit larger images. The decoder network is similar to the one
presented in Figure 5. A Leaky-ReLU activation has been chosen after the linear layer. Its behavior is the same
as the identity for positive entries, while it multiplies the negative ones by a fixed coefficient αlReLU = 0.1.
This activation function has shown the best performances in similar architectures [16]. The sparsity of the en-
coding is achieved using the same approach as in [2, 10], that consists in adding to the previous loss function
the regularization term described in Equations (8) and (9).

Figure 8: Our proposed auto-encoder architecture.

Weonly enforced the non-negativity of theweights of the decoder, as they define the dictionary of images
of our learned representation and as enforcing the non-negativity of the encoderweightswould bring nothing
but more constraints to the network and lower its capacity. Similarly to [5], we enforced this non-negativity
constraint explicitly by projecting our weights on the nearest points of the positive orthant after each update
of the optimization algorithm (such as the stochastic gradient descent). The main asset of this other method
that does not use any additional penalty functions, and which is quite similar to the way the NMF enforces
non-negativity, is that it ensures positivity of all weights without the cumbersome search for good values of
the parameters of the various regularization terms in the loss function.

5 Experiments

5.1 Experiment 1 on MNIST and Fashion MNIST

To demonstrate the goodness and drawbacks of our method, we have conducted experiments on two well-
known datasets MNIST [13] and Fashion MNIST [29]. These two datasets share common features, such as the
size of the images (28×28), the number of classes represented (10), and the total number of images (70000),
divided into a training set of 60000 images and a test set of 10000 images.
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5.1.1 Setting the parameters

For our AsymAE algorithm, we studied the effect of the sparsity objective p and regularization weight β in
the loss function in Equation (8). In Figure 9 we present the results of the proposed approach on the Fashion-
MNISTdataset. Themaximumof the sparsitymeasurewas reachedwith the sparsity parameters p = 0.01 and
β = 0.01, whose atoms are shown in Figure 10e. It appears that these atoms are closer to full clothes shapes
than parts. A possible interpretation is that, as the sparsity constraint gets stronger, the model is pushed to
the limit where an atom should be involved in the reconstruction of a proportion p of the training images,
that is approximately p · M images. When the number k of atoms is much smaller than p · M (which is the
case for k = 100, p = 0.01 and M = 60000), each atom needs to be shared by a whole subset of images as
their unique (or almost) representative. The model is therefore performing some sort of k-means clustering,
each atom being a barycenter of a subgroup of the training set.

In Figure 10 we show examples of atom images for other values of sparsity parameters. The represen-
tations shown in Figures 10b, 10c and 10d are quite close to a part-based representation, even though the
supports of the atom images are less disjoint as they would be in an ideal part-based representation, such as
the sparse NMF, whose atom images are very neat. From this visual inspection as well as the plots of Figure 9,
we found that a better trade-off seems to be reached for the values p = 0.05 and β = 0.0005 in the case of
the Fashion-MNIST dataset. A similar study led to choose p = 0.05 and β = 0.001 with the MNIST dataset.

(a) Reconstruction error as a function of the parameter β
(sparsity penalty strength).

(b) Sparsity measure (Hoyer 2004) as a function of the param-
eter β (sparsity penalty strength).

(c)Max-approximation error to dilation (of the original im-
ages) as a function of the parameter β (sparsity penalty
strength).

(d)Max-approximation error to dilation (of the reconstructed
images) as a function of the parameter β (sparsity penalty
strength).

Figure 9: Some evaluation measures for sparse non-negative asymmetric auto-encoders for various parameters of the sparsity
regularization, using a test set not used to train the network.



Approximating morphological operators using asymmetric auto-encoders | 75

(a) Asymmetric auto-encoder with no constraints

(b) Asymmetric auto-encoder with non-negativity and sparsity constraints p = 0.05, β = 0.001

(c) Asymmetric auto-encoder with non-negativity and sparsity constraints p = 0.05, β = 0.0005

(d) Asymmetric auto-encoder with non-negativity and sparsity constraints p = 0.01, β = 0.001

(e) Asymmetric auto-encoder with non-negativity and sparsity constraints p = 0.01, β = 0.01

Figure 10: Some atoms (out of the 100 atoms) of various versions of the proposed asymmetric auto-encoder.

5.1.2 Comparison to state of the art methods

We compared our method to three baselines: the sparse-NMF [11], the NNSAE [15], and the NCAE [10]. The
three deep-learning models (the proposed AsymAE, NNSAE and NCAE) were trained until convergence on
the training set, and evaluated on the test set. The sparse-NMF algorithm was ran and evaluated on the test
set. Note that all models but the NCAE may produce reconstructions that do not fully belong to the interval
[0, 1]. In order to compare the reconstructions and the part-based approximations produced by the various
algorithms, their outputs will be clipped between 0 and 1. There is no need to apply this operation to the
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output of NCAE as a sigmoid activation enforces the output of its decoder to belong to [0, 1]. We used three
measures to conduct this comparison:

– the reconstruction error, that is the pixel-wise mean squared error between the input images x(i) of
the test dataset and their reconstruction/approximation x̂(i): 1

MN
∑︀M

i=1
∑︀N

j=1(x
(i)
j − x̂

(i)
j )

2;
– the sparsity of the encoding, measured using the mean on all test images of the sparsity measure σ

in Equation 2: 1
M
∑︀M

i=1 σ(h
(i));

– the approximation error to dilation by a disk of radius one, obtained by computing the pixel-
wise mean squared error between the dilation δB by a disk of radius one of the original im-
age and the part-based approximation DB to the same dilation, using the learned representation:
1
MN

∑︀M
i=1

∑︀N
j=1(DB(x

(i))j − δB(x(i))j)2.

The parameter settings used for NCAE and the NNSAE algorithms are the ones provided in [10, 15]. For the
sparse-NMF, a sparsity constraint of Sh = 0.6 was applied to the encodings and no sparsity constraint was
applied on the atoms of the representation.

Table 1: Comparison of the reconstruction error, sparsity of encoding and part-based approximation error to dilation produced
by the sparse-NMF, the NNSAE, the NCAE and the AsymAE, for both MNIST and Fashion-MNIST datasets.

Model Reconstruction Sparsity Part-based approximation
error of code error to dilation

MNIST
Sparse-NMF 0.011 0.66 0.012

NNSAE 0.015 0.31 0.028
NCAE 0.010 0.35 0.18

AsymAE 0.007 0.54 0.069
Fashion MNIST

Sparse-NMF 0.011 0.65 0.022
NNSAE 0.029 0.22 0.058
NCAE 0.017 0.60 0.030

AsymAE 0.010 0.52 0.066

Both the quantitative results (Table 1) and the reconstruction images (Figure 11) demonstrate the capac-
ity of our model to reach a better trade-off between the accuracy of the reconstruction and the sparsity of
the encoding (that usually comes at the expense of the former criteria), than the other neural architectures.
Indeed, in all conducted experiments, varying the parameters of the NCAE and the NNSAE as an attempt to
increase the sparsity of the encoding came with a dramatic increase of the reconstruction error of the model.
We failed however to reach a trade-off as good as the sparse-NMF algorithm that manages to match a high
sparsity of the encoding with a low reconstruction error, especially on the Fashion-MNIST dataset. Themajor
difference between the algorithms can be seen in Figure 12 that pictures 16 of the 100 atoms of each of the
four learned representations. While sparse-NMFmanages, for both datasets, to build highly explainable and
clean part-based representations, the two deep baselines build representations that picture either too local
shapes, in the case of the NNSAE, or too global ones, in the case of the NCAE. Our method suffers from quite
the same issues as the NCAE, as almost full shapes are recognizable in the atoms. We noticed through exper-
iments that increasing the sparsity of the encoding leads to less and less local features in the atoms. It has to
be noted that the L2 Asymmetric Weight Decay regularization used by the NCAE and NNSAE models allows
for a certain proportion of negative weights. As an example, up to 32.2% of the pixels of the atoms of the
NCAE model trained on the Fashion-MNIST dataset are negative, although their amplitude is lower than the
average amplitude of the positive weights. The amount of negative weights can be reduced by increasing the
corresponding regularization, which comes at the price of an increased reconstruction error and less sparse
encodings. Finally Figure 13 pictures the part-based approximation to dilation by a structuring element of
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size one, computed using the four different approaches on ten images from the test set. Although the quanti-
tative results state otherwise, we can note that our approach yields an interesting part-based approximation,
thanks to a good balance between a low overlapping of atoms (and dilated atoms) and a good reconstruction
capability.

Figure 11: Reconstruction of the Fashion-MNIST dataset (first row) by the sparse-NMF, the NNSAE, the NCAE and the AsymAE.

(a) Sparse-NMF (b) NNSAE (c) NCAE (d) AsymAE

Figure 12: 16 of the 100 atom images of the four compared representations of Fashion-MNIST dataset.

5.2 Experiment 2: the Pavia University hyperspectral image

In order to test our approach on more realistic and complex data, we carried an experiment on the Pavia
University hyperspectral image², of spatial size 610 × 340 pixels and containing M = 103 spectral bands
(Figure 14). For memory issues and in order to take advantage of the previous experiment, we divided each
channel image into 9 × 5 = 45 non-overlapping 64 × 64 patches, covering 576 × 320 pixels starting from the
top left hand corner. The database thus counted 45 × 103 = 4635 patches, that we split into a training set
and a test set by dedicating a fixed proportion ρ ∈ [0, 1] of the spectral bands to the training. This means the
patches of a given spectral band were all assigned to the training set or all to the test set. What is more, the
spectral bands assigned to the test set were sampled regularly (not randomly).

2 The Pavia University hyperspectral image is available here: http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_
Remote_Sensing_Scenes#Pavia_University_scene

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes#Pavia_University_scene
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes#Pavia_University_scene
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Figure 13: Part-based approximation of the dilation by a structuring element of size one (first row), computed using the sparse-
NMF, the NNSAE, the NCAE and the AsymAE.

Figure 14: Four bands of the Pavia University hyperspectral image and two examples of patch per band.
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We trained on these data the asymmetric auto-encoder presented earlier, with the same latent dimension
(k = 100), same parameter p = 0.05 but larger β = 0.005. For comparison, as before, we also trained the
sparse-NMF [11] and the NCAE [10] model, with the same parameters as before (those suggested by the au-
thors). Despite all our attempts, we did not succeed in training the NNSAE [15] model to achieve sufficiently
good performances so as to be interestingly compared to the other models. This might be a limitation of the
model but could also be a misunderstanding on our part on how to set its parameters properly. We decided
anyway no to report the obtained results, which were well below those presented hereafter. The two others
deep-learning models were trained until they reached a reconstruction error of approximately 10−3 on the
test. Regarding the sparse NMF, we observed that both the reconstruction error and the sparsity of the encod-
ing could be easily controlled, and high quality results could be achieved that were out of reach for the online
methods - at least during the tests we ran. Therefore, the sparse NMF shall be considered as a reference for
the online methods, and this is why here we decided to apply it a posteriori to the whole dataset (training
set and test set) targeting the best performance of the online models: a reconstruction error of approximately
10−3 and a sparsity of the encoding of approximately 0.7 (we set Sh = 0.7). In this comparison, the training
set represented ρ = 6/7 of the whole set of patches.

Since the present experiment applies to richer data, the methods are compared on the four basic mor-
phological operators (dilation, erosion, opening and closing) with several sizes of structuring elements. In
order to enhance the differences acrossmethods,we present the quality of themorphological approximations
through the Peak Signal to Noise Ratio (PSNR), defined here by

PSNR = −10 log10(MSE), (11)

where MSE is the pixel-wise mean squared error between the actual morphological operator and its part-
based approximation. We recall that this comparison was made among models achieving a similar recon-
struction error of the original images (≈ 10−3) and a similar level of sparsity of the encoding (0.72 for our
AsymAE, 0.75 for NCAE and the Sparse NMF). The plots of Figure 15 and Table 2 sum up the results, whereas
Figures 16-20 provide visual examples for a structuring element of size three.
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Figure 15: Quality of the approximation of different morphological operators on the test set (full lines) and training set (dashed
lines), depending on the size of the structuring element (always a discrete disk). The quality of the approximation is expressed
by the peak signal to noise ratio (PSNR, as defined by Eq. (11)). Higher is better. The size 0 corresponds the identity operator,
showing therefore the reconstruction PSNR of the corresponding method. The results on training and test sets are almost iden-
tical. Here the proportion of the training set is ρ = 6/7. The figures are also shown in Table 2.

In generel, the Sparse NMF achieves the best part-based approximations and our model (AsymAE) is the
best online method. This is the case except for the erosions of sizes two and onward, and the openings of
sizes three and onward, where NCAE achieves better PSNRs than the AsymAE (and sometimes even than the
Sparse NMF). This seems surprising as the visual examples for a structuring element of size three (Figures 16-
20) do not show a better accuracy for the NCAE. These exceptions might have the same cause as the U-shape
of the erosion curve, that we observe for all methods: for darker images, such as the eroded and openings of
large structuring elements, the PSNR tends to favor over-dark approximations. In the limit case, it seems that
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Table 2: Peak signal to noise ratio (PSNR, as defined by Eq. (11)) for the approximation of morphological operators on the test
set for different models and different sizes of structuring elements (disks). Higher is better. The size zero corresponds to the
identity operator, showing therefore the reconstruction PSNR of the model. The figures can also be visualized in the plots of
Figure 15.

Dilation
Size AsymAE NCAE Sparse NMF
0 30.36 30.48 30.41
1 21.24 18.68 22.71
2 16.67 13.53 18.07
3 13.64 10.61 14.91
4 11.97 9.23 13.16
5 10.54 8.24 11.62

Erosion
Size AsymAE NCAE Sparse NMF
0 30.36 30.48 30.41
1 23.84 22.89 24.44
2 20.97 21.39 21.67
3 19.92 21.42 20.52
4 19.84 21.87 20.31
5 20.26 22.64 20.52

Opening
Size AsymAE NCAE Sparse NMF
0 30.36 30.48 30.41
1 29.09 27.41 29.31
2 25.26 23.97 26.02
3 22.22 21.97 23.13
4 20.52 21.10 21.45
5 19.32 20.84 20.24

Closing
Size AsymAE NCAE Sparse NMF
0 30.36 30.48 30.41
1 28.98 28.59 29.86
2 25.71 23.79 27.35
3 22.13 19.31 23.97
4 19.49 16.31 21.31
5 17.20 13.74 18.93

approximating suchdark images by a constant zero-valued image yields a better PSNR thananapproximation
which would try to keep some structure.

As for the atom images, shown in Figures 21-23, they might not correspond to the intuition of a part-
based representation, as their supports are quite extended. However there seems to be approximately one
scale represented per atom, as in a granulometry decomposition, which is also a possible approximation of
a part-based representation. Furthermore, we note that NCAE’s atoms are the noisiest whereas the Sparse
NMF’s are the least noisy.

Another important remark is that the Sparse NMF could achieve even better results, but it still has the
drawback of an o�ine method. By contrast, it is remarkable that both NCAE and AsymAE maintain almost
exactly the same performance when we reduce the relative size of the training set down to ρ = 0.5. We do not
report the results here as the difference with the presented ones is negligible. This shows the great interest of
having a good online model when the training set is statistically representative of the whole data.
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Figure 16: Examples of test patches (first row) and their reconstructions computed using the sparse-NMF, the NCAE and the
AsymAE (from top to bottom).

Figure 17: Part-based approximation of the dilation by a structuring element of size three. First row: dilation by a disc B of ra-
dius three(same patches as in Figure 16); following rows: approximation using the sparse-NMF, the NCAE and the AsymAE (from
top to bottom).
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Figure 18: Part-based approximation of the erosion by a structuring element of size three. First row: erosion by a disc B of ra-
dius three; following rows: approximation using the sparse-NMF, the NCAE and the AsymAE (from top to bottom).

Figure 19: Part-based approximation of the opening by a structuring element of size three. First row: opening by a disc B of
radius three; following rows: approximation using the sparse-NMF, the NCAE and the AsymAE (from top to bottom).
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Figure 20: Part-based approximation of the closing by a structuring element of size three. First row: closing by a disc B of ra-
dius three; following rows: approximation using the sparse-NMF, the NCAE and the AsymAE (from top to bottom).

Figure 21: Examples of atoms for the sparse NMF in the experiment on the Pavia University image.

Figure 22: Examples of atoms for the NCAE auto-encoder in the experiment on the Pavia University image (proportion of the
training set: ρ = 6/7).

Figure 23: Examples of atoms for the AsymAE auto-encoder in the experiment on the Pavia University image (proportion of the
training set: ρ = 6/7).
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6 Conclusions and future works
We have presented an online method to learn a part-based dictionary representation of an image dataset,
designed for accurate and efficient approximations of morphological operators. This method relies on auto-
encoder networks, with a deep encoder for a higher reconstruction capability and a shallow linear decoder
for a better interpretation of the representation. Among the online part-based methods using auto-encoders,
it achieves the state-of-the-art trade-off between the accuracy of reconstructions and the sparsity of image
encodings. Moreover, it ensures a strict (that is, non approximated) non-negativity of the learned represen-
tation. These results would need to be confirmed on color images, as the proposed model is scalable, but the
illustration on the hyperspectral image already shows the potential use of the proposed approach in real ap-
plications. We especially evaluated the learned representation on an additional criterion, that is the commu-
tation of the representation with morphological operators, and noted that all online methods perform worse
than the o�ine sparse-NMF algorithm. A possible improvement would be to impose a major sparsity to the
dictionary images with an appropriate regularization. Additionally, using a morphological layer [3, 21, 32] as
a decoder may be more consistent with our definition of part-based approximation, since a representation in
the (max, +) algebra would commute with the morphological dilation by essence.
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A Proof of Proposition 1
Proof. Let us first recall the definitions of δB and εB. The structuring element B is seen as a finite subset of
Z2. We denote by B̌ its symmetric with respect to (0, 0) (b ∈ B̌ ⇐⇒ −b ∈ B) and Bu its translation by u ∈ Z2

(b ∈ Bu ⇐⇒ b − u ∈ B). In the following we will identify the index i of a pixel with its coordinates in
the image, and therefore denote by Bi the structuring element centered in pixel i. The adjoint dilation and
erosion δB and εB are defined on any image x ∈ L by

∀i ∈ {1, . . . , N}, δB(x)i =
⋁︀
j∈B̌i xj , εB(x)i =

⋀︀
j∈Bi xj . (12)

Note that the extensivity of δB implies that i ∈ Bi for any pixel i.
The conclusion of Proposition 1 is a consequence of the five points below:

1. For h ≥ 0, δB(hw) = hδB(w) and εB(hw) = hεB(w).
This is straightforward from the definitions in Equations (12). We shall remark however that this makes
sense only because herew ∈ L implies hw ∈ L.

2. If x ∧ y = 0 then x + y = x ∨ y.
Indeed, x ∧ y = 0 ⇒ ∀i, xi = 0 ≤ yi or yi = 0 ≤ xi ⇒ ∀i, xi + yi = xi ∨ yi.

3. If δB(x) ∧ δB(y) = 0 then x ∧ y = 0 as well, and therefore

δB(x + y) = δB(x ∨ y) = δB(x) ∨ δB(y) = δB(x) + δB(y).

The first implication is due to the extensivity of δB: x ≤ δB(x) and y ≤ δB(y) so 0 ≤ x∧y ≤ δB(x)∧δB(y) = 0.
Hence x ∧ y = 0 and point 2 yield the leftmost equality. The central equality is the defining property of
dilations (as operations that commutewith the supremum, the one in Equation 12 being a particular case).
The rightmost equality is again point 2 applied to δB(x) and δB(y).

4. If δB(x) ∧ δB(y) = 0 then εB(x ∨ y) = εB(x) ∨ εB(y).
This becomes clear by considering a pixel i and distinguishing three cases:
Case 1: xi = 0 and yi = 0.
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Then εB(x ∨ y)i = 0 = εB(x)i = εB(y)i =
(︀
εB(x) ∨ εB(y)

)︀
i.

Case 2: xi > 0.
Then for any j ∈ Bi, yj = 0, otherwise there would be j0 ∈ Bi such that yj0 > 0 and therefore δB(y)j0 ≥
yj0 > 0; since i ∈ B̌j0 we would also have δB(x)j0 ≥ xi > 0 yielding δB(x)j0 ∧ δB(y)j0 > 0 which contradicts
the initial hypothesis. We just showed xi > 0 ⇒ ∀j ∈ Bi , yj = 0, which also implies yi = 0 and εB(y)i = 0.
As a consequence, ∀j ∈ Bi , xj ≥ yj which leads to εB(x ∨ y)i =

⋀︀
j∈Bi (xj ∨ yj) =

⋀︀
j∈Bi xj = εB(x)i =

εB(x)i ∨ εB(y)i =
(︀
εB(x) ∨ εB(y)

)︀
i .

Case 3: yi > 0.
Then by symmetry the reasoning of Case 2 applies, and again εB(x ∨ y)i =

(︀
εB(x) ∨ εB(y)

)︀
i.

Finally, in all cases we have εB(x ∨ y)i =
(︀
εB(x) ∨ εB(y)

)︀
i and this is true for any pixel i, which achieves

the proof of point 4.
5. If δB(x) ∧ δB(y) = 0 then εB(x + y) = εB(x) + εB(y).

Indeed, like in point 3, δB(x)∧ δB(y) = 0 implies x∧ y = 0 thus point 2 applies: εB(x + y) = εB(x∧ y), and
applying point 4 yields εB(x + y) = εB(x) + εB(y).

With the five points listed here above, the conclusions of Proposition 1 are straightforward. Assuming H1
is true:

– DB(x) =
∑︀k

j=1 hjδB(wj) =
∑︀k

j=1 δB(hjwj) = δB(
∑︀k

j=1 hjwj) = δB(x̂), where point 1 was applied in the
second equality and point 3 in the third equality. The first and last equalities are definitions.

– EB(x) =
∑︀k

j=1 hjεB(wj) =
∑︀k

j=1 εB(hjwj) = εB(
∑︀k

j=1 hjwj) = εB(x̂), where point 1 was applied in the
second equality, point 5 in the third equality. The first and last equalities are definitions.

– GB(x) =
∑︀k

j=1 hj𝛾B(wj) =
∑︀k

j=1 hjδB
(︀
εB(wj)

)︀
=

∑︀k
j=1 δB

(︀
εB(hjwj)

)︀
= δB

(︀∑︀k
j=1 εB(hjwj)

)︀
=

δB
(︀
εB(

∑︀k
j=1 hjwj)

)︀
= 𝛾B(x̂), where point 1 was applied (twice) in the third equality, point 3 was

applied to the εB(hjwj) in the fourth equality, since the εB(hjwj) verify H1 as the hjwj do and
εB(hjwj) ≤ hjwj; and the fifth equality is given by point 5. The other equalities are definitions.

– FB(x) =
∑︀k

j=1 hjφB(wj) =
∑︀k

j=1 hjεB
(︀
δB(wj)

)︀
=

∑︀k
j=1 εB

(︀
δB(hjwj)

)︀
, where point 1 was applied

(twice) in the third equality.
If the δB(hjwj) comply with H1, or equivalently if H2 is true, then point 5 applies and we get
FB(x) = εB

(︀∑︀k
j=1 δB(hjwj)

)︀
= εB

(︀
δB(

∑︀k
j=1 hjwj)

)︀
= φB(x̂).
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