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Abstract

This paper describes a method to infer the connectivity induced by white matter fibers in the living human brain. This method stems
from magnetic resonance tensor imaging (DTI), a technique which gives access to fiber orientations. Given typical DTI spatial resolution,
connectivity is addressed at the level of fascicles made up by a bunch of parallel fibers. We propose first an algorithm dedicated to fascicle
tracking in a direction map inferred from diffusion data. This algorithm takes into account fan-shaped fascicle forks usual in actual white
matter organization. Then, we propose a method of inferring a regularized direction map from diffusion data in order to improve the
robustness of the tracking. The regularization stems from an analogy between white matter organization and spaghetti plates. Finally, we
propose a study of the tracking behavior according to the weight given to the regularization and some examples of the tracking results
with in vivo human brain data.  2001 Elsevier Science B.V. All rights reserved.
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1. Introduction the cortical sheet can be divided in areas according to
various maps related to architectural features. Moreover,

During the last decade, the development of magnetic information about forward and backward connections
resonance imaging (MRI) has led to the design of numer- between these elementary areas has been inferred from
ous segmentation methods dedicated to brain structures. invasive anatomical techniques for several animal species
For instance, cortex, white matter and basal ganglia can be (Young et al., 1995). While a number of objections can be
extracted from standard T1-weighted MR images (Mangin raised against these oversimplified architectural models,
et al., 1995; Poupon et al., 1998b). While such structures they have provided invaluable reference systems for
can be identified from a priori knowledge on MR signal neuroscience studies. Indeed, these parcellations and their
and simple anatomical considerations, further brain parcel- connectivity are considered to be reproducible between
lations are much more difficult to perform from macro- individuals of the same species and share important
scopic images. similarities across species.

However, discussions concerning the nature of psycho- Unfortunately, most of the architectural information
logical phenomena and their neurobiological bases often underlying these reference systems cannot be accessed in
make reference to networks of brain areas. For instance, the living human brain. Therefore, the neuroimaging
the thalamus is made up of numerous elementary nuclei; community has designed its own reference system in a

very different way. This system, inspired from Talairach
proportional system for surgery planning (Talairach et al.,*Corresponding author. Tel.: 133-1-6986-7813; fax: 133-1-6986-
1967), simply relies on 3D coordinates indicating a7868.

E-mail address: cpoupon@shfj.cea.fr (C. Poupon). location in a template brain. Each new brain is endowed
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with this coordinate system through spatial normalization, This paper addresses the reconstruction of fiber trajec-
namely a 3D deformation matching as far as possible the tories from such direction maps. The general aim is the
new brain macroscopic anatomy with that of the template. mapping of structural connectivity, that is, the possibility
While spatial normalization is often required to compare to assert which cortical areas or basal ganglia are con-
functional images across individuals and across experi- nected by fascicles embedded in white matter bundles.
ments (Fox et al., 1985), no simple link between the This would allow the neuroimaging community to bring its
proportional system and usual architectural parcellations methodology closer to the ones used in standard neuro-
can be provided apart from a statistical one (Roland and science. Furthermore, this would allow the improvement of
Zilles, 1994). current models of the human cortex connectivity. Indeed,

Although impressive refinements of the normalization up to now, tract tracing methodologies dedicated to the
scheme have been achieved by the image analysis com- human brain have been restricted to post mortem methods,
munity during the last years (Miller et al., 1993; Thirion, which are not competitive compared with invasive meth-
1998), most of these developments are bound to drift ods used for animals (Young et al., 1995).
towards pure morphing approaches without consistent The possibility to track the putative trajectories of some
architectural justification. Indeed, considering the absence fascicles, namely small fiber bundles, has been convincing-
of a gold standard, more attention should be given to ly proven by several recent studies (Poupon et al., 1998a;
architectural value of the different features used to drive Conturo et al., 1999; Mori et al., 1999). However, the
the deformation processes. In fact nobody really knows robustness of methods which simply consist in following
today how brains should be matched. Furthermore, nobody the direction of highest diffusion in a step by step fashion
knows to which extent matching two different brains with may be discussed with regard to low spatial resolution and
a continuous deformation makes sense from a neuroscience artefacts inherent to in vivo MR diffusion data. In this
point of view. paper, we address the ill-posed nature of the problem

A first approach to increasing the role of brain architec- which in our opinion calls for a regularization framework.
ture in spatial normalization procedures consists in impos- The paper is organized as follows. In the first section,
ing the perfect matching of a few well-known cortical the various stages of the process leading to the computa-
folds (Thompson et al., 1996; Lohman and Von Cramon, tion of tensor images from a sequence of diffusion-weight-
1998). Indeed, the largest cortical fissures are endowed ed data are briefly delineated. The second section outlines
with clear architectural value. Unfortunately, extending a simple fascicle tracking algorithm dealing with potential
this approach to a higher number of folds requires better junctions between fascicles. This algorithm converts any
understanding of the inter-individual variability of the direction map extracted from diffusion data into a tracking

´folding patterns (Regis et al., 1995). Furthermore, the map. The third section highlights the ill-posed nature of
putative architectural value of secondary folds has still to the tracking problem which calls for a regularization
be proven. framework. This need lead us to design Markovian models

While an increasing number of studies are dedicated to aimed at modeling the geometry of white matter which is
the cortex folding patterns, few groups try to analyse the compared to the geometry of spaghetti plates. Then, one of
complex shape of white matter (Mangin et al., 1996; Naf these models is used as a priori knowledge to infer a
et al., 1996). Indeed, standard imaging modalities give regularized direction map from raw tensor diffusion data.
little information on the underlying bundle entanglement. In a final section, we study the tracking algorithm be-
In this paper, we describe an emerging MR technique haviour according to the regularization weight and describe
which may radically modify the situation. Indeed, this some tracking results obtained in a series of normal
technique called diffusion tensor imaging (DTI), gives volunteers.
access to the macroscopic organization of brain white
matter (Le Bihan, 1995). The basic principle stems from
the orientational information provided by the phenomenon
of water diffusion anisotropy in white matter. Diffusion 2. Diffusion tensor images
tensor imaging characterises the diffusional behaviour of
water in tissue on a voxel by voxel basis. For each voxel, In brain tissues, molecules are endowed with a Brow-
the diffusion tensor yields the diffusion coefficient corre- nian motion macroscopically leading to a diffusion process
sponding to any direction in space (Basser et al., 1994b). (Le Bihan, 1995). In the case of isotropic liquids, the
Given that one may ascribe diffusion anisotropy in white probability that a molecule covers distance r during time t
matter to a greater hindrance or restriction to diffusion follows a Gaussian law with variance 6ct where c is the
across fiber axes than along them, the direction corre- diffusion coefficient that characterizes molecule mobility.
sponding to the highest diffusion coefficient may be In anisotropic environments, mobility is different along
considered to point along a putative fiber bundle traversing each direction of space. Hence, diffusion is a tridimension-
the voxel. Thus, maps of the highest diffusion direction al process which can be modeled by a second-order tensor.
can be produced which provide a striking visualization of This tensor is represented by a matrix [T ] which is
the white matter pathways and their orientation. symmetric, positive and real. The diffusion coefficient in
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¢any direction d is given by the tensorial dot product (Eq. localiser scan. An inversion recovery prepared spoiled
1). [T ] is an intrinsic property of the tissue. gradient echo sequence was used to obtain a high res-

olution T1-weighted anatomical image of the whole brain
T T Txx xy xz (1.031.031.3 mm resolution). Echo-planar diffusion-

¢ ¢ ¢ T T Tc(d ) 5 d.[T ]d, with [T ] 5 . (1) weighted images were acquired in the axial plane. Blocksxy yy yz1 2 of eight contiguous slices were acquired each 2.8 mmT T Txz yz zz

thick. Seven blocks were acquired covering the entire brain
The MR signal is usually corrupted by water molecule corresponding to 56 slice locations. For each slice location

diffusion which disturbs spin echo techniques leading to a 31 images were acquired; a T2-weighted image with no
small decrease of the measured signal. In diffusion imag- diffusion sensitization followed by five diffusion sensitized
ing, this effect is magnified by a large gradient applied in sets (b values linearly incremented to a maximum value

2¢one direction d. When the diffusion process is included in of 1000 s /mm ) in each of six non-colinear directions.
the equations modeling MR phenomena, the signal decay These directions were as follows: h(1,1,0), (1,0,1), (0,1,1),
turns out to be exponentially related to the diffusion (1, 2 1,0), (1,0, 2 1), (0,1, 2 1)j providing the best preci-

¢coefficient c(d ) in the gradient direction multiplied by a ‘b sion in the tensor component when six directions are used
factor’ related to gradient amplitude. Hence, acquisition of (Basser and Pierpaoli, 1998). In order to improve the SNR
several diffusion-weighted images from a set of different this was repeated four times, providing 124 images per

¢gradient amplitudes allows the estimation of c(d ). When slice location. The image resolution was 1283128, field of
the diffusion process is anisotropic, the use of at least six view 24324 cm, TE584.4 ms, TR52.5 s. Imaging time
gradient directions allows the estimation of the tensor excluding time for on-line reconstruction was approximate-
matrix (Basser et al., 1994b). ly 37 minutes. A database of eight normal volunteers (men,

age range 25–34 years) has been acquired with this
protocol. All subjects gave informed consent and the study2.1. Data acquisition
was approved by the local Ethics Committee.

All scans were acquired on a 1.5T Signa Horizon
2.2. Distortion correctionEchospeed MRI system (Signa, General Electric Medical

Systems, Milwaukee, USA) equipped with magnetic field
Before performing the tensor estimation, a correctiongradients of up to 22 mT/m. A standard quadrature head

algorithm is applied to the diffusion-weighted dataset tocoil was used for RF transmission and reception of the
correct for distortions related to eddy currents induced byNMR signal. Head motion was minimised with standard
the large diffusion gradients. Indeed, distortion amplitudefoam padding as provided by the manufacturer.
reaches 1 cm for the highest gradients which prevents aThe following images were acquired after a sagittal

Fig. 1. Correction for the spatial distortions induced by eddy currents and computation of diffusion tensor using a robust regression method highly improve
anisotropy maps.
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consistent tensor matrix estimation. The correction algo- anisotropy (Basser and Pierpaoli, 1996). In such maps,
rithm relies on a three-parameter distortion model includ- white matter high anisotropy is clearly contrasted with
ing scale, shear and linear translation in the phase-encod- surrounding gray matter and cerebrospinal fluid areas.
ing direction (Haselgrove and Moore, 1996). The optimal Distortion correction removes border artefacts and im-
parameters are assessed independently for each slice proves spatial resolution.
relative to the T2-weighted corresponding image using
mutual information maximization (Wells et al., 1997). The 2.3. Robust regression
improvements induced by this correction are illustrated by
Fig. 1 using maps made up of a measure of tensor The six coefficients of the tensor symmetric matrix are

Fig. 2. A slice of a diffusion tensor volume.
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usually calculated for each voxel of the brain using a mean al., 1995, 1998). A morphological homotopic dilation is
square estimator (Basser et al., 1994a). However, dif- then applied to this segmentation in order to be robust to
fusion-weighted data are often corrupted by artefacts potential distortions between the echo-planar images (DTI)
related to physiological motions (cardiac cycle, etc.) which and the high resolution T1-weighted image. The
may bias these kind of estimators. Therefore we use a homotopic constraint prevents the filling in of cortical
robust regression method which belongs to the M-es- folds, which may lead to absurd tracking trajectories.
timator family (Meer et al., 1991). This method may be
regarded as an iterated weighted least-squares which

3.2. Best neighborsdiscards outliers. Such methods remain reliable as long as
less than half of the data are contaminated by outliers. A

¢Let d(M) denote the direction associated with voxeldetailed description of this tensor reconstruction process is
M [ 0. Since fascicles cannot end up inside white matter,beyond the scope of this paper. An example of one tensor

¢we have to find forwards and backwards relative to d(M)image is shown in Fig. 2.
either 0 boundary or at least one neighboring voxel
associated with a compatible local fiber direction. Here,
compatibility stems from the a priori hypothesis that most3. Computation of the tracking map
of the white matter fascicles are endowed with slow
direction variations. This subsection describes a linkingThis section outlines a method which transforms any
rule which defines the best forward and backward neighbordirection map inferred from diffusion data into a tracking
of each voxel. This rule is related to the topology proposedmap. A direction map is an image of unitary vectors which
by Jones et al. (1999) to define major bundles as connectedindicate the putative local fiber directions. Usually, such
components. Nevertheless, Jones et al.’s linking rule is toodirection maps are simply made up of the tensor eigenvec-
tolerant to deal with brain connectivity because a bunch oftor associated with the highest eigenvalue. In the follow-
bundles that cross the same white matter bottlenecking, we will propose a method to construct regularized
(corpus callosum, internal capsule) belong to the samedirection maps according to a priori knowledge on white
connected component. The notion of best neighbor allowsmatter geometry. A tracking map endows each voxel of
us to split large bundles into fascicle sets.white matter with a way of tracking forwards or backwards

Each voxel M is endowed with a forward and athe fascicle crossing this voxel. Some voxels of the map
b bbackward conic neighborhood 1 (M) and 1 (M) definedwhich represent forks may split the tracking process into f b

b¢from d(M) (see Fig. 4). The conic neighborhood 1 (M)several trajectories (cf. Fig. 3). Brain connectivity infer- f
b(respectively 1 (M)) is defined as the subset of the 26-ence amounts to converting an input area into an output b

neighbors of M belonging to the half-cone whose apex isarea through the tracking possibilities provided by the
¢ ¢M, whose direction is d(M) (respectively 2d(M)) andtracking map.

whose aperture angle is b (typically set to 458).
In this subsection, a voxel M can be linked to at most3.1. White matter mask

bone voxel f(M) (respectively b(M)) of 1 (M) (respectivelyf
b1 (M)). The linked forward neighbor f(M) is defined ifThe initial stage of the tracking approach consists in b

b b b bdefining a segmented mask 0 on which will be restricted the set 1 (M) 5 hP [ 1 (M), M [ 1 (P) < 1 (P)j isfs f f b

all the methods described in the following. This mask,
which is made up of the voxels belonging to white matter,
is automatically extracted from the T1-weighted image
using an algorithm developed in our institution (Mangin et

Fig. 3. Tracking process: the tracking starts at a subset & of theinput

boundary & between white and gray matter; it uses ^(M) and @(M)
linked neighbor sets to propagate through white matter until a cortical or
basal & region is reached. The behaviour of the tracking algorithm at Fig. 4. 2D illustration of the construction of the neighborhoods of a siteoutput

the level of forks is illustrated on the right. M (see text).
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non-empty (see Fig. 4). Simply speaking, this symmetry 3.3. Fan-shaped forks
constraint is related to the fact that a consistent connection
implies compatible local directions. If we define the So far, each voxel has been endowed with a way of
curvature criterion (see Fig. 4), tracking forwards or backwards when compatible neigh-

boring voxels exist. We still have to make these links
2 ¢ ¢ ¢ ¢ bidirectional. In fact, we have to model fascicle split and¢ ¢max d(M),u , d(P).u ,sd(M).d(P)dss d s d dMP MP

]]]]]]]]]]]]s(M,P) 5 , (2) merge related to the actual fiber organization or induced by¢uuMPuu
the sampling of diffusion data. This is done through the
creation of forks allowing the tracking to proceed further¢ ¢¢ ¢ ¢where u 5 (MP/ uuMPuu and (u,v ) denotes the angleMP using several directions. These forks stem naturally from

¢ ¢between directions u and v, then the definition of f(M) is
the definition of extended sets of linked neighbors ^(M)

(see Fig. 5)
and @(M) for all points of the map:

b• if 1 (M) ± 5:fsf(M) 5Arg min s(M,P). (3)
bP[1 (M )fs ^(M) 5 h f(M)j

b< hP [ 1 (M) u f(P) 5 M or b(P) 5 Mj,Hence, f(M) is the best forward neighbor according to a fs

criterion taking into account the three angles between
otherwise ^(M) 5 5;¢ ¢ ¢d(M), d(P) and the direction MP (see Fig. 5). This criterion

b• if 1 (M) ± 5:bsendows the locally tracked fascicle with the lowest pos-
sible curvature. The choice of s(M,P) among other possible

@(M) 5 hb(M)j
criteria stems from an analogy with spaghetti bending

b< hP [ 1 (M) u f(P) 5 M or b(P) 5 Mj,energy introduced in the next section. The best backward bs

neighbor b(M) is defined in the same way,
otherwise @(M) 5 5.

Since these forks follow the slow direction variationsb(M) 5Arg min s(M,P), (4)
bP[1 (M ) embedded in best neighbor definition, they look like thebs

standard fan-shaped split of actual fiber bundles. It should
b b b b be noted that this fork definition is minimal in the sensewhere 1 (M) 5 hP [ 1 (M), M [ 1 (P) < 1 (P)j hasbs b f b

that it results directly from the best neighbor definition.to be non-empty. It should be noted that forward and
Hence, actual fibers could follow other trajectories whichbackward best neighbors are equivalent. Indeed orientation

¢ in our opinion cannot be reliably tracked using current DTIof d(M) is arbitrary.
methods. Therefore, the tracking map made up by ^(M)
and @(M) sets aims at the inference of the more frequent
trajectories, namely connections relying on numerous
fibers.

This tracking map turns out to be an oriented graph
whose nodes are connected by two types F and B of
oriented links. The syntactic types of (M,P) oriented links

¢stem from d(M) orientation. These two types of links are
required because according to the propagation direction of

¢the tracking process relative to d(M), only one type of
(M,P) links is selected to proceed further. It should be
noted that the existence of the (M,P) link implies the
existence of the reciprocal (P,M) link. However, syntactic
types of these reciprocal links do not depend on each other

¢ ¢but on the arbitrary orientations of d(M) and d(P).
The tracking map is used to perform tracking operations

according to the simple scheme illustrated by Fig. 3. Let &
denote the set of voxels located at the boundary of the
mask 0. Formally, the tracking process performed from
an initial input & located in & amounts to the construc-input

tion of a sequence of 0 subsets h0 ,0 , . . . ,0 j using0 1 n

the following rules:
• 0 5 & ;0 input

• 0 5 hM u 'M [ 0 with M [ ^(M )Fig. 5. The curvature criterion s(M,P) defined by Eq. (2) relies on the 1 21 0 21

maximum of the angles a1, a2 and a3. or M [ @(M )j;21
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• for each i [ h2,3, . . . ,nj, the diffusion process which is lost in the eigenvector map.
0 5 hM u'M [ 0 and 'M [ 0 with For instance, while the direction of the first eigenvector ofi 21 i21 22 i22

(M [ ^(M ) and M [ @(M )) or a ‘flat tensor’ may largely differ from actual fiber direc-21 22 21

(M [ @(M ) and M [ ^(M )j. tions, the plane defined from the two first eigenvectors is21 22 21

The third rule assures that the tracking is always performed supposed to include these directions. Therefore, in our
in the same direction along the underlying fascicles. Once opinion, the solution has to be found at the level of the
this sequence has been computed, the answer to the brain direction map computation rather than in weaknesses of
connectivity question is the new subset & defined by the tracking process.output

In the following, we propose to compute the direction
& 5 & > < 0 . map without using the tensor eigensystem. The underlyingoutput i

i[h1,2, . . . ,nj idea consists in using the slow direction variations hypoth-
esis during the direction map inference. Hence, this

4. Markovian models of spaghetti plates approach will provide a restored direction map regularized
according to the whole information included in diffusion

4.1. Ill-posed nature of the tracking problem tensor data. While the restoration will rely on local
constraints on fascicle curvature like in the previous

The tracking map inferred from the direction map relies section, a global model of white matter geometry is
on the definition of links towards best forward and required to allow putative fascicles to compete with each
backward neighbors. These links which stem from the other. Performing global restoration according to local
hypothesis of slow direction variations of actual white contextual constraints will lead us to introduce a Marko-
matter fascicles are clearly dependent on errors in the vian random field framework (Geman and Geman, 1984).

¢direction map. Indeed a small error on d(M) can switch the
links to different neighbors. Furthermore, some errors can 4.3. Spaghetti plate analogy
lead to ‘pathological’ voxels turning out to be a dead end
for the tracking process (empty ^(M) or @(M)) although The geometry of white matter illustrated by Fig. 6 is
they are located inside white matter. It has to be under- highly similar to the geometry of ‘spaghetti plates’. This
stood that the tracking process is highly sensitive to such analogy between fascicles and spaghetti will help us to
erroneous links or dead ends. Indeed, to be able to provide introduce the Markovian model underlying the construc-
interesting information, each tracking operation requires tion of the regularized direction map. Let us consider a
exact links along the whole trajectory. single spaghetti. Before any cooking, this spaghetti can be

Unfortunately direction maps inferred from the tensor considered as a straight line. Put in hot water, the spaghetti
eigensystem are bound to include numerous errors. Indeed, becomes a bended curve. The higher the water temperature
in vivo DTI are subject to physiological noise and other is, the higher is the spaghetti curvature. A simple way to
motion artefacts. Furthermore, the low spatial resolution of assess the cooking effect on the spaghetti geometry
DT images with respect to most of the fiber bundle consists in integrating the curvature to get the spaghetti
diameters encountered in the human brain leads to signifi- bending energy E,
cant partial volume effects. If a voxel includes several fiber

lengthdirections, the tensor is less straightforward to interpret. In
_ 2such situations, the main eigenvector might follow a ‘mean ]E(spaghetti) 5 E c (s) ds, (5)2direction’ which may differ significantly from the direc-

0
tions of the underlying fascicles (Tuch et al., 1999).
Therefore, tracking white matter fascicles from standard where s is simply a curvilinear abcissa along the spaghetti,
DTI data turns out to be an ill-posed problem which c(s) is the spaghetti curvature at abcissa s and _ is the
requires some kind of regularization (Tikhonov and Arse- stress rigidity. This energy, well known in chemistry as the
nin, 1977). Kratky-Porod model of semi-flexible polymers (Chaikin

and Lubensky, 1995), can be extended in a straightforward
4.2. Regularization way to a whole spaghetti plate. The tracking algorithm

introduced in the previous section is searching locally for
The first level of regularization included in the construc- the fascicle with the lowest curvature. This local point of

tion of the tracking map is not sufficient to overcome the view is not robust to noise in the direction map. This
problem. Indeed, the slow direction variation hypothesis is weakness can be overcome if a global point of view is
used too locally to overcome large direction errors. Using chosen: searching for the fascicle set which realizes the
longer links to overcome local gaps in the tracking best trade-off between diffusion data and a low bending
trajectories could be a solution which appears rather energy constraint.
difficult to develop in a consistent way. Furthermore, this The computation of the regularized direction map can be
solution would discard some important information about classically interpreted in a Bayesian framework. The
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turns out to be the map made up by the tensor principal
eigenvectors.

4.4. A priori models

This subsection is concerned with the design of a
distribution modeling the a priori probability p(D). This
distribution should endow spaghetti plate like realizations
with a high probability related to the underlying bending

¢energy. The realization of the random variables d(M) of
the field D are unitary vectors with any 3D direction. Let
us consider a voxel M. This voxel has to belong to one

¢fascicle. Let d(M) denote the putative local direction of
this fascicle for a realization of the field. Since fascicles
cannot end up inside white matter, we have to find
neighboring voxels, forwards and backwards, with similar
fascicle directions (or perhaps the boundary of white
matter). Moreover, this property is sufficient to define the
whole geometry of a plausible fascicle set. Mathematically

¢speaking, this property means that p(d(M)) depends only
on the realizations of the fascicle directions of M neigh-
bors. Therefore, this random field is Markovian which is
very interesting from a practical point of view because if
the positivity condition is respected (each field realization
is endowed with a non-zero probability), the global field
probability p(D) follows a Gibbs distribution (Geman and
Geman, 1984):

1 S2O Vc c]p(D) 5 e , (7)SZ

S SFig. 6. (Upper) The spaghetti plate like geometry of white matter where Z is a normalizing constant and V are potentialcillustrated by a brain dissection (The Virtual Hospital, University of
functions defined on interaction cliques. These interactionIowa); (lower) first eigenvector of the diffusion tensor superimposed on
cliques are subsets of random variables of the field whichthe corresponding T1-weighted slice.
interact with each other. Each clique c is endowed with a
potential function in which the nature of this interaction is

optimal direction map D has to maximize the a poste- embedded. Intuitively, the lower the potential is, the higheropt

riori probability p(D/T ), where T denotes the diffusion is the probability of the clique realization. It should be
tensor data and D denotes a random field which covers all noted that one random variable usually belongs to several
possible direction maps. Bayes rule allows us to introduce cliques. Summing all these potential functions leads to the
the a priori knowledge on the low curvature of fascicles, global energy of the field which is minimal for the

realizations with the highest probability.
p(T /D).p(D) Considering the nature of the field interactions, a
]]]]p(D/T ) 5 . (6) straightforward choice for the clique system is hM <p(T )

(1 (M) > 0 ), M [ 0 j, where 1 (M) denotes M 26-26 26

Since p(T ) does not depend on D, maximizing p(D/T ) neighborhood. The choice of interaction potentials is more
amounts to maximizing the product p(T /D).p(D). In the difficult because various functions could lead to spaghetti
following, we propose a model of these two probabilities plate like deep local minima for the underlying global
which allows the computation of D . The a priori energy (Poupon et al., 1998a). The analogy with spaghettiopt

probability p(D) will be related to the bending energy of will lead us to build this potential on an equivalent of the
the equivalent spaghetti plate in order to favor low spaghetti local bending energy (cf. Eq. (7)) which is not so
curvature fascicles. The a posteriori probability p(T /D) easy to define considering the fascicle sampling (see Eq.
will be related to the nature of water diffusion in white (2)).
matter: for each voxel M, the diffusion coefficient in the An interesting question is related to the number of

¢direction d(M) should be as high as possible. It should be neighbor directions to be implied in the potential. Indeed,
¢noted that if p(D) is the uniform probability density, D if d(M) is supposed to give the local fascicle direction,opt
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several neighboring fascicles belonging to the same bundle ratic penalty term to reduce over-regularization problems
usually follow a similar direction (see Fig. 6). Then, to at the level of bundle edges (Meer et al., 1991; Poupon et
keep with our analogy, the question is the following: is it al., 1998a). In order to study the geometry of high

b,k,u b,k,upossible to find a model giving a highest probability to an probability configurations, U 5 o V (M,D) isS 0 S

ill-cooked spaghetti plate where a lot of the spaghetti are minimized from a random cubic direction map using an
stuck together in large bundles compared with a plate ICM like deterministic algorithm (Besag, 1986). The
endowed with equal bending energy but evenly stirred resulting direction map is then transformed in a tracking
during cooking in order to split the bundles? map according to the previous section method and a few

To investigate this question, we realized the following tracking operations are performed. Some results presented
bexperiment. Let us consider that all P [ 1 (M) (respec- in Fig. 7 show that large values of k favour thick bundlesf

btively P [ 1 (M)) have been sorted out according to as expected.b
¢ ¢increasing magnitude of (d(M),d(P)) angle (see Fig. 4). Simulated and real regularization experiments performed

b,k b,kThen, let 1 (M) (respectively 1 (M)) denote the with this type of models and some variants have provedf b

subset made up of the k first neighbors. To deal with their efficiency to recover the organization of large bundles
b,k bborder voxels, we set 1 (M) 5 1 (M) (respectively (see Fig. 8). However, potential over-regularization prob-f f

b,k b b b lems with models using several neighbors (Poupon et al.,1 (M) 5 1 (M)) when 1 (M) (respectively 1 (M))b b f b

1998a) have led us to investigate further one-neighborcontains less than k points. A three-parameter model
models. Indeed, our connectivity mapping aim implies thatfamily can be defined from the following potential func-
regularization preserves as far as possible thin bundles.tions:

Although tracking operations performed with local
b,k,u ¢ ¢V (M,D) 5 O F ((d(M),d(P)), (8)S u minima related to the previous one-neighbor models reveal

b,k b,kP[1 (M )<1 (M )f b some long fascicle like trajectories (see Fig. 7), these
2 2 2 direction maps turn out to contain numerous dead ends forwhere F (a) 5 a /(u 1 a ) is used rather than a quad-u

Fig. 7. Geometry of some high probability configurations obtained from a cubic random direction map after deterministic minimization. The underlying
spaghetti plate models are defined from Eq. (8) potential family with b 5 458, a 5 108 and different values of k. The results of some tracking operations
are highlighted to show that large values of k favour thick bundles of aligned fascicles.
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Fig. 8. Regularization of a simulated Y-shaped fork using a model related to Eq. (8) potential with four neighbors. Orientations of simulated anisotropic
diffusion tensors have been highly corrupted and a cube of eight tracking dead ends have been added in the middle of the bundle (cf. Poupon et al., 1998a).

¢the tracking process. This problem results from the fact d(M), any tensor measurement T(M) has a non-zero
b,k,u ¢that V (M,D) potential do not take into account MP probability, and second that the tensor measurement prob-S

¢directions. Indeed, with k . 1, the fascicle trajectories ability distribution p(T(M) /d(M)) has stationary properties
embedded in this potential are not really known. Because throughout the VOI, p(T /D) can be rewritten as
of this weakness, the one-neighbor model gives high

1 1M M¢ ¢2V (d(M )) 2O V (d(M ))probability to absurd direction maps, for instance a check- T M T] ]p(T /D) 5 P e 5 eT T
MZ Zboard where black squares have horizontal directions and

white squares have vertical directions. Therefore, we 1 ¢2O V (T(M ),d(M ))M T]5 e ,Tdesigned a new potential which stems directly from the Z
tracking algorithm curvature criterion (see Eq. (2)),

Twhere Z is a normalizing constant. Finally, in order to get90 90V (M,D) 5 s M, f (M) 1 s M,b (M) , (9)s d s dS ¢a probability p(T(M) /d(M)) decreasing with the dis-
90 90where f (M) and b (M) are best linked neighbors related

to half-cones with b 5908 aperture angle, that cover the
whole 26-neighborhood. While s(M,P) curvature criterion
only mimics the spaghetti local bending energy (Eq. (5)),
because of the discrete nature of the direction map, it is
supposed to lead to a global energy of similar landscape.
We studied the geometry of this model local minima with
the same experiment than before (see Fig. 9). The corre-
sponding direction maps turn out to be almost dead end
free.

4.5. Regularized direction map

In this subsection, we propose a model of p(T /D) which
is combined with the a priori model of Eq. (9) to define the
optimal direction map.

Let us assume now that the tensor measurement in one
¢voxel M depends only on d(M). This rather reasonable

hypothesis will lead to a second Gibbs distribution corre-
sponding to a field without interaction. The conditional
probability p(T /D) can be rewritten in the following way: Fig. 9. Geometry of a high probability configuration obtained from a

cubic random direction map after deterministic minimization. The under-¢p(T /D) 5Pp(T(M) /d(M)). lying one-neighbor spaghetti plate model is defined from Eq. (9). Most of
M

the tracking operations performed from a random voxel reach two faces
of the cubic map.Assuming first that knowing a local fascicle direction



C. Poupon et al. / Medical Image Analysis 5 (2001) 1 –15 11

¢ ¢crepancy between diffusion in the direction d(M) and the state space of the random variables d(M) has been descret-
diffusion in the direction of the tensor first eigenvector ized in 162 uniformly distributed directions. An ICM like
¢e (M), we propose to use the following potential function: algorithm is used to get the minimum the nearest to the1

¢e (M) direction map (Besag, 1986). The computation time%%%%%%%%& 2 1
t t¢ ¢ is about 1 hour on a conventional workstation. Further¢d(M) T(M)d(M) 2e (M) T(M)e (M)1 1¢ ]]]]]]]]]]V (T(M),d(M)) 5S D .T work is required to assess the interest of using stochasticiT(M)i

minimization.
(10)

5.1. Influence of the a priori model weightThe discrepancy is normalized by the tensor norm (Basser
and Pierpaoli, 1996) in order to remove all diffusion-based

Regularization of one set of real data has been per-information apart from anisotropy.
formed with eleven different values of the weightingCombining all the previous equations leads to the
parameter a. Then, in order to study the influence ofexpression of p(D/T ) which turns out to be a new Gibbs
regularization on the tracking map topology, severaldistribution where the additional cliques relative to Eq. (7)

are the trivial ones, namely the singletons hMj. This new subsets of points have been defined from the construction
distribution leads now to the definition of D as the of ^(M) and @(M) extended neighborhoods (b 5 458). Itopt

direction map which minimizes the energy U(D) given by should be noted that the 908 cone aperture is only used
during regularization in order to penalize the worst con-

U(D) 5 aU (D) 1 U (D)S T figurations. However, during a tracking operation, the
¢ aperture angle is largely reduced in order to forbid5 a O V (M,D) 1O V (T(M),d(M)). (11)S T

M M anatomically meaningless links. The evolution relative to a

of the cardinals of four specific sets of points has beenFinally, this new definition clearly shows that the optimal
studied (see Fig. 10):direction map D is a trade-off between the measuredopt

tensor data and the a priori knowledge on the low Fascicle nodes: sites endowed with exactly one forward
curvature of fascicles. The constant a reflects the influence neighbor and one backward neighbor (@(M) 5 hb(M)j and
of this a priori knowledge. ^(M) 5 h f(M)j);

Junctions: sites related to the merge (or split) of several
fascicles made up of points of the previous type

5. Results (cardinal(@(M)) 3 cardinal(^(M)) . 1);
Gate to gray matter: sites leading to gray matter
45 45All the results described in the following stem from (N (M) 5 5 or N (M) 5 5);f b

deterministic minimization of U(D) (cf. Eq. (11)). The Pathological sites: sites endowed with forward (or

Fig. 10. (Left) Evolution of the numbers of four different types of configurations. (Right) (1) fascicle mixing inside a bundle before regularization versus a
bunch of aligned fascicles after regularization; (2) sites of white matter leading to gray matter; (3) pathological site without tracking possibility.
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backward) basic neighbors, but no forward (or backward) bundle section include axons connecting different brain
45symmetrical neighbors, i.e., pathological sites ((N (M) 5 areas. Finally, the number of sites leading to gray matterfs

45 45 455 and N (M) ± 5) or (N (M) 5 5 and N (M) ± 5)). decreases slightly which is related to the fact that with afs bs bs

Fig. 10 presents the evolution from no regularization 908 cone aperture during the regularization, only convex
(left asymptotes) to high regularization (right). First, the areas of the boundary (see Fig. 10(2)), namely cortical
number of pathological sites (see Fig. 10(3)) decreases gyri, are not penalized. While these areas are the main
dramatically with the regularization which demonstrates cortical connexion locations, this effect calls for refine-
the efficiency of the model. Second, the regularization ments of the regularizing model. All the curve evolutions
leads to a decrease of the number of junctions and to a reach limits beyond which no more topological effect is
dramatic increase of the number of simple fascicle nodes. observed on the fascicle set. This observation suggests that
This effect is mainly due to a reorganization of the the weight a 5 1 is a reasonable trade-off between regu-
fascicles inside larger bundles (see Fig. 10(1)) which larization and fidelity to the data which has been used for
corresponds to the usual underlying anatomical reality. further experiments.
Indeed, the chronotopic establishment of the connections

´leads to topographically ordered bundles (Molnar, 1998). 5.2. Trajectory restoration
Hence, the large bundles are endowed with somatotopic
organizations, which means that different parts of the Other experiments have been performed to compare the

Fig. 11. (Upper) Tracking of putative trajectories of pyramidal fibers from motor area until brain stem. (Lower) A zoom on the trajectory to visualized
regularization effects. Tensor first eigen vectors are represented by a light cylinder while regularized directions appear as a dark cylinder. Tensors are
represented by ellipsoids. The largest direction corrections are performed for flat tensors endowed with two high eigenvalues. These tensors are supposed to
correspond to fiber crossings or fan-shaped forks.
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tracking process behaviours with and without regulariza- bundle (Poupon et al., 1999). The second kind of problems
tion. Two kinds of problems occur before regularization. is related to the presence of numerous dead ends in the
While the tracking process highlights some plausible fiber middle of white matter which stop the tracking process. All
trajectories, these trajectories are usually mixed with very these problems are largely minimized when using the
unplausible ones because of a few misoriented local regularized tracking map. Unfortunately, validation relative
directions. Moreover, the tracking process which should to actual anatomical connectivity, which is currently not
follow thin fascicles often invades the whole surrounding available, would be required for further comparison. The

Fig. 12. Examples of tracking from one single input voxel (A,B) or from small sets of neighboring voxels endowed with similar putative fiber orientations
(as observed in 2D slices with superimposed directions) (C). In most of the images the cortex is visualised from below after a virtual split.



14 C. Poupon et al. / Medical Image Analysis 5 (2001) 1 –15

regularization effect is illustrated in Fig. 11 for a putative priori knowledge on the white matter geometry. In this
fiber trajectory included in the pyramidal pathway. This paper, we have shown that such an approach leads to
pathway drives motor impulse from motor areas to brain improvements in DTI-based fascicle tracking. While the
stem. Before regularization the tracking is stopped at the regularization method proposed in this paper may appear
level of flat tensors whose first eigenvectors are meaning- rather intricate compared to more usual image smoothing
less. These directions have been rotated in the high approaches, it should be noted that the underlying idea is a
diffusion plane by the regularization process in order to restoration preserving as far as possible the DTI spatial
create a consistent slow direction variation trajectory. resolution. Indeed, considering the current spatial res-

olution of in vivo DTI (2 mm), preserving this resolution is
crucial for the tracking of thin cortico-cortical bundles

5.3. Tracking experiments
which are of high interest in neuroscience. For instance,
Gaussian smoothing of the tensor data, which has been

Finally, various tracking experiments have been per-
recently proposed as a preprocessing to tracking (Westin et

formed according to the scheme proposed in Fig. 3 or to a
al., 1999), removes information on thin bundles. An

similar one for which the input is located inside white
alternative consisting in applying simulated anisotropic

matter. Some of these experiments were aimed at tracking
diffusion on raw diffusion-weighted images has been

the putative trajectories of short and long association fibers
proposed recently to overcome problems related to nega-

(cf. Fig. 12(A,C)). Other experiments were aimed at
tive eigenvalues in the tensor (Parker et al., 1999). This

tracking the putative trajectories of commissural fibers (cf.
method, which prevents smoothing across edges, preserves

Fig. 12(B)) and projection fibers (cf. Fig. 11). All these
macroscopic anatomical information like the boundary

experiments led to low curvature trajectories in accordance
between brain and CSF. However this approach is bound

with the a priori knowledge injected in the regularization
to increase partial volume effects inside white matter.

process. Most of these trajectories were endowed with
Nevertheless, the design of an anisotropic diffusion

fan-shaped terminations and a few forks compatible with
scheme based on ‘edges’ computed from tensor orienta-

the actual organization of white matter. While no real
tions could be an interesting alternative to our Markovian

validation is currently available, some of these tracking
framework.

experiments revealed trajectories akin to well-known white
In summary, we have introduced a sequence of robust

matter bundles described in the anatomical literature
algorithms allowing the tracking of white matter fascicles

(Dejerine, 1895): pyramidal tracts (cf. Fig. 11), superior
using DTI. A number of these algorithms are completely

longitudinal fasciculus (cf. Fig. 12(A)), occipito-frontal
new: eddy current distortion correction using mutual

fasciculus (cf. Fig. 12(C)), occipito-occipital commissural
information, robust regression to assess the diffusion

axons crossing corpus callosum splenium (cf. Fig. 12(B)).
tensor, computation of a regularized direction map from
DTI data and, finally, a fascicle tracking algorithm dealing
with fascicle junctions. A number of questions related to

6. Discussion and conclusion some of the parameters of our method remain open: the
weight of a priori knowledge, the choice of the potential

Mapping the living human brain connectivity with functions, the neighborhood cone aperture, the minimiza-
clinical scanners and reasonable acquisition times is a tion algorithm. Furthermore, some refinements are required
difficult challenge. Indeed, fascicle tracking is a mathe- to get rid of the bias induced by grid effects. An important
matically ill-posed problem especially sensitive to noise in future direction of research consists in improving the
the direction map inferred from the DTI data. For instance, angular resolution of the diffusion data in order to deal
each error in the direction map can lead to a random fork with fascicles crossing inside a voxel (Tuch et al., 1999).
in the tracking process without underlying anatomical Addressing these points in a consistent way would require
meaning. Furthermore, the typical spatial resolution of knowledge of a gold standard with which to test the
echo planar images results in partial volume effects mixing validity and accuracy of the methods. Therefore one of the
the fascicle directions while attempts to achieve higher challenges to take up rapidly is the design of reliable
resolution reduces SNR and generally leads to more severe validation approaches using for instance animals and
image artefacts. standard tracer-based methods.

A straightforward way to reduce the sensitivity to noise This paper outlines the opening of a new research
consists in increasing acquisition time to improve SNR domain for the image analysis community. Indeed, dealing
(Conturo et al., 1999). Unfortunately this approach does with tensor images calls for the development of completely
not address problems induced by partial volume effect and new algorithms. This direction of research could lead to
is not compatible with clinical constraints. In our opinion, the first method giving access in vivo to the human brain
the difficulties related to the ill-posed nature of the connectivity, Such a method would have a great impact
tracking problem can be overcome by the introduction of a both on brain mapping and on pathological studies.
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