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a b s t r a c t 

While pap test is the most common diagnosis methods for cervical cancer, their results are highly de- 

pendent on the ability of the cytotechnicians to detect abnormal cells on the smears using brightfield 

microscopy. In this paper, we propose an explainable region classifier in whole slide images that could 

be used by cyto-pathologists to handle efficiently these big images (10 0,0 0 0x10 0,0 0 0 pixels). We cre- 

ate a dataset that simulates pap smears regions and uses a loss, we call classification under regression 

constraint, to train an efficient region classifier (about 66.8% accuracy on severity classification, 95.2% ac- 

curacy on normal / abnormal classification and 0.870 KAPPA score). We explain how we benefit from this 

loss to obtain a model focused on sensitivity and, then, we show that it can be used to perform weakly 

supervised localization (accuracy of 80.4%) of the cell that is mostly responsible for the malignancy of 

regions of whole slide images. We extend our method to perform a more general detection of abnormal 

cells (66.1% accuracy) and ensure that at least one abnormal cell will be detected if malignancy is present. 

Finally, we experiment our solution on a small real clinical slide dataset, highlighting the relevance of our 

proposed solution, adapting it to be as easily integrated in a pathology laboratory workflow as possible, 

and extending it to make a slide-level prediction. 

© 2021 Elsevier B.V. All rights reserved. 

1

a

t

y

c

m

i

s

(

u

s

a

c  

P

c

t

l

f

a

t

s

l

a

w

m

t

s

t

h

1

. Introduction 

The World Health Organization (WHO) states ( WHO, 2014 ) that 

round 90% of cervical cancers could be avoided if they were de- 

ected and treated earlier. With around 500 × 10 3 new cases each 

ear, screening for cervical cancer needs to be efficient and pre- 

ise. Currently, pap smear ( Papanicolaou and Traut, 1943 ) is the 

ost commonly used diagnosis method for cervical cancer screen- 

ng. It is perfomed by a visual check of squamous epithelial cells 

cratched at the joint section between the cervix and the uterus 

the Transformation Zone), which are set inside a preservative liq- 

id, stained using Hematoxylin and Eosin (H&E) and spread on a 

lide. This slide is then analyzed by a trained anapathologist or 

 cytotechnician, navigating the full slide through a cornucopia of 

ells (up to 100 × 10 3 ) in order to find potentially, high risk, pre-
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ancerous cytomorphologic changes (these changes can happen up 

o 7 years before an actual cancer develops), revealing cancerous 

esions. A positive classification (classified as abnormal ) will lead to 

urther analysis ( Wright et al., 2002 ). Although they are recognized 

s being an efficient method, these tests are highly dependent on 

he expertise of the cytotechnician to localize abnormal cells on 

mears slides using brightfield microscopy. This task, which is like 

ooking for a needle in a haystack, leads to several drawbacks such 

s missed abnormalities which cause false negative cases, extra 

ork on false positive cases and fatigue of cytotechnicians. Further- 

ore, about 93% of smears are categorized as normal (negative), so 

here is a need to prune most negative cases while keeping a sen- 

itivity as close to 100% as possible in order to enable practitioners 

o focus on difficult and abnormal cases. 

Also, despite the effort s to st andardize the methodology to clas- 

ify correctly slides and ensure reproductibility, there is still a high 

nter-observers variability in diagnosis ( Stoler and Schiffman, 2001; 

herman et al., 2007 )). It is not clearly defined how anapatholo- 

ists should proceed and what they should rely on to make their 

https://doi.org/10.1016/j.media.2021.102167
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2021.102167&domain=pdf
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ecision. Latest guidelines ( Solomon et al., 2002; Nayar and Wilbur, 

015 ) indicate that the size, shape and texture of the nucleus of 

 cell are essential discriminative features, along with the ratio 

etween the nucleus and the cytoplasm sizes, also called Nucleo- 

ytoplasmic Ratio (NCR). 

With the recent emergence of deep learning methods, specif- 

cally deep Convolutional Neural Networks (CNN) succeeding on 

 large panel of tasks, it has been a growing area of research to 

se and adapt these methods to assist medical doctors in diagno- 

is, prognosis and medical procedures ( Bar et al., 2018; Liu et al., 

017; Ronneberger et al., 2015; Naylor et al., 2019 ). In the case of

ervical cancer screening, the Herlev dataset ( Jantzen et al., 2005 ) 

nables researchers to compare their methods regarding cells clas- 

ification. This dataset is composed of 917 images showing single 

ells, categorized using the seven labels of the WHO classification: 

ormal columnar, normal intermediate, normal superficial, light dys- 

lastic, moderate dysplastic, severe dysplastic and carcinoma in situ . 

he first three categories belong to the category of normal cells and 

he last four are abnormal (in order of severity, with carcinoma in 

itu hinting the presence of an actual cancer). 

After reviewing related work in Section 2 , we describe, in 

ection 3 , the loss we propose to train a CNN that avoids critical 

istakes. We will see that the proposed method actually performs 

ery well in predicting cell malignancy. In Section 4 , we make a 

tep closer to Whole Slide Image (WSI) classification and medi- 

al support by taking advantage of tools developed in Section 3 to 

erform an adapted training on images we create and that simu- 

ate pap smears tiles. We also show that, thanks to an attribution 

ethod, we can perform weakly supervised localization of the cell 

eponsible for the predicted label along with weakly supervised 

etection of abnormal cells, which might help medical practioners 

o understand the outcome of our method, strenghten their con- 

dence in the model, and decrease the time spent on each slide. 

n Section 5 , we use a 90 WSIs dataset to apply our methods and

emonstrate the clinical and practical usefulness of our work. 

. Related work 

Since 2012 and the success of AlexNet ( Krizhevsky et al., 2012 ) 

n Imagenet Challenge ( Deng et al., 2009 ), deep learning has been 

onsidered as a revolution in the field of computer vision, reach- 

ng state-of-the-art performances for almost all tasks on which it 

as been applied, e.g. Natural Language Processing using Recurrent 

eural Networks ( Cho et al., 2014 ), Gaming using Reinforcement 

earning ( Mnih et al., 2015 ). 

In image processing in particular, CNN architectures, first intro- 

uced in LeCun et al. (1989) , perform really well. And, over the 

ears, several architectures have emerged. Currently, Resnet-101 

 He et al., 2016 ), which proposes the use of skip connections over

locks to avoid de-learning on latest blocks what has been learned 

n early blocks, is acknowledged to be one of the best architec- 

ures for classification and serves as the core of various derived 

rchitectures and tasks. 

With this growing interest in deep learning, cervical cancer 

creening has been identified as a high stake subject that requires 

o tackle several problems: having efficient classifiers (up to cell 

evel), define relevant features, and standardize the process that 

eads to a slide label and being able to analyze quickly huge im- 

ges. 

Regarding cell classification for Pap-smear analysis, most of 

he literature focuses on the binary “abnormal”/“normal” classi- 

cation from Herlev dataset. In Bora et al. (2016) the authors 

sed an unsupervised Feature Selection model after a CNN fea- 

ure extractor to reach a F1 score of 0.90 and an accuracy of 94%.

n Zhang et al. (2017) , the most current deep learning methods 

ave been used and a deep neural network (pretrained on Ima- 
2 
eNet) has been trained on Herlev dataset categories to provide a 

ull pipeline that reports the best performances with an accuracy 

f 98.3% and an Area Under the receiver operating characteristic 

urve (AUC) of 0.99. In Forslid et al. (2017) , a Resnet architecture 

as trained on Herlev dataset categories resulting in an accuracy 

f 84.45%. More recently, in Lin et al. (2019) , the authors tackle the 

ulti (7)-class classification challenge and propose to use, in ad- 

ition to the image centered on the nuclei, cytoplasm and nuclei 

egmentation masks to guide the training and help the prediction. 

t enables them to reach an accuracy of 64.5% on the 7 classes clas- 

ification task. 

Regarding region (potentially containing several cells) classifi- 

ation, the results in Kwon et al. (2018) show an overall accu- 

acy of 84.5% for binary abnormal/normal classification and ac- 

uracy of 76.1% for a 3 labels dataset ( Negative for Intraepithelial 

esion or Malignancy (NILM), Low-grade Intraepithelial Lesion (LSIL) 

nd High-grade Intraepithelial Lesion (HSIL) ). In Harinarayanan and 

irmal (2018) , a dataset of regions of Pap smears (961x961 pix- 

ls) has been labeled as “usable for diagnosis” or not. The model 

eaches 83.01% accuracy on the test set and the authors provide 

ssistive maps to help pathologists by using feature maps, simi- 

arly to Grad CAM ( Selvaraju et al., 2017 ). In Zhang et al. (2014) ,

he authors detect and segment cytoplasm and nucleus and rely 

n these segmentation features to train four classifiers: “artifact”

lters, “nucleus”/“artifact” classifier, “abnormal”/“normal” nucleus 

lassifier and “abnormal” cell/hard negative classifier (each sample 

s going through classifiers in this order as long as it is not classi- 

ed as “artifact” or “normal”). They report a system with a sensi- 

ivity of 88.1% coupled with a specificity of 100%. 

Regarding WSI, mostly due to the absence of large public 

ataset, cytology applications are not really popular and early 

ork were showing limitating results ( Kitchener et al., 2011 ). In 

ov et al. (2021) , authors work on the classification of thyroid cy- 

ology slides with regard to The Bethesda System (TBS). They use 

 semi-supervised approach using 142 annotated WSIs to train a 

ile classifier and compute heat-maps. Then they train an aggre- 

ator that can be fed with tile label and global label. They re- 

ort an AUC of 0.985 on tiles, and of 0.872 with an accuracy of 

.44 at slide-level (on the 5 classes problem that is TBS). Recently 

in et al. (2021) propose the first study on a large size dataset of 

ap smear WSIs and succeeded to reach a sensitivity of 0.9 aside 

ith a specificity of 0.8. 

Even if these studies show interesting results and performances, 

ost Whole Slide Image classification methods using CNNs deal 

ith histology slides (study of tissues to detect diseases). A WSI is 

he result of the digitalization of a pathology slide and is generally 

 high resolution image with around ten billion pixels. Classify- 

ng these images implies a high computational cost. Several works 

ave been done to improve the efficiency/accuracy trade-off that 

his task requires. Camelyon-16 is the most famous dataset regard- 

ng this task, it includes 400 WSIs labeled according to the pres- 

nce or not of metastases on sentinel lymph node biopsies. The 

ost popular way to process these images is to cut them into 

iles, sampling them and to work using these patches ( Liu et al., 

017; Li et al., 2019; Campanella et al., 2019; Shi et al., 2020 ).

rinidhi et al. (2021) offer a complete review of approaches for 

SI classification in histopathology. This is why, in this work, we 

re interested in getting closer to a pap-smear WSI classifier by 

orking on a tile-level classifier. 

Moreover, working with tiles enables to perform weakly super- 

ised localization ( Courtiol et al., 2018 ), i.e. highlighting which re- 

ions of these big images are responsible for the medical label. 

ethods that aim at understanding, after training, what the model 

earned to perform on a given task are called interpretability meth- 

ds and are divided into three main groups: feature visualization, 

hich consists in finding an input that maximizes the answer for 
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Fig. 1. Herlev dataset: image examples and repartition in classes and categories. 
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 given neuron (or group of neurons) ( Zeiler and Fergus, 2014 ); 

erturbation methods, which consist in pertubating a given in- 

ut to find perturbations that impact the prediction ( Fong and 

edaldi, 2017 ); and gradient-based methods, which rely on the 

act that, for deep models, gradient (of the output with respect 

o the input) is a good approximation of the saliency of a model 

 Simoyan et al., 2013 ). Perturbation and gradient-based methods 

re part of attribution methods that aim at highlighting regions 

esponsible for the predicted label. The main method that arose 

rom the literature is a gradient-based method called Integrated 

radient ( Sundararajan et al., 2017 ) that we present in detail in 

ection 3.3 . 

. Regression constraint for explainable cervical cancer 

lassifier 

In this section we present in detail the method we developed 

o improve severity classification and how we use the attribution 

ethod called Integrated Gradient to prove the relevance of the 

raining of our model. 

.1. Herlev dataset 

As explained in the introduction ( Section 1 ), the Herlev Dataset 

 Jantzen et al., 2005 ) is a cytology image set showing single cells

omposed of 917 images divided into two categories: “normal” vs 

abnormal”. 

Then “normal” cells are labeled regarding their maturity, asso- 

iated with the layer of the squamous epithelium they come from. 

Abnormal” ( Dysplastic ) cells are gradually classified according to 

heir likelihood to turn into cancerous cells, based on the exper- 

ize of several cyto-technicians and doctors, while Carcinoma in situ 

re cells that actually have cancerous changes. This results in a 7 

lasses problem. Images in the set are encoded in 24-bit RGB with 

izes ranging from 50 to 400 pixels wide. 
3 
Fig. 1 shows the distribution of images in this dataset classes 

nd categories (note that images are scaled for a better visualiza- 

ion). 

We turned this dataset into a “severity” focused dataset by 

erging all normal classes into one single class resulting in a 5 

lasses problem ( normal, light dysplastic, moderate dysplastic, severe 

ysplastic and carcinoma in situ in order of severity). 

.2. Improving herlev severity classification using regression 

onstraint 

.2.1. Classification approach 

First, we train a ResNet-101 architecture on four indepen- 

ent splits of Herlev Severity dataset (4 random folds to ensure 

tatistical significance of improvements) using multi-class cross- 

ntropy loss that we note L CE (p; y cls 
x ) = −∑ 5 

i =1 y 
cls 
x,i 

.log(p i ) , where 

p = (p 1 , . . . , p 5 ) are class probability neurons (resulting of soft- 

axed logits neurons) and y cls 
x the one hot label associated with 

he image x (zeros array with a 1 at ground trunth class index). 

.2.2. Classification results 

Performances are the following: 72.6% average overall accuracy 

nd a very problematic confusion between normal and carcinoma 

n situ classes (due to normal columnar cells that look like carci- 

oma cells with a high NCR). 

.2.3. Regression approach 

This motivates the idea of formalizing this task as a regression 

roblem i.e. classes being represented by a regression score (1 for 

ormal samples up to 5 for carcinoma ) and using a Mean Square Er- 

or (MSE) loss L MSE (s ; y 
reg 
x ) = (s − y 

reg 
x ) 2 with s the predicted score

nd y 
reg 
x the regression score associated with the image x . 

.2.4. Regression results 

The regressor pipeline showed promising results by solving 

ompletely this challenge of differentiating normal columnar and 
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Fig. 2. Table of classification results for the three studied architectures (classifier, regressor and classifier under regression constraint) on four evaluation metrics (overall 

accuracy, binary accuracy, ROC-AUC and MSE). 
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arcinoma cells and performing with an average overall MSE of 0.71 

ut giving an average overall accuracy of 58.2%. 

.2.5. Classifier under regression constraint method 

So, finally, we unify these two pipelines into a single one which 

e call “Classifier with Regression Constraint”. It consists in sum- 

ing the classification loss (softmax cross-entropy) with the re- 

ression loss thus strongly penalizing classification errors when 

he predicted class and the ground truth classes are medically dis- 

ant. For that we turn classification probabilities p = (p 1 , . . . , p 5 )

output of the classifier) into a regression score s using a fixed 

ully connected layer w 

r containing regression scores per class (e.g. 

 

r = [1 , 2 , 3 , 4 , 5] as shown in Fig. 9 ): 

 = RegConst(p; w 

r ) = 

5 ∑ 

i =1 

(p i .w 

r 
i ) (1) 

Our training loss L is thus: 

 (x, y x ) = L CE (p; y cls 
x ) + L MSE (s ; y reg 

x ) (2) 

here x is an image, y x the label (encoded as one hot vector y cls 
x 

or cross-entropy and as a regression score y 
reg 
x for the regression 

onstraint). 

.2.6. Classifier under regression constraint results 

The trained model jointly improves regression and classifica- 

ion with an average overall accuracy of 72.6% and a average over- 

ll MSE of 0.59. The binary “abnormal”/“normal” classification also 

enefits from this method with an average of 95% (average im- 

rovement of 4.7% compared to classification pipeline). The av- 

rage accuracy of 72.6% for 5 classes accuracy classification is 

n average improvement of 8.1% compared to results reported in 

in et al. (2019) (see Section 2 ). 

.3. Interpretability, attribution and explainability 

Attribution, introduced in Section 2 , is a crucial task when it 

omes to medical applications. Indeed, since the health of patients 

s at stake, there is a need to strengthen the confidence of prac- 

itioners in the models, and especially to demonstrate that what 

s learned is relevant and relies on medical features. In order to 

ompute attribution maps (heatmaps that highlight regions that 

articipated to the given label), we applied the Integrated Gradi- 

nt method ( Sundararajan et al., 2017 ) to highlight on which cy- 

omorphological features our model relies to predict the severity. 

his attribution method consists in interpolating the image from a 

aseline image (that is representative of the absence of object, e.g. 
4 
 white image in the context of cervical cell classification). Given 

 pixel value x i of the image x at position i in the image domain

, x ′ the baseline image (same size as x ), F the model outputting 

 score (e.g. class probability for the classifier pipeline or severity 

core for the regression pipeline) given an input, and m the num- 

er of steps of the interpolation, the value A (i ) of the attribution 

ap given by the Integrated Gradient method for a pixel at posi- 

ion i is computed as: 

 (i ) = 

(x i − x ′ 
i 
) 

m 

. 

m ∑ 

k =0 

dF (x ′ + 

k 
m 

. (x − x ′ )) 
dx i 

(3) 

In order to reinforce our point, we propose a measure to quan- 

ify how much a region of an image contributes to the predicted 

abel. Given a region R of an image x (subset of �), we denote by

 R the contribution of this region to the predicted label, which is 

omputed as: 

 R = 

∑ 

i ∈R 

| A (i ) | ∑ 

i ∈ � | A (i ) | (4) 

Note that, the completeness axiom defined in 

undararajan et al. (2017) ensures that, for a baseline defined 

s before, the attribution over the whole image (denominator) in 

on-zero. 

We can observe that the model seems to rely more on the nu- 

leus region for more severe classes (see Fig. 3 ), which is coherent 

ince most discriminative features for severe cells are contained in 

he nucleus. However, we can not exclude that it could also be a 

imple bias introduced by the relative surface of nuclei on abnor- 

al cells. 

. Towards whole slide image classification and medical 

upport 

In this section, we propose to apply the two methods intro- 

uced in the previous section (classification using regression con- 

traint and attribution method using integrated gradient) to build 

 model able to predict a label on tiles containing several cells and 

o return a heatmap of the “interesting” regions for a WSI. We also 

enefit from these explanation maps to perform localization of the 

ell responsible for the predicted severity and detection of other 

abnormal” cells. 

.1. Building a tile dataset based on herlev cells 

To create realistic tiles, we need proper cytology background 

mages. To this end, we use a pap smear WSI of size around 
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Fig. 3. Herlev images, their associated nuleus segmentation maps and attribution maps using integrated gradients on trained model (top); distribution of percentage of 

attribution in nucleus per class (bottom). 

Fig. 4. Simulated tile creation process: copy paste non overlapping cells on cytology 

slide background tiles. 
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0 0,0 0 0x10 0,0 0 0 pixels, tile it (80 0x80 0 pixels non overlaping

iles), and extract “flat white” regions (by thresholding). 

To create our dataset (see Fig. 4 ), we use the mask given by

he Herlev dataset to extract only the cytoplasm and the nucleus 

rom these images and paste it on the background images previ- 

usly created (just making sure they do not overlap). 

The challenge presented by what we call the “simulated”

ataset of cytology tiles is to predict the maximum severity 

resent on the tile, i.e. normal tiles are composed only of normal 

ells and other tiles are labelized by the degree of the most severe 

ell in it (see Fig. 16 (top)). Note that, in the figures, we show the

round truth boxes with a color code for clarity but these boxes 

re never used in the training, only global tile labels are used. We 

ake sure that each Herlev cell is used only in one split of the 

imulated tile dataset. 
5 
Thus we created a dataset of 1808 images (1309 for training, 

71 for validating and 328 for testing), each image containing be- 

ween 1 and 15 Herlev cells. The training set contains 217 normal 

amples, 267 light dysplastic samples, 284 moderate dysplastic sam- 

les, 288 severe dysplastic samples and 253 carcinoma in situ sam- 

les, while the test set contains 60 normal , 74 light dysplastic , 77 

oderate dysplastic , 67 severe dysplastic and 50 carcinoma in situ . 

The problem of ordered classification task in known as “or- 

inal regression”. In the following paragraphs, we start by train- 

ng a classification architecture before detailing a method that is 

enerally used to tackle these ordinal regression challenges. Fi- 

ally, we apply the classification pipeline under regression con- 

traint on the simulated tile dataset to show and validate the im- 

rovement that this method brings. We perform 5 trainings per 

ipeline to ensure the statistical significance of the improvements 

rought by the different methods considered. The improvements 

re assessed by three evaluation measures: overall accuracy, binary 

ormal / abnormal accuracy and quadratic KAPPA value. Quadratic 

APPA ( Brennan and Prediger, 1981 ) is a measure used in the 

ontext of ordinal regression problems. It consists in computing, 

ased on the confusion matrix, a single value that takes into ac- 

ount the distance between classes. We define a normalized con- 

usion matrix M = (m i, j ) such as 
∑ N 

i =1 ( 
∑ N 

j=1 (m i, j )) = 1 (for a N

lasses classification problem). The expected agreement proportion 

 e is P e = 

∑ N 
i =1 ( 

∑ N 
j=1 (m i, j ) . 

∑ N 
k =1 (m k,i )) and the observed agree-
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Fig. 5. Resnet-101 classifier average confusion matrix on “simulated” cytology tiles 

test set over 5 random folds. 
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Fig. 6. Resnet-101 classifier ROC curves and on “simulated” cytology tiles test set. 

Fig. 7. Resnet-101 ordinal pipeline average confusion matrix on simulated cytology 

tile test set over 5 random folds. 
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a
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ent proportion P o is P o = 

∑ N 
i =1 m i,i , KAPPA value K is then cal- 

ulated as follows: 

 = 

P o − P e 

1 − P e 
(5) 

The values of K range between -1 (worst predictor) and 1 (per- 

ect predictor), with 0 being equivalent to a random predictor. 

.2. Baseline classification methods 

In this subsection, we are going to study the performances of 

 standard classification and of two popular methods designed for 

rdinal regression. 

.2.1. Classification pipeline results 

We start by training a regular (softmax cross-entropy for loss) 

lassifier pipeline (see Fig. 15 ) on these simulated tiles. To deal 

ith the size of the images (80 0x80 0 pixels), we added a 7x7 max

ooling layer after the third block (inspired from “ROI Pooling” in 

en et al. (2015) ). We show, in Fig. 5 , that the confusion matrix

omputed on the 328 test images reveals an average overall accu- 

acy of 54.6% and a binary classification accuracy of 93.6%. 

We can observe in Fig. 6 the ROC curves for each class with 

n average mean AUC of 0.866, revealing that the network learned 

lmost perfectly the normal class (AUC of 0.99) at the expense of 

ther classes. The average quadratic KAPPA value is 0.784. 

These two figures highlight that the classifier makes mistakes 

etween carcinoma in situ samples and normal ones (this is once 

gain due to normal columnar cells, and we will confirm that in 

he next section using attribution). 

.2.2. Ordinal regression pipeline results 

In Cheng et al. (2008) , the authors present their pipeline to ad- 

ress ordinal regression problems. Instead of training classes one 

gainst the others, the method consists in benefiting from the or- 

er of classes to train one binary classifier per class to predict 

hether the input sample passes the level of each class or not. For 

ur problem it would be equivalent to train 5 classifiers. It is im- 

lemented by activating each pre-softmax neuron with a sigmoid 

ctivation thus outputting an independant score for each class (see 

ig. 15 ). The ground truth vector is [1, 0, 0, 0, 0] for normal class,
6 
1, 1, 0, 0, 0] for light dysplastic , and so on up to [1, 1, 1, 1, 1] for

arcinoma in situ samples. These labels will make the model learn 

ow to predict ordered scores (since every neuron with a lower 

ndex than the one of the ground truth class is expected to be ac- 

ivated). At inference, the predicted class is the last (in order of 

lasses) class to be predicted with a score above a decided thresh- 

ld (e.g. 0.5). 

We train a Resnet-101 with the ordinal regression pipeline on 

he simulated tiles dataset we created before. 

Fig. 7 shows the confusion matrix obtained. We report an aver- 

ge overall accuracy of 61.4%, an average binary normal / abnormal 

ccuracy of 93.7% and an average quadratic KAPPA value of 0.829 

sing ordinal regression pipeline. 
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Fig. 8. Resnet-101 “Soft Labels” pipeline average confusion matrix on simulated cy- 

tology tile test set over 5 random folds. 
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Fig. 10. Resnet-101 {classifier + regressor} average confusion matrix on simulated 

cytology tile test set over 5 random folds. 
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.2.3. Soft labels for ordinal regression pipeline results 

Another, more recent, method proposes to tackle this ordinal 

egression problem using “Soft Labels” ( Diax and Marathe, 2019 ). 

t simply consists in changing ground truth labels to be less criti- 

al than one-hot vectors. For that, positions of classes are defined 

e.g. [1, 2, 3, 4] for 4-ordered classes) and ground-truth labels are 

ncoded as a softmax of the negative distances (absolute value of 

he difference of the positions) between classes. For example, in- 

tead of having [0, 0, 1, 0] as ground truth label for class 3, we

efine the distance vector d as [2, 1, 0, 1], thus the ground truth 

abel is the softmax of negative distances,which is [0.0724, 0.1966, 

.5344, 0.1966] (see Fig. 15 ). 

We train a Resnet-101 with the “Soft Labels” pipeline on the 

imulated tile dataset (same random 5 folds). Fig. 8 shows the 

onfusion matrix obtained. We report an average overall accuracy 

f 61.5%, an average binary normal / abnormal accuracy of 94.4% 

nd an average quadratic KAPPA value of 0.832 using “Soft Labels”
Fig. 9. Illustration of classifier with regressi

7 
ipeline. This approach statistically improves ordinal regression ap- 

roach. 

.3. Proposed method: {classification + regression} pipeline results 

We also trained a Resnet-101 {Classification + Regression} archi- 

ecture as before on this dataset. 

Fig. 9 illustrates the method explained in Eqs. (1) and (2). 

.3.1. {Classification + regression} pipeline with linear distances 

First, regression constraint weights are set to be linear (e.g. [1, 

, 3, 4, 5]). 

Fig. 10 shows the confusion matrix which highlights that most 

amples are well classified and that, once again, we avoid predic- 

ion mistakes between normal and carcinoma in situ tiles. It gives 

n accuracy of 66.8%. Fig. 11 confirms that the classification is re- 

lly good for the carcinoma in situ and normal samples with a re- 

pective AUC of 0.96 and 0.99. The average mean AUC is 0.884. 
on constraint architecture and losses. 
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Fig. 11. Resnet-101 {classifier + regressor} average ROC curves and on simulated 

cytology tile test set over 5 random folds. 
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nterestingly, binary normal / abnormal classification also benefits 

rom this contribution, reaching an average accuracy of 94.5%. We 

an also report an average classification sensitivity of 98.4% along 

ith a specificity of 90.7%. The obtained average quadratic KAPPA 

alue is 0.837. 
Fig. 12. PPV evolution w.r.t. ratio between n

8 
We also report Positive Predicted Value (PPV or Precision) evo- 

ution with the increase of the ratio between the number of neg- 

tive samples and the number of positive samples in Fig. 12 . In- 

eed, we expect to have way more negative samples than positive 

amples in a real case study. As we explained, the goal is to focus 

n having no false negative samples to avoid missing critical cases, 

nd according to this requirement the highest the PPV the better. 

e extend this discussion in Section 5 , showing that we do have 

alse positive samples but in an acceptable proportion. 

.3.2. {Classification + regression} pipeline with sensitivity focus 

esults 

As explained in Section 1 , there is a need to prune “easy” nor- 

al cases that represent the vast (up to 93%) majority of cases, so 

edical doctors can focus on tricky abnormal cases. Nevertheless, 

e want to make sure that when a case is predicted as “normal”

t is the right prediction, i.e. sensitivity of 100% (no False Negative) 

o avoid medical doctors missing an “abnormal” case. 

For that we benefit from our regression constraint implemen- 

ation to add more “distance” between the “normal” class and 

he “abnormal” ones (sensitivity focus) as follows: 1 for normal 

amples, 4 for light dysplastic samples, 5 for moderate dysplastic 

amples, 6 for light dysplastic samples and 7 for carcinoma . This 

s implemented by changing the weights for the fixed weights 

ully connected layer of the regression constraint ( w r becomes 

1 , 4 , 5 , 6 , 7] ). Note that this shift of 3 between the “normal” class

egression score and the “light dysplastic” class regression score is 

urely hand-crafted. 

Fig. 13 shows the confusion matrix for 5 trainings with sensi- 

ivity focus. It gives an accuracy of 66% with a sensitivity of 99.5% 

oupled with a specificity of 91%. As expected, this change gives a 

etter sensitivity (highlighted in red in Fig. 13 ), but on the other 

and the model has to make a compromise that penalizes the 

verall accuracy. It improves the sensitivity by 1.1%. We also re- 
egative samples and positive samples. 
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Fig. 13. Resnet-101 {classifier + regressor} with sensitivity focus average confusion 

matrix on simulated cytology tile test set over 5 random folds; In red, false negative 

probabilities. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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ort that the KAPPA measure also benefits from this change with a 

alue of 0.870. It can be explained by the fact that we strengthen 

he regression constraint on the classifier by increasing the “dis- 

ance” between the “normal” class and the “abnormal” ones, thus 

he regression constraint pushes severity scores towards abnormal 

cores, thus avoiding false negative cases and resulting in an im- 

rovement of the binary accuracy and the sensitivity. 
Fig. 14. Overall accuracy, binary accuracy, KAPPA, sensiti

9 
.3.3. Pipeline comparison 

Fig. 15 illustrates pipelines to which our regression contraint 

ethod is compared and Fig. 14 shows the distribution of perfor- 

ances over the 5 random folds for each pipeline, i.e. the overall 

ccuracy, binary accuracy and KAPPA value over the 5 trainings. It 

hows that the regression constraint really improves the general 

erformances and particularly forces the network to learn features 

hat are discriminative regarding the severity. Mann–Whitney U 

est ( Nachar (2008) ) highlights a statistical improvement from the 

rdinal regression pipeline to the regression constraint one regard- 

ng overall accuracy value distribution over the 5 trainings with a 

-value of 0.005. 

.4. Integrated gradient for explanation maps: Weakly supervised 

ocalization and abnormality detection 

Now that we have a classifier (the {Classifier + Regressor} 

ipeline one) that works well on our simulated cytology tile 

ataset, we will check that our model relies on the right cells 

o make its decision by using the Integrated Gradient method 

presented in Section 3.3 ). The baseline image used is a white 

80 0x80 0) image since it is representative of the absence of ob- 

ects in the cytology context. Moreover it is classified by the model 

s being normal which shows that it is a good baseline for severity 

ttribution (since there are indeed no abnormality on it). 

.4.1. Qualitative results 

Fig. 16 shows the result of the Integrated Gradient (bottom) on 

est images (top). Two observations are interesting to note: first, 

or the normal tile example, all cells have been identified as con- 

ributing to the predicted label and the cell that has the strongest 

ttribution is the normal columnar one. This hints that the model 

as learned to identify these cells to avoid making the confusion 

ith carcinoma cells (that also have a high NCR). Secondly, it also 

ighlights that for abnormal tiles at least one of the most severe 
vity and specificity distributions for each pipeline. 
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Fig. 15. Illustration of classifier, ordinal regression and Soft labels architectures and losses. 

Fig. 16. Simulated tile examples (with colored ground truth cell boxes) and the associated attribution maps w.r.t. to the predicted class. 
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ells is clearly identified by the model as strongly contributing to 

he predicted label, and that cells that are abnormal but not the 

ighest severity seem to contribute a bit as well. More generally, 

e can notice that the model learns to find some cells that are 

iscriminative to make its prediction and some cells are just ig- 

ored. 

These qualitative observations, in addition to strengthening the 

onfidence in our model training and predictions to come, really 

ut forward the potential for medical support through localization 

nd more generally detection to guide diagnosis. 

Interestingly, when we run the integrated gradient process on 

mages that confused the simple classifier model (predicted nor- 
10 
al for a carcinoma in situ sample), we can observe, in Fig. 17 , that

he error is due to a normal cell (and more precisely the normal 

olumnar one at the top right of the image) while {classifier + re- 

ressor} model ignores this cell and classifies correctly this sample 

s being carcinoma in situ . This enforces the fact that the regression 

onstraint enables to focus on these difficult cases and to drive the 

raining towards discrimative and relevant features. 

In the previous section, attribution maps have proved to be use- 

ul for the interpretability of what has been learned by the model. 

hey also reveal the possibility to be used for explanatory localiza- 

ion. In the next section, we extend this approach by proposing a 
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Fig. 17. Image and attribution map for a carcinoma in situ sample that has been classified as normal by classifier and as carcinoma in situ by {classifer + regressor}. 

Fig. 18. Proposed three step process to localize the most contributing cells from 

the attribution map: binarization, closing and connected component. 
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ethod to localize and detect in a weakly supervised manner most 

bnormal cells in a region containing several cells. 

.4.2. Proposed method: weakly supervised localization of the most 

ontributing cell 

The previous qualitative results provide a hint for a potential 

ocalization (while no boxes were used during training). 
Fig. 19. Weakly supervised localization on simulated tile examples: box aroun

11 
To go from the attribution map obtained by Integrated Gradient 

o what we call ”candidate boxes”, the steps are: 

1. Binarize the attribution map (e.g. 128 threshold); 

2. Apply a morphological closing operation (e.g. using a 9 pixels 

disk structuring element); 

3. Identify individual objects using connected component labeling; 

4. Compute bounding boxes for each object labeled. 

Results for example tiles can be seen in Fig. 18 . 

Thus, after obtaining all candidate boxes, we first filter out 

oxes that are too small (under 50 pixels) then we select the most 

ontributing box by computing the density inside each box left. 

ig. 19 shows the resulting localization boxes associated with the 

lobal label prediction. 

The resulting weakly supervised localization accuracy is 80.4%. 

.4.3. Proposed method: weakly supervised abnormal cell detection 

We showed that we were able to localize pretty precisely the 

ell that contributes the most to the predicted label. But, as ex- 

lained before, the model has learned to focus on two or three 

ells to predict the label of the region and sometimes it seems to 

lso use abnormal cells of lower severity degrees to predict. For 

xample, in Fig. 16 (right) the model predicted correctly the class 

arinoma in situ and we can observe that it strongly relies on the 

wo carcinoma cells on the right but also uses the three cells (and 

ore particularly their nucleus) on the left that are abnormal (two 

ight dysplastic and one moderate dysplastic ) while ignoring the two 

ells in the middle that are indeed normal ones. Thus, we can en- 

er a context of “abnormality” detection and try to find abnormal 

ells. 

So, instead of keeping only the box with the highest density, 

e keep all candidate boxes (after size filtering) and point to the 

iddle of the box. 
d most contributing cell with color associated with predicted tile label. 
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Fig. 20. Weakly supervised abnormal cell detection examples: box around most contributing cells and point annotation on other highly contributing cells. 

Fig. 21. Resnet-101 classifier confusion matrix on real cytology 10X tile test set. 
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Fig. 22. Example of weakly supervised localization on real cytology 10X tiles; Im- 

ages and ground truth point annotation (left); Integrated gradients results (middle); 

Images and proposed localization results (right), in red most contributing cell and 

in green other(s) highly contributing cell(s). (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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We count a true positive (TP) if the point is inside an abnormal 

ox, false positive (FP) if it is inside a normal box, a true negative

TN) if a normal box has no point inside and a false negative (FN)

f an abnormal box has no point inside (which is expected given 

he fact that the model generally uses two or three cells to predict 

nd that a tile can have up to 12 abnormal cells). 

Thus, we count 501 TP along with 104 FP and 433 TN for 376 

N, which gives an accuracy of 66.1%. From this confusion matrix, 

e also derive a sensitivity of 57.1% and a specificity of 80.6%. 

ig. 20 shows some test images, their severity attribution map 

nd the associated detection. Additionally (and maybe even more 

ssentially), we show that in all cases where abnormal cells are 
12 
resent, we detect at least one, which ensures medical support ef- 

ciency. 

. Real clinical case study and integration in a pathologist 

orkflow 

.1. Clinical dataset and tile classification 

In this section, we discuss the performances of the proposed 

ethods on a real clinical dataset that includes artifacts and over- 

apping cells. We asked an expert cytopathologist to make her 
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Fig. 23. Results of Faster-RCNN object detection approach for cell detection; PR Curve (left); Images and ground truth annotations (middle); Images and detection (with 

abnormality score above 0.9) from trained Faster-RCNN (right). 

Fig. 24. Tile selection process to detect informative tiles; “background removal” result (left) and “sample selection” result (right). 
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iagnosis on 24 pap smears WSI and to mark some abnormal 

ells on abnormal slides. We extracted, by tiling where cells were 

arked, 568 “abnormal” images at 10X magnification, thus obtain- 

ng a binary classification dataset and more than 1900 “normal”

iles extracted from “normal” slides. 

We trained the same Resnet-101 classifier architecture (using 

egression constraint) using 80% of these data and evaluated the 

erformances on the 20% left (randomly splitted with regards to 

lides). We balance the train set regarding classes by sampling 

ore frequently “abnormal” samples that are underrepresented in 

ur dataset. 

Fig. 21 shows the confusion matrix obtained for 10X magnifi- 

ation on test images. It shows an accuracy of 82%, a sensitivity 

f 65.3% and a specificity of 92.5%. We also report a KAPPA mea- 

ure of 0.812 and an AUC of 0.991. Thus, with a reasonable ratio 

etween negative samples and positive samples of 100 and the av- 

rage number of tiles per slide around 50 0 0, using our system we 

xpect to have around 15 false positive tiles to review by experts 

n negative slides. 

Using integrated gradient, we computed attribution maps and 

pplied the post processing described in Section 4.4.2 to localize 

bnormal cells on “abnormal” tiles. In the case where another can- 
13 
idate box is 80% as dense (in terms of attribution) as the best 

andidate box, we also return this box as being an abnormality lo- 

alization. 

We report a localization accuracy of 32.8% (qualitative results 

btained can be observed in Fig. 22 ). 

This localization accuracy is quite satisfactory regarding the lo- 

alization context that is pretty complicated. Indeed, there are gen- 

rally around 15 cells per 10X region thus created, moreover there 

re artifacts as it can be observed on the third example. This local- 

zation accuracy also indicates the high number of FP detections. 

owever to our point of view, even when the localization is wrong 

see second example in Fig. 22 ), it still captures rather interesting 

ells (dark blue cell with high NCR). 

This kind of supervision remains weakly-supervised even with 

ells annotated by the pathologist since we never use cell local- 

zation at training time and we are going to show that we are 

ble to localize some cells. The pathologist needs only to annotate 

ew cells (which is much less tedious than annotating all abnor- 

al cells), and this proves sufficient for our method to predict the 

lass of the global tiles and localize abnormality. Typically training 

n object detection pipeline would require such a heavy annota- 

ion and would not give much better results. We completed anno- 
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Fig. 25. Histograms w.r.t. abnormal tile scores for tiles from 10 normal slides vs 10 abnormal slides. 

Fig. 26. Zoom (for abnormal class probability above 0.5) on the histograms w.r.t. abnormal tile scores for tiles from 10 normal slides vs 10 abnormal slides. 

14 
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Fig. 27. Qualitative results of the proposed method for computer-aided decision: Tile Selection, tiles classification, cell localization and slide-level aggregation for proposed 

diagnosis. 

Fig. 28. Impact of tile-level decision threshold on the number of tiles selected w.r.t. slide ground truth label. 
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ations of potential abnormality in tiles where abnormal cells were 

arked, thus reaching about 3.300 annotations and 568 fully an- 

otated tiles. We trained a Faster-RCNN ( Ren et al., 2015 ) model 

or object detection and obtained an area under Precision-Recall 

urve of 0.22 due to the high sensitivity that triggers a high num- 

er of FP detections. Moreover, our classification approach is twice 
15 
aster than the object detection approach. Quantitative and qual- 

tative results can be observed in Fig. 23 . Both figures highlight 

ow sensitive the model is by detecting too many cells with a high 

abnormality” probability (over 0.9 on the detections showed) and 

ow there is a compromise to make between precision and recall 

erformances (on the Precision-Recall curve). 
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Fig. 29. Impact of threshold on tile scores and on the number of selected tiles on 

the slide-level prediction. 
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.2. Proposed method: integration into pathologist workflow 

To validate the clinical interest of our work, we gathered 40 

ew slides for which only global diagnosis is known (20 “normal”

nd 20 “abnormal”) and we made a prediction on each tile of the 

ample. 

Our CAD tool starts with what we call “sample tile selection”

rocess that aims at selecting tiles that are part of the sample and 

ot digitalization artifact or background. It starts with a removal 

f all “flat” (non informative) tiles by computing the histogram of 

ach tile and considering as background the ones that have over 

5% of their histogram in a window size of 30 pixels, called “back- 

round removal”. Then, we select only neighbor tiles that form the 

iggest cluster, we call this “sample selection”. This process (results 

n Fig. 24 ) gives an average of number of tiles per slide of 3300 at

0X (with a minimum of 934 tiles and a maximum of 7223 tiles). 

Fig. 25 shows that most tiles are classified as being normal 

severity score between 0 and 0.5) regardless of the fact that the 

lide is “normal” or “abnormal”. This is expected since only some 

ells are abnormal on an abnormal slide. Obviously, false positive 

iles are expected but we relax highly the regions to analyze be- 

ore making decision, which could result in a significant gain of 

lide review time. 

Fig. 26 shows that significantly more tiles are classified as be- 

ng “abnormal” (severity score between 0.5 and 1) for “abnormal”

lides which enforces the confidence in the model. 

The whole computer-aided tool process and results are illus- 

rated in Fig. 27 where we can observe that 38 regions (on more 

han 2700 potentially before classification) have been classified as 

eing abnormal and that cells that made this decision have a high 

CR and chromatin condensation. 

For comparison, the Faster-RCNN we trained detects between 

0 0 0 and 10,0 0 0 cells per slides and there is no correlation be-

ween the number of cells detected and the label of the slides (i.e. 

here are no more abnormal cells detected on abnormal slides as 

n normal slides). 

Thus our work allows us to reduce the amount of tiles to an- 

lyze and can guide pathologists to make their decisions on some 

egions instead of having to screen the complete WSI. Moreover, 

he localization method enables to guide the review towards dis- 

riminative cells. These contributions might avoid false negative 

lides by directly proposing cells of interest and could make slide 

eview way faster by reducing the amount of data to process for a 

ytopathologist. In the next subsection, we extend this method by 

onsidering a simple aggregation to obtain slide-level predictions. 

.3. Proposed method: from tile-level predictions to slide-level 

iagnosis 

We propose to study the impact of the threshold used to de- 

ide whether a tile is abnormal or not on the number of tiles clas- 

ified as abnormal per slide. Fig. 28 shows the evolution of the av- 

rage number of tiles selected per slide w.r.t. the slide label and 

he threshold on abnormal class probability. It confirms that statis- 

ically our method enables to select more tiles on abnormal slides 

han on normal slides. 

Therefore, we propose to use this number of selected tiles as 

 predictive value for slide-label. For that, we compute accuracy 

nd specificity w.r.t. the threshold on abnormal probability and the 

hreshold on the number of selected tiles that triggers the abnor- 

al label for the slide. Fig. 29 shows that the accuracy varies be- 

ween 0.5 and 0.775 while specificity varies between 0.5 and 0.83. 

Finally, the best configuration is to threshold at 0.1 on tile 

cores (that is enough to remove the vast majority of normal tiles) 

nd to use a threshold of 30 tiles predicted as abnormal to de- 

ide that a slide is abnormal . This configuration gives an accu- 
16 
acy of 0.775 and a specificity of 0.83. We point out that, us- 

ng this configuration, there are in general around 100 tiles to re- 

iew on FP slides, which makes the correction by an expert fast 

nd guided (except an outlier normal slide that requires more than 

0 0 0 tiles to review which would be equivalent as reviewing the 

hole slide). 

. Discussions and conclusions 

In this work we showed that our proposed method (classifier 

nder regression constraint) can be applied to the new task of clas- 

ifying tiles from cytology images in the context of cervical can- 

er screening. We showed, using an attribution method, that our 

odel learned, under weak supervision, to find the cells respon- 

ible for the predicted label. We also showed that the proposed 

rchitecture outperforms a simple classifier and other state-of-the- 

rt methods for ordinal classification in terms of overall accuracy 

nd severity prediction. 

Aiming at providing a tool that helps practitioners, we success- 

ully tuned our model to achieve a sensitivity of 99.5% regard- 

ng normal tiles (almost never classify an abnormal tile as normal ) 

hile maintaining a binary accuracy of 95.2% and a good perfor- 

ance regarding severity stratification with a multi-class accuracy 

f 66%. Furthermore, we provide the user with a localization of the 

ause of the label up to cell level, which is an essential feature in 

rder to gain the confidence of the practitioner in the tool, and for 

his tool to be integrated in the current workflow of cytopatholo- 

ists. Besides, our attribution proposal can be used to detect rele- 
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ant cells without requiring experts to give extensive annotations 

t cell level. Finally, we propose to use these tile predictions to 

ake a performant slide-level prediction. 

These very encouraging results on tiles are a critical step to- 

ards an efficient and explainable Whole Slide Image classifier. 

he next step would be to design a system capable of aggregating 

n the order of 10 0 0 0 tiles while maintaining the same sensitivity,

inary classification and explainability. The ingredients needed for 

his challenge include a reliable pruning pre-processing to allevi- 

te the burden of testing all tiles followed by a suitable aggrega- 

ion method through which explainability can be safely propagated 

ack through each individual tile. 

We will also consider refining region-based results using our 

tate-of-the-art model trained directly on Herlev dataset that 

hould improve the results. 

Moreover, liquid-based cytology is widely used worlwide for 

rimary indication of other cancers such as urinary or thyroid can- 

er screening, which makes our work even more relevant medi- 

ally. 
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