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Automated Estimation of Regional Mean Transition
Times and Radial Velocities From Cine Magnetic
Resonance Images: Evaluation in Normal Subjects
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Purpose: To assess regional ventricular function via an ac-
curate and automated definition of functional parameters.

Materials and Methods: An automated method is proposed
that estimates reliable regional normalized mean transition
times (Fmc) and mean radial velocities (Vm) from cine images.
This approach combines a quantitative parametric imaging
method and an automated detection of the endocardial bor-
der, which is robust to the presence of papillary muscles and
nonhomogeneities within the left ventricular cavity. Steady-
state free-precession cine-magnetic resonance imaging (MRI)
of 36 healthy subjects was analyzed.

Results: The quality of the automated segmentation was
assessed on a subgroup of 20 subjects by comparing the
results with the manual contours traced by an expert. The
comparison of functional parameters estimated conse-
quently using the automated and the manual contours
yielded (y � 0.959x � 0.016, R � 0.964) for Fmc and (y �
0.883x � 0.505, R � 0.935) for Vm. On the entire group, Fmc

was equal to 0.392 � 0.069 and Vm to 5.4 � 2.3 cm/s.
Increasing values of the temporal parameter from the apex
to the base and larger values in the septal wall than in
lateral wall were demonstrated and were in accordance
with the physiology.

Conclusion: The proposed method ensures an automated
and robust assessment of regional wall motion parameters,
which could be clinically useful.
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THE EXCELLENT CONTRAST between the blood pool
and the myocardium obtained using steady-state free-
precession cine sequence (SSFP) enables a better endo-
cardial border definition and a lower interobserver vari-
ability of the assessment of the regional contraction
compared to turbo gradient-echo sequences (1). Clini-
cal assessment of the left ventricular (LV) segmental
function is based mostly on visual interpretation. Ac-
curate diagnosis requires the ability of the reader to
integrate efficiently both temporal and spatial informa-
tion on endocardial wall motion and myocardial wall
thickening. To be reliable, such a visual analysis re-
quires extensive training. Despite the high quality of
cardiovascular magnetic resonance (CMR) images, the
intra- and interoperator reproducibility in detecting re-
gional wall motion abnormalities remains far from op-
timal (2).

To reduce the variability of visual wall motion analy-
sis, quantitative postprocessing methods have been
proposed on magnetic resonance images (MRI) (3–6). A
parametric imaging method taking into account both
wall excursion and chronological features in wall mo-
tion (7) was adapted to short-axis SSFP cine MRI in
order to extract the segmental mean transition times,
and radial endocardial velocities directly from cine MR
images (8). A first evaluation has shown that mean
transition times increased and mean radial velocities
decreased in pathological segments when compared to
normal segments. However, the estimation of these
physiological parameters requires an accurate delinea-
tion of the endocardial LV border on the end-diastolic
image, which was achieved manually. Accordingly, the
main objective of the present study was to automate the
detection of the endocardial border in order to increase
the objectivity of the technique and its usefulness in a
clinical setting.

A large number of automatic and semiautomatic
procedures, based on various image processing ap-
proaches, have been proposed for LV segmentation
(9–14). Among them, active contour models, or
snakes, have received much interest. However, they
converge toward a local minimum and thus depend
on the initialization. To reduce this drawback, a new
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class of external forces called gradient vector flow
(GVF), which is characterized by a non-null attraction
even far from contours (15), has been used for LV
delineation (9,12). Despite this latter improvement,
this approach still does not take into account flow-
related signal loss and lack of clear delineation be-
tween the myocardium and adjacent anatomic struc-
tures such as papillary muscles. Accordingly, the
GVF snake approach was applied on images previ-
ously filtered using connected morphological opera-
tors (16).

This article describes the process, which combines
the automated detection of the endocardium border
with the parametric imaging-based quantification,
and the evaluation protocol used for its validation. A
subgroup of 20 subjects was used to assess the ac-
curacy of the automated segmentation. This was
achieved by comparing 1) the automated borders
against those manually traced by an expert, and 2)
the functional wall motion parameters, such as re-
gional mean transition times and radial endocardial
velocities, obtained using the automated contours
and then the manual contours. Finally, the auto-
mated process was applied to the whole study group
(n � 36), to estimate the functional parameters of
time and velocity, and to define their normal values
and their spatial variations.

MATERIALS AND METHODS

Population and Image Acquisition

After giving informed consent, 36 healthy subjects
(28 men, 8 women, mean age � 34 years, range �
13–59 years) were screened for personal and family
history of cardiovascular and pulmonary disease.
They had no cardiovascular risk factor, no known
acute or chronic disease, and no medication and all
were asymptomatic and had a normal clinical exam-
ination (normal ECG, normal LV and RV function). All
subjects underwent established techniques of cine
CMR for function using 1.5-T MR equipment (Signa
LX, GE Medical Systems, Milwaukee, WI) and 8-chan-
nel phased-array torso coil. Eight to 14 short-axis
slices were acquired using an SSFP sequence: fast
imaging employing steady-state acquisition (FIESTA).
These slices were planned perpendicular to the axis
joining the center of the mitral annulus and the
apex defined on two orthogonal views (4-chamber
and 2-chamber views) to include the entire left ven-
tricular myocardium. The following acquisition pa-
rameters were used: repetition time: 3.7–4 msec;
echo time: 1.6–1.7 msec; flip angle: 50°; view-per-
segment: 10–16; number of cardiac phases: 20–40
after view sharing; slice thickness: 8 mm; interslice
gap: 1 mm; pixel size: 0.7 � 0.7 to 1.7 � 1.7 mm2. The
temporal resolution ranged between 20 and 40 msec
including 13 subjects between 20 and 25 msec, 21
subjects between 25 and 35 msec, and 2 subjects
with 40 msec.

Estimation of the Functional Parameters
The whole process is summarized in Fig. 1.

Slice Selection

For each subject, an extreme basal slice in which the
entire LV cavity was surrounded by the myocardium,
and an extreme apical slice in which the LV cavity can
be visualized during the entire cardiac cycle, were de-
fined. Then all the slices, which are located between
these two extreme slices, were selected for analysis. For
each subject the included slices were visually assigned
into three categories: 1) apical (AP) slices; 2) mid-ven-
tricular or papillary muscles (PM) slices; and 3) basal or
mitral valve (MV) slices.

Area Selection

For each slice, an operator defined two points manually
on the end-diastolic image: P0 in the center of the LV
cavity, and P1 the anterior attachment of the right ven-
tricular wall to the LV. The field of view was reduced to
a square region centered on P0, the square side dimen-
sion was set to three times the distance between P0 and
P1. These two points were used to automatically define
six standardized segments [3]: anterior (A), anterolat-
eral (AL), inferolateral (IL), inferior (I), inferoseptal (IS),
and anteroseptal (AS) segments.

Parametric Analysis of Main Motion

This method (7) synthesizes the information contained
in the cine images corresponding to one cardiac cycle
into four parametric images related to the contraction
amplitude and timing. It is based on the modeling of the
time signal intensity curve P(x,y,t) of each pixel (x,y)
using a window function:

P�x,y,t� � AB�x,y�

� AV�x,y�.g�t, TON �x,y�,TOFF�x,y�� � e�x,y,t�. [1]

The parameter AB(x,y) refers to the signal intensity at
end-diastole, TON(x,y) is the time at which the pixel (x,y)
transitions from LV cavity into myocardium at the begin-
ning of the contraction over (x,y) implying a sharp de-
crease in signal intensity, TOFF(x,y) is the time at which the
pixel (x,y) transitions from myocardium into LV cavity at
the beginning of the LV relaxation over (x,y) implying a
sharp increase in signal intensity, and AV(x,y) is the vari-
ation of signal intensity caused by the transition of the
myocardium over the pixel (x,y) during the contraction
phase (Fig. 1b). The function g(t) is the window function
and e(x,y,t) is the error term. The four parameters were
estimated for each individual pixel using a fast algorithm
based on the least-square minimization of the modeling
errors (7), and were then stored into four parametric im-
ages. An additional image of mean transition time,
Tmc(x,y), which is related to the chronology of the endocar-
dial motion and in which higher values represent a de-
layed contraction was defined as:

Tmc � �TON � TOFF�/2 [2]

Finally, the trigger delay was added to the temporal
parameters to set the zero of the measurements to the R
wave.
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Automated LV Segmentation

The segmentation procedure was previously described
(16), only its principles and its implementation are
given here. The papillary muscles and the LV cavity
were first merged using connected operators (area
opening and area closing), resulting in a filtered image
which mostly contains flat and large regions. For the
area opening process, a size parameter � was defined
such as the filtered image contains only connected
components of area larger than � (17). A set of filtered
images was obtained by varying the value of � and was
segmented by GVF snakes (15), then the ratios between
the area defined by the segmentation and the corre-
sponding � were estimated. The value of � for which the
ratio was the closest to 1 (Fig. 1a) was defined as the
optimal value (16).

The GVF snake is a curve X(s) � [x(s),y(s)], s � [0,1]
that evolves through the spatial domain of an image in
order to achieve a balance between internal forces Fint

and external forces Fext:

Fint � �X	�s� � 
X		�s�

and Fext � �V��x,y� � �pP�x,y�, [3]

where � and 
 are weighting coefficients that control,
respectively, the elasticity of the contour and its rigid-
ity, and X	(s) and X		(s) denote the second and fourth
derivatives of X(s) with respect to s. P is a pressure force
orthogonal to the contour, and V� a GVF force that

depends on a regularization parameter � and which is
nearly equal to the gradient of the edge map f when it is
large, but forcing the field to be slowly varying in ho-
mogenous regions. The � coefficient controls the GVF
force and �p the pressure force.

A first contour was defined on the filtered images
using the point P0 for the initialization and the GVF
snake method with a high value of the rigidity param-
eter � � 1, 
 � 60, � � 1.7, �p � 0.4, and � � 0.3. Using
these parameters, this first segmentation was fre-
quently inside the true contour, with a distance up to
two or three pixels. Thus, it was used to initialize the
second segmentation performed on the original image
(ie, the unfiltered image) and searching between the
first obtained contour and its dilation of a few pixels, in
order to recover boundary information that might be
lost during the filtering process. In this step, lower
values of 
 � 1, �p � 0.1, and � � 0.1 were used, while
keeping � � 1 and � � 1.7 to refine the contour and to
pick up small details on the endocardium.

Estimation of Regional Mean Transition Times and
Mean Radial Endocardial Velocities

The contour estimated from the end-diastolic image
was used to limit the analysis of parametric images to
the region inside the contour. For each of the six seg-
ments, the mean transition time Tmc was defined as the
Tmc value in the largest “isotime” region inside the seg-
ment, an “isotime” region being a set of contiguous

Figure 1. Overview of the quantification process. a: Segmentation step. Left: effect of the size parameter (�) on the filtered
images, with homogeneous LV cavity obtained for the optimal value of �. Right: automated detection of the endocardial contour
on the end-diastolic image, using the filtering process and the GVF snake algorithm. b: Principles of the parametric analysis of
main motion and estimation of the two transition times TON and TOFF by modeling the time signal intensity variation in a fixed
pixel during a cardiac cycle with a window function. c: Quantification of the regional functional parameters. Left: estimation of
mean regional radial velocity (Vm) by combining the TON parametric image with a distance map estimated from the end-diastolic
endocardial contour. The linear regression of the dot plot extracted here from the anterior segment allows the estimation of Vm.
Right: mean transition time image from which segmental values of Fmc are extracted.
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pixels with the same value of Tmc. This parameter is
higher for a delayed contraction (8). To allow compari-
son between subjects, segmental mean transition times
were normalized by the RR interval duration (Fmc �
Tmc/RR). The combination of the parametric image TON

and a distance map estimated from the endocardial
border depicted on the end-diastolic image resulted for
each segment in a dotplot associating distances and
times (Fig. 1c). The slope of the linear regression of this
dotplot was defined as the mean segmental radial ve-
locity (8).

Evaluation Protocol and Statistical Analysis

Validation of the Segmentation Procedure

An experienced cardiologist drew manual contours us-
ing the MASS software (Medis Medical Imaging Sys-
tems, Leiden, the Netherlands) for a subset of 20 stud-
ies. The area similarity Sarea (16) between the automatic
and the manual segmentations was calculated. Fur-
thermore, maximal and mean distances between the
two contours (12) were estimated, as well as their stan-
dard deviations (SDs). Moreover, segmental functional
parameters were estimated using both manual and au-
tomated end-diastolic endocardial contours. Results
were compared using linear regression and Bland–Alt-
man analyses.

Assessment of the Range of Values for the Functional
Parameters

For the 1752 segments of the database (36 subjects,
with an average of 8 slices per subject), the values of Fmc

and Vm obtained with the automated method were an-
alyzed according to the location in terms of slice level
(AP, PM, MV), myocardial wall (A, AL, IL, I, IS, AS), and
temporal resolution. Statistical tests were performed
with JMP software (SAS Institute, Cary, NC), one-way
and factorial analysis of variance (ANOVA), followed if
necessary by protected t-tests, and Tukey’s HSD (hon-
estly significant difference) tests (18).

RESULTS

Validation of the Segmentation Procedure

Figure 2 shows an example of the manual and auto-
matic segmentations where papillary muscles were in-
cluded in the LV cavity. The visual observation of esti-
mated contours was an essential control step in the
estimation of the automated contours. In most cases
the standard parameter values given in the Method
section yielded good results. In the remaining cases (44
slices), which mostly included apical slices, these val-
ues yielded underestimated contours on the filtered
images. Thus, a lower value of 
 � 50 or higher value of
�p � 0.6 were used for an adequate expansion of the
snake. For the second step of the segmentation, the
parameters defined in the method section yielded a
correct solution, except in six subjects for which the
values were increased to 
 � 5 and �p � 0.3. These
contours were then used for the quantification, without
any manual correction.

For the 164 slices corresponding to the subset of 20
patients, the endocardial surfaces derived from the au-
tomated and the manually drawn contours were used
to perform a linear regression which resulted in (y �
1.002x � 8.6, R � 0.994), and a Bland–Altman plot that
resulted in bias, upper, and lower limits of 12, 158, and

133 mm2. The area similarity Sarea was equal to
0.91 � 0.04. Values of 2.8 � 1.1 mm and 1.1 � 1.0 mm
were estimated for, respectively, the maximum and
mean distances between the manual and automatic
contours.

In this subgroup (20 patients), the normalized mean
transition times Fmc and radial endocardial velocities Vm

were estimated using both manual and automatic con-
tours (n � 984 segments). Figure 3 shows the corre-
sponding linear regression and Bland–Altman plots.

Assessment of the Range of Values for the
Functional Parameters

The Fmc and Vm parameters were averaged for the 1752
segments corresponding to the 36 subjects resulting,
respectively, in 0.392 � 0.069 and 5.4 � 2.3 cm/s.
Figure 4 shows an example of a bull’s-eye display of Fmc

and Vm illustrating their spatial variations. ANOVA was
applied to determine the combined effects of the slice
level and of the myocardial wall on Fmc values. When
considering the six locations associated to myocardial
walls, the comparison of Fmc values using a protected
t-test indicated three different groups, with values be-
ing higher in inferoseptal and anteroseptal, intermedi-
ate in inferolateral and anterolateral, and lower in infe-
rior and anterior. Moreover, Fmc values showed an
increasing gradient from apex to base (Table 1). The
coefficient of variation was higher for Vm (43%) than for
Fmc (18%), but some significant trends could still be

Figure 2. Results of the automated segmentation (red) versus
the manual (green) segmentation for nine slice levels from the
apex (top left) to the base (bottom right) in one subject.
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observed: inferoseptal and anteroseptal walls had a re-
duced velocity (4.2 and 3.7 cm/s) when compared to
anterolateral and inferolateral walls (6.7 and 6.8 cm/s).
The basal slices also had reduced velocities when com-
pared to apical or mid-ventricular slices (Table 1).

ANOVA was performed to assess the effect of tempo-
ral resolution, slice location, and segment location on
regional mean radial velocities (Vm) and normalized
mean transition times (Fmc). This analysis indicated
that both slice and segment location had a significant
effect on Vm and Fmc (P � 10
3) while temporal resolu-
tion had a significant effect only on Fmc (P � 0.04).

DISCUSSION

The present study proposes a robust approach combin-
ing the detection of the endocardial border and a quan-
titative parametric imaging method to derive from stan-
dard cine MR images functional parameters related to
time and mean radial velocities of the endocardial mo-
tion.

The LV segmentation method takes into account the
presence of papillary muscles and the nonhomogeneity

of the cavity using morphological filters, which success-
fully merged various gray level zones into the cavity.
Thanks to the homogeneity of the filtered LV cavity, the
initialization of the GVF snake algorithm was performed
using a single point (P0). In addition, this homogeneity
renders the resulting segmentation robust according to
the location of the point P0. Indeed, as long as P0 was
placed inside the homogeneous part of the LV cavity in
the native image, the segmentation process was carried
out successfully. The parameter � used for the filtering
is sensitive to differences in LV cavity size; therefore,
the choice of the optimal � was performed indepen-
dently for each slice using an automated criterion
based on the variation of the estimate of the LV cavity
surface with the GVF snake according to � (Fig. 1). In
this first step, the GVF snake algorithm provided a
rough contour, which was thereafter refined using the
gradient information of the original image. In addition,
the GVF parameter settings were straightforward and
nearly the same for all the slices. Indeed, special set-
tings were required only for 15% of the 292 analyzed
slices.

Figure 3. Comparison of func-
tional regional parameters (n �
984) estimated with both man-
ual and automatic contours.
Linear regression analysis of
Fmc and Vm gives (y � 0.959x �
0.016, R � 0.964), and (y �
0.883x � 0.505, R � 0.935).
Bias, upper, and lower values
for the Bland–Altman analysis
are: 0, 0.035, and 
0.035 for
Fmc, 0.12, 1.7, and 
1.5 cm/s
for Vm.

Figure 4. Bull’s-eye repre-
sentation of normalized mean
transition times (left-hand side)
and radial endocardial velocities
(right-hand side) for one subject.
Larger values of mean transition
times are observed in inferosep-
tal and anteroseptal regions,
especially in basal slices. Con-
versely, reduced values of mean
radial velocities (displayed in
cm/s) are observed in those
regions.
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To allow a comparison with other studies, the quality
of the segmentation was expressed using different cri-
teria such as comparison of endocardial areas, area
similarity, and mean distances between contours. The
areas provided by the automated segmentation method
was in good agreement with those provided by the man-
ual tracing as indicated by a Bland–Altman bias of 12
mm2 and a linear regression that resulted in a slope
close to one and R � 0.994; this latter was equivalent to
the values reported in different studies (9,11,14). Fur-
thermore, the mean distance between the two contours
was equal to 1.1 � 1.0 mm for our dataset, which is
quite satisfactory when compared with 2.3 � 0.9 mm
(10), 2.5 � 1.2 mm (12), 1.2 � 1.3 mm (13), and 1.4 �
0.5 mm (14).

Using this segmentation, the quantification method
was automated. A comparison of the functional param-
eters estimated using manual and automated contours
was performed using both linear regression and Bland–
Altman analyses (Fig. 3), which resulted in a good
agreement.

Moreover, these parameters were estimated on the
entire study group and both ranges for normal values
and physiological differences between segments were
provided and were consistent with results previously
reported (8). Physiological differences in contraction
times were characterized by an increase in Fmc from
apex to base, with the highest values in the septal wall
as previously described (4). Mean radial endocardial
velocity ranged between 3.7 and 6.8 cm/s and were
consistent with those provided by Miyatake et al (19), ie,
5.1 � 1.0 cm/s in the posterior wall and slightly higher
than those obtained in another echocardiography study
(20) that ranged between 1.9 and 4.9 cm/s. This slight
overestimation was probably due to the differences in
the directions of measurements (along the ultrasound
beam in echocardiography and along the perpendicular
to the endocardial border in our approach). In addition,
our values showed the same trend as those described in
the literature with the lowest mean radial velocity val-
ues in the anteroseptal wall (20,21) and a decrease from
apex to base (5). Accordingly, the ability of our tech-
nique to detect small physiological delays encourages
its application in the context of myocardial ischemia
(22) to help in objective detection of LV dysfunction. In

such applications, increased values for mean transition
times and decreased velocities are expected, as previ-
ously shown on a small number of patients with myo-
cardial infarct (8).

In this study, only subjects with normal shape were
included. This is a limitation of the segmentation step
because distorted LV shapes would be more difficult to
segment. In most of LV distortions, especially in those
where the myocardium is visible and surrounds the LV
cavity, this difficulty should be minimized thanks to the
filtering step, which homogenizes the LV cavity, and to
the possibility to vary the parameters of the GVF snake.
Also, since visual control would be necessary, the pos-
sibility to manually correct the border is available.

Another limitation is that only subjects with normal
LV function were studied. Although the effect of tempo-
ral resolution on the quantitative measurements was
low when compared to the effect of slice and segment
location, the extension of our technique to pathological
cases would require acquisitions with high temporal
resolutions to be able to estimate mean radial velocities
in segments with reduced motion. However, establish-
ing segmental normal ranges of such functional param-
eters is a necessary step before extending the proposed
approach to the detection of regional wall motion ab-
normalities.

Finally, similar to all techniques that track endocar-
dial motion and/or estimate myocardial velocities, our
technique may be affected by cardiac translation. In
addition, the visualization of the parametric images in
which the color pattern would be distorted with the
presence of such motion could be helpful to discard
cases with an important global translation.

In conclusion, we developed an original and robust
segmentation approach and demonstrated its ability to
correctly depict the endocardial border. Its combination
with an automated parametric imaging of LV wall mo-
tion quantification increased its objectivity and there-
fore its usefulness in a clinical setting. The results of its
application on a large group of normal segments dem-
onstrated that functional parameters such as mean
transition time and endocardial velocity are sensitive
enough to detect normal physiological differences re-
lated to anatomical location. Therefore, these func-
tional parameters could be used as potential markers
for characterizing LV motion in the context of myocar-
dial ischemia.
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