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The interpretation of complex scenes in images requires knowledge regarding the objects
in the scene and their spatial arrangement. We propose a method for simultaneously seg-
menting and recognizing objects in images, that is based on a structural representation of
the scene and a constraint propagation method. The structural model is a graph represent-
ing the objects in the scene, their appearance and their spatial relations, represented by
fuzzy models. The proposed solver is a novel global method that assigns spatial regions
to the objects according to the relations in the structural model. We propose to progres-
sively reduce the solution domain by excluding assignments that are inconsistent with a
constraint network derived from the structural model. The final segmentation of each
object is then performed as a minimal surface extraction. The contributions of this paper
are illustrated through the example of brain structure recognition in magnetic resonance
images.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The interpretation of complex scenes in images often requires (or can benefit from) a model of the scene. This model may
provide information regarding the objects contained in the scene, as well as their spatial arrangement. The spatial layout
information is often crucial for differentiating among objects with similar appearances in the images, or disambiguating
complex cases. Examples occur in many domains, including medical imaging, in which structural knowledge can help in
the interpretation of the images. In magnetic resonance imaging (MRI), for instance, radiometry is often insufficient for rec-
ognizing individual anatomical structures, and their relative spatial configuration provides an important input into the rec-
ognition process [17]. Other examples occur in aerial and satellite imaging, robot vision, and video sequence interpretation,
among other fields. In this paper, we address the image interpretation problem as a joint problem of image segmentation and
object recognition, based on structural information. Although the focus of the paper is methodological and theoretical,
remaining as generic as possible, we illustrate the proposed method through the concrete example of 3D brain MRI
interpretation.

Graphs are often used to represent the structural information in image interpretation, where the vertices represent ob-
jects or image regions (and may carry attributes such as their shapes, sizes, and colors or gray levels), and the edges carry the
structural information, such as the spatial relations among objects, or radiometric contrasts between regions. Although this
type of representation has become popular in the last 30 years [18], a number of open problems remain in its efficient imple-
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Fig. 1. Overview of the proposed approach for the brain structures example. For instance, the solution space of the left caudate nucleus (CNl) is reduced
based on the constraint that ‘‘the left caudate nucleus (CNl) is exterior (i.e. to the right in the image) to the left lateral ventricle (LVl)’’.
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mentation. In one type of approach, the graph is derived from the image itself, based on a preliminary segmentation into
homogeneous regions, and the recognition problem is expressed as a graph matching problem between the image and model
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graphs, which is an annotation problem. However this scheme often requires solving complex combinatorial problems [18].
Improvements can be achieved by suppressing iteratively inconsistent annotations using a constraint propagation proce-
dure, as proposed e.g. in [50,58] for simple geometrical figures or in [31,56] for the annotation of image segmentations. How-
ever, the constraint propagation procedure does not guarantee a unique annotation. Moreover, all of these approaches
assume a correct initial segmentation of the image. However, the segmentation problem is a known challenge in image pro-
cessing, to which no universal solution exists. The segmentation is usually imperfect, and no isomorphism exists between
the graphs being matched. An inexact matching must then be found, for instance by allowing several image regions to be
assigned to one model vertex or by relaxing the notion of morphism to that of fuzzy morphism [14,46]. For example, pre-
vious studies [19,20] employ an over-segmentation of the image, which is easier to obtain. A model structure (i.e. a graph
vertex) is then explicitly associated with a set of regions, and the recognition problem is expressed as a constraint satisfac-
tion problem. To overcome the complexity issue, a weaker version of the model relations (encoded in the edges) is consid-
ered, and the problem is solved using a modified AC-4 propagation algorithm [38]. Other recent approaches, still based on a
preliminary segmentation, have revisited the grammatical approach to pattern recognition [48,57,65,66], or employed prob-
abilistic models [27,61,64] or ontologies [29,44].

To deal with the difficulty of obtaining a relevant segmentation, the segmentation and recognition can also be performed
simultaneously. For instance, in the method proposed in previous studies [8,17], the structures of interest are segmented and
recognized sequentially, in a pre-calculated order [23]. The structures that are easier to segment are considered first and
adopted as reference objects. The spatial relations to these structures are encoded in the structural model and are used as
constraints to guide the segmentation and recognition of other structures. Due to the sequential nature of the process,
the errors are potentially propagated. Backtracking may then be needed, as proposed in [23].

To overcome the problems raised by sequential approaches while avoiding the need for an initial segmentation, we pro-
pose an original method that still employs a structural model, but solves the problem in a global fashion. Our definition of a
solution is the assignment of a spatial region to each model object, in a way that satisfies the constraints expressed in the
model. We propose a progressive reduction of the solution domain for all objects by excluding assignments that are incon-
sistent with the structural model. Constraint networks constitute an appropriate framework for both the formalization of the
problem and the optimization. An original feature of the proposed approach is that the regions are not predetermined, but
are instead constructed during the reduction process. The image segmentation and recognition algorithm therefore differs
from an annotation procedure, and no prior segmentation of the image into meaningful or homogeneous regions is required.
This feature overcomes the limitations of many previous approaches (such as [19,20]). More precisely, a constraint network
is constructed from the structural model, and a propagation algorithm is then designed to reduce the search space. Finally, an
approximate solution is extracted from the reduced search space. This procedure is illustrated in Fig. 1, using the interpre-
tation of a brain MRI as an example. Once the propagation process terminates, the solution space is typically reduced sub-
stantially for all of the model structures. The final segmentation and recognition results can then be obtained using any
segmentation method that is constrained by this solution space.

In Section 2, we summarize the main components of the structural model. Some preliminaries on constraint networks are
reviewed in Section 3. The novel contributions of this paper are described in Sections 4 and 5, extending our preliminary
work in [42]. We describe the expression of the constraints in detail, and propose propagators that are adapted to each type
of constraint. The power and tractability of the proposed approach are illustrated using both a synthetic example and a real-
world example, in which anatomical brain structures are recognized in MR images (Section 6).
2. Graphical structural model

The structural model used in this paper was developed previously in [8,17,29]. The model consists of a graph in which the
vertices represent objects, and the edges encode structural relations and relations describing the radiometric contrasts. Both
the vertices and the edges have attributes. As an original feature of this model, spatial relations are represented using fuzzy
models [5], which define the semantics of the relations, and enable us to link abstract concepts to spatial representations
[29]. This approach helps filling the semantic gap between symbolic information and the visual percepts that are extracted
from the images.

We now describe this model in the context of the brain structures example (these structures are then the objects to be
recognized in a medical image). Brain anatomy is commonly described in a hierarchical fashion [10,35], and can be formal-
ized using ontologies. One of these ontologies is the Foundational Model of Anatomy (FMA) [51]. In addition, the spatial orga-
nization of the anatomical structures is a major component of linguistic descriptions of the brain anatomy [28,60], and has
therefore been added to the existing ontology [29]. Based on these sources of knowledge, an attributed hierarchical graph
describing the brain anatomy has been proposed in [16,30]. The relations in this model include spatial relations, such as
topological, distance and direction relations, according to the hierarchy of spatial relations proposed in [32], as well as radio-
metric relations. Although the radiometry of each structure in an MR image may vary depending on the acquisition, the con-
trast between structures is quite robust and stable for a given acquisition protocol.

This model is particularly relevant because the overall structure of the brain is quite stable, while the shapes and sizes of
the individual structures are prone to substantial variability. The fuzziness of the representations makes it possible to handle
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the imprecision and limited variability of the relations, even in pathological cases. Brain imaging is therefore an ideal exam-
ple through which to illustrate the proposed structural approach.
3. Some preliminaries on constraint networks

A large body of research has been dedicated to the topic of constraint networks, particularly in artificial intelligence and
operational research, for problems such as planning, recognition of segmented images [19,50,58], and image segmentation
[34]. In this paper, we demonstrate the feasibility of model-based image interpretation without any preliminary segmenta-
tion, using constraint networks.

In this section, the main definitions and notations adopted in the sequel of this paper are provided. Comprehensive sur-
veys of constraint networks and constraint propagation can be found for instance in [3,52].
3.1. General definitions

A constraint network is defined by a triplet N ¼ hv;D; Ciwhere: v = {x1, . . . ,xn} is the set of variables in the problem, and D
is the set of domains associated with those variables. Each variable xi 2 v takes values in the domain DðxiÞ, and C is a set of
constraints. Each constraint C 2 C is a relation defined on a set of variables vars(C), such that vars(C) # v. A relation is then a
subset of the Cartesian product of the domains associated with the variables vars(C).

We denote by I = {(x1,v1), . . . , (xk,vk)} an instantiation on the variables Y = {x1, . . . ,xk} # v. An instantiation I is valid if
8xi 2 Y ; v i 2 DðxiÞ, the domain associated with xi. For Y0 # Y, I[Y0] denotes the projection of I onto Y0. An instantiation I sat-
isfies a constraint C such that vars(C) # Y if I[vars(C)] 2 C, and I is locally consistent if I is valid and for each constraint C 2 C
such that vars(C) # Y, I satisfies C.

A solution of the constraint network N is a locally consistent instantiation I on v. We denote the set of solutions of N by
sol(N). A constraint network is said to be satisfiable if it has at least one solution.
3.2. Constraint propagation

Various efficient backtracking algorithms [26,52] have been proposed for solving constraint satisfaction problems. How-
ever, many problems cannot be solved using these algorithms because of the complexity of the problem. To simplify a prob-
lem, a constraint propagation algorithm can be applied first. It can be used to iteratively transform an initial constraint
network N into a simpler network N0 with the same solutions by: (i) reducing the domains of the variables, and (ii) inferring
new constraints.

Let N ¼ hv;D; Ci. The set PND of all domain-based tightenings of N is the set of networks fN0 ¼ hv;D0; Cig such that D0 #D.
We denote the partial ordering on PND associated with the domain inclusion relation by 6N. The set Psol

ND is the subset of net-
works in PND that present the same solutions as N, i.e. 8N0 2 Psol

ND; solðN0Þ ¼ solðNÞ. Psol
ND has a least element denoted by GND,

whose domains contain only values that belong to a solution. Because the computation of GND is NP-hard, domain-based con-
straint propagation is used to determine the smallest possible element of Psol

ND in polynomial time. This procedure iteratively
removes values that cannot belong to a solution by, for instance, applying propagators. A propagator f is an operator asso-
ciated with a constraint C 2 C. It tightens the domains ð8N0 2 PND; f ðN0Þ 2 PN0DÞ regardless of the other constraints. A propa-
gator f is correct if 8N0 2 Psol

ND; f ðN0Þ 2 Psol
N0D, increasing if 8N1;N2 2 PND; N1 6N N2 ) f ðN1Þ 6N f ðN2Þ, and idempotent if

8N0 2 PND; f ðf ðN0ÞÞ ¼ f ðN0Þ. A constraint propagation process that iteratively applies a set of propagators ends when no prop-
agator can reduce a domain. If the propagators are increasing, which is generally the case, then the result does not depend on
the order of application of the propagators, and is called the least fixed point. These properties are therefore important, and
will be checked for the proposed propagators.

The propagators are generally associated with a notion of local consistency. For instance, an arc consistent [36] propaga-
tor associated with a constraint C removes all values that are not arc consistent with C with respect to the current domains.
The constraint C is then arc consistent in D. Certain notions of local consistency, such as path consistency [39], are more
restrictive, whereas notions such as bound consistency are more permissive and lead to cheaper propagators. Several defi-
nitions of bound consistency have been proposed [3,15]. For instance for variables taking values in Z; D is bounds(Z)-con-
sistent with the constraint C if for each xi in vars(C), the bounds of the domain, infv i2DðxiÞðv iÞ and supv i2DðxiÞðv iÞ, have a

support on C in DI , where DI are the domains represented as intervals: 8xi 2 v; DIðxiÞ ¼ ½infv i2DðxiÞv i; supv i2DðxiÞv i�.
A notion of local consistency / is stable under union if for all /-consistent networks N1 ¼ hv;D1; Ci and N2 ¼ hv;D2; Ci,

the network N0 ¼ hv;D1 [ D2; Ci is /-consistent. If / is stable under union then for all N ¼ hv;D; Ci;/ðNÞ ¼
hv;[fD0 #Djhv;D0; Ci is /-consistentg; Ci is /-consistent and is knows as the /-closure of N. It can be shown that /(N)
presents the same solutions as N. It can be obtained by iteratively removing the values that do not satisfy /.
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3.3. Constraint networks on sets

Some problems involve variables that take subsets of a base set U as their values. Their domain is then a subset of PðUÞ,
whose cardinality is 2jUj. Problems with such domains are generally intractable, and compact representations have therefore
been proposed. For instance, the domains can be represented as set intervals [25,47], as follows:
DðxÞ ¼ ½A;B� ¼ fE 2 PðUÞjA # E # Bg with A;B 2 PðUÞ. A constraint C is then said to be bound consistent if "xi 2 vars(C),
Fig. 2.
bound,
\fv i 2 DðxiÞg ¼ \fv i 2 DðxiÞjðxi;v iÞ has a support on C in Dg;
[fv i 2 DðxiÞg ¼ [fv i 2 DðxiÞjðxi;v iÞ has a support on C in Dg:

�

This representation is simple and compact, but it has limited representation power. Alternative approximate [24,53] or
exact representations [33] have therefore been proposed.
4. Representing the segmentation and recognition problem as a constraint network

In this section, we propose a novel way to express the image interpretation problem. This approach is an original contri-
bution, and in contrast with previous methods, it does not require any prior segmentation of the image to be interpreted.

Let I : X ! N� be an image whose spatial domain X is a subset of Zd, where d is typically equal to 2 or 3. We wish to obtain
regions in X for a set of n objects v = {Oiji 2 [1 � � � n]} that are visible in the image; these objects are the variables in our prob-
lem. As the image I provides a discrete view of the continuous world, the regions cannot be represented accurately as sub-
sets of X. The digital sampling and artifacts induced by the acquisition cause imprecision in I on the object boundaries. We
therefore represent the regions as fuzzy subsets of X [62,63]. The variables Oi in our problem are then represented by fuzzy
subsets li of X (i.e. li:X ? [0,1]). The set of all fuzzy subsets of X is denoted by F .

The domainsD ¼ fDðAÞjA 2 vg associated with the variables are then subsets of F (DðAÞ#F ). If the problem is satisfiable,
then the solutions are among these subsets. An example of the domain for the frontal horn of the left lateral ventricle is dis-
played in Fig. 2. This small domain contains six fuzzy sets. The third one is the desired solution. However, this domain is not
representative of the domains that we typically consider. In fact, the cardinality of F depends exponentially on jXj, and its
size is kjXj where k is the number of discrete levels used to represent the membership degrees, and the domains can be any
subset of F . We therefore use two bounds to approximate each domain (Section 4.1).

Constraints are obtained from the structural model (see Section 2). For instance, if the model contains the relation ‘‘A is to
the right of B’’, then the recognition process must obtain an instantiation {(A,l1), (B,l2)}, where A and B represent structures
of the model, satisfying the constraint Cdir

A;B, i.e. ðl1;l2Þ 2 Cdir
A;B. We denote these constraints by C, and their detailed definitions

are provided in Section 4.2.
The segmentation and recognition problem is represented by a constraint network N ¼ hv;D; Ci and we wish to obtain a

solution of N, that is, a consistent instantiation of all variables in v, that satisfies all of the constraints. We assume that the
problem is satisfiable, which means that such a solution exists. In fact, the model presented in Section 2 is designed to be
generic and capable of handling normal anatomical variability. However, pathological cases may differ significantly from
the normal anatomy, and specialized modeling of the pathologies may therefore be necessary to handle such cases.

The cardinality of the search space is kjXj�jvj, where jXj is approximately 107 for a typical MRI volume and jvj is the num-
ber of structures in the model. Clearly, a backtracking algorithm cannot be applied. To obtain a solution, we first simplify the
constraint network using a constraint propagation algorithm that removes as many inconsistent values as possible from the
domains, according to the constraints. The propagation algorithm obtains the smallest possible element of Psol

ND in polynomial
time. For this purpose we propose propagators that are related to each constraint in Section 4.2, and the constraint propa-
(a) Axial slice of a brain MRI and outline of the frontal horn of the left lateral ventricle (LVl). (b) A domain of LVl that contains six fuzzy sets. (c) Lower
LVl, and upper bound, LVl.



6 O. Nempont et al. / Information Sciences 246 (2013) 1–27
gation algorithm sequentially applies these propagators (Section 4.3). The propagators corresponding to each constraint are
described in detail in Section 5.

4.1. Representation of the domains

As the sizes of the domains may vary exponentially with the number of pixels jXj, a compact representation is required. In
[45], these domains are represented by their minimal bounding boxes. This representation is very compact, but it cannot
accurately represent the shapes of the objects, which limits the efficiency of the constraint propagation algorithm.

As mentioned in Section 3, the domains can in some cases be efficiently represented by their bounds, with respect to a
partial ordering on the domain. With the usual partial ordering on fuzzy sets,1 denoted by 6; ðF ;6Þ is a complete lattice.
Therefore, every subset of F has an upper bound and a lower bound that belong to F . The upper bound A of the domain
DðAÞ is therefore defined as follows: A ¼

W
fm 2 DðAÞg, where 8x 2 X; AðxÞ ¼ supm2DðAÞmðxÞ. This bound is an over-estimation of

the target fuzzy set lA. Similarly, we define the lower bound A as follows: A ¼
V
fm 2 DðAÞg, where

8x 2 X; AðxÞ ¼ infm2DðAÞmðxÞ. This bound provides an under-estimation of lA.

Definition 1. An interval of fuzzy sets ðA;AÞ, defined by a lower bound A and an upper bound A, is the set of elements of F
that lie between these bounds, according to the partial ordering 6: ðA;AÞ ¼ fl 2 FjA 6 l 6 Ag.

If A and A are the bounds of a given domain DðAÞ, then the interval ðA;AÞ includes DðAÞ. As a trivial representation of the
domains is not feasible, we represent the domains of our constraint network as intervals. We now write N ¼ hv;DI; Ci, where
DI are domains represented as intervals.

These definitions are illustrated in Fig. 2 for the frontal horn of the left lateral ventricle LVl (a). A tiny domain DðLVlÞ of LVl
that contains six values is shown in (b). The bounds of this domain are shown in (c), and we have DðLVlÞ# ðLVl; LVlÞ. The rep-
resentation of a domain by its bounds only is far less accurate than a representation as a subset of F . However, this bounds
representation provides a good trade-off between the complexity of the representation and its accuracy.

The constraint propagation algorithm iteratively tightens the domains by computing an increasingly small upper bound and
an increasingly large lower bound. If a given domain ðA;AÞ satisfies AiA during the propagation process, then this domain is
empty, and we conclude that the problem is not satisfiable. By convention, an empty interval is represented by ð1F ;0F Þ, where
0F is the least element of F (a fuzzy set that is equal to 0 everywhere) and 1F is the greatest element (equal to 1 everywhere).

4.2. Definition of the constraints

The constraints are obtained from the structural model. We associate a propagator with each constraint C, i.e. a mapping
fC : Psol

ND ! Psol
ND that tightens the domains by removing values that are inconsistent with respect to C. Because the domains are

represented as intervals, we rely on a local consistency criterion, which is weaker than arc consistency, similar to bound set
consistency or bounds(Z)-consistency.

Definition 2. A constraint C isBSF -consistent (BIF -consistent) inDI if the upper (lower) bound of the domain of each variable
in vars(C) can be obtained as the union (intersection) of all of the values in the domain with a support on C inDI : 8Ai 2 varsðCÞ,
Ai ¼

W
fl 2 ðAi;AiÞjðAi;lÞ has a support on C in DIg ð8Ai 2 varsðCÞ;Ai ¼

V
fl 2 ðAi;AiÞjðAi;lÞ has a support on C in DIgÞ. The

constraint C is BF -consistent in DI if it is both BIF -consistent and BSF -consistent. A constraint network is BF (BSF , BIF )-
consistent if all constraints are BF (BSF ,BIF )-consistent.

The BF -closure of the initial constraint network N ¼ hv;DI; Ci can be obtained using propagators associated with the con-
straints. For this purpose, we associate a correct and BF -consistent propagator fC with each constraint C.

For any constraint C, we define a generic BF -consistent propagator f gen
C as follows:
1 Let
f gen
C : Psol

ND ! Psol
ND

hv;DI; Ci# hv;DI 0; Ci;
such that 8Ai 2 varsðCÞ; DI 0ðAiÞ ¼ ðAi
0;Ai

0Þ with:
Ai
0 ¼
^
fl 2 ðAi;AiÞjðAi;lÞ has a support on C in DIg;

Ai
0 ¼
_
fl 2 ðAi;AiÞjðAi;lÞ has a support on C in DIg:
This propagator is not tractable in general. However, for the considered constraints, a simple and computable expression
can be derived. In the sequel, a propagator fC will be described as follows:
hvarsðCÞ;DI; Ci
hvarsðCÞ;DI 0; Ci

;

l; m 2 F , l 6 m if "x 2 X, l(x) 6 m(x).



Fig. 3. A generic propagation algorithm.
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where DI and DI 0 are the domains associated with the set of variables vars(C) and DI 0
6 DI .

Before presenting the detailed definitions of the constraints, we briefly describe the constraint propagation process and
provide an illustrative example.

4.3. Constraint propagation

The initial network, N0 ¼ hv;DI; Ci, is derived from the structural model. The domains are initialized as ð0F ;1F Þ. If some
structures have already been extracted, then the domains of these structures are reduced to singletons, and their upper and
lower bounds are then equal.

We calculate the BF -closure of N0. This is achieved by iteratively applying the BF -consistent propagators associated with
the constraints. Let F ¼ ffC jfC is BF -consistent and C 2 Cg be the set of propagators, and let fC be the function used to com-
pute the BF -closure of the network hv;DI; Ci.

As the propagators fi do not necessarily commute, the propagation is not achieved through a unique application of each
propagator but rather through iterative applications of the propagators until convergence is reached. Because the propaga-
tors are monotonic, the network obtained at convergence is unique and does not depend on the order of application of the
propagators. A generic classical algorithm, belonging to the class AC-3, is presented in Fig. 3. Other algorithms could also be
used within the proposed framework; what is important and new is the application of the algorithm to well-defined prop-
agators with the required properties, as discussed in the next section. An improvement of this generic algorithm for im-
proved speed is proposed in Section 6.

In the following development, several propagators are defined, some of which are only BSF -consistent, meaning that they
allow only the upper bound to be optimally updated and leave the lower bound generally unchanged. Indeed, we did not
obtain cost-efficient BF -consistent propagators for every constraint. However the constraints are still applied in the pro-
posed algorithm, and the BF -closure of N0 is therefore not computed exactly. Practically speaking, the utilized propagators
differ from the optimal ones only in very specific cases, and we nearly obtain the BF -closure. This way to proceed is also
relevant for two reasons: (i) we introduce a partition constraint below, and the associated propagator efficiently handles
the lower bounds; (ii) the final segmentation algorithm requires mainly the upper bound to be as focused as possible.

Fig. 4 illustrates this algorithm for four variables: the brain (Br), left lateral ventricle (LVl), left caudate nucleus (CNl) and
left internal capsule (ICl). Initially, no assumptions are made regarding the objects to be recognized. The associated domains
are therefore F and are represented by the bounds ð0F ;1F Þ (a). In this example, we assume that the brain has already been
segmented, as a fuzzy subset lBr. Its domain is initialized as a singleton and is represented by the bounds (lBr,lBr) (b). We
then iteratively apply the propagators associated with the constraints (c–j), to gradually update the domains. Each propaga-
tor can be applied several times (each time the domain of one of the propagator variables changes, the propagator is added to
the list G of propagators to update). The process terminates when the network is stable for all of the propagators.

5. Constraint and propagator definitions

This section describes the constraints and associated propagators in detail. The constraints include topological and metric
relations, which have been shown to be useful in spatial reasoning [32], and gray level contrasts, which comprise the basic
information in the images. These relations are those used by neuro-anatomists to describe the brain, and their interest and
usefulness in image recognition has been proved in our previous work based on sequential recognition methods [8,17,23,29].
It is also important that the chosen constraints be representable in the image domain. The set of constraints can of course be
expanded, as appropriate for the application.

Our experiments have demonstrated that all of the constraints are useful. Some constraints play specific roles in the
reduction of the domains. For instance, the contrast constraint provides the necessary data fidelity term, which makes it
possible for the algorithm to run on any specific case. The partition constraint allows the lower bound to be modified, while
the other constraints primarily control the upper bound. The connectivity and volume constraints are dealing with the shape
information, but they do so in a sufficiently smooth fashion to allow for flexibility in pathological cases (no true shape
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Fig. 4. First iterations of the propagation algorithm.
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information is included for this reason). Furthermore, additional constraints can be added to hasten the convergence, such as
requiring that all objects be restricted to a bounding box within the brain, thereby reducing the spatial domain to be
explored.

For each constraint, we specify the mathematical model and demonstrate the construction of the associated propagator in
the sequel. Although the chosen models involve fuzzy sets, the constraints are strict. Proofs of the correction, idempotence
and consistency properties of the propagators can be found in [41].

5.1. Definition of the inclusion constraint and associated propagator

An inclusion relation between two structures A and B is satisfied if the region associated with A belongs to the region
associated with B. This inclusion relation differs from subsethood measures, as defined in previous studies [13,59]. If the
structural model contains an inclusion relation, we add the following constraint to the network.

Definition 3 (Inclusion constraint). The constraint Cin
A;B is associated with the inclusion relation of A in B. This constraint

ensures that varsðCin
A;BÞ ¼ fA;Bg and:
Cin
A;B : DðAÞ � DðBÞ ! f0;1g

ðl1;l2Þ#
1 if l1 6 l2;

0 otherwise:

�

A valid instantiation I = {(A,l), (B,m)} is consistent with respect to Cin
A;B if l 6 m. Conversely, an instantiation that does not

satisfy this condition is said to be inconsistent and cannot be extended to a solution. Therefore, a value of DðAÞ (or DðBÞ) that

belongs exclusively to inconsistent instantiations cannot belong to a solution. The propagator associated with Cin
A;B transforms

the constraint network by removing as many inconsistent values as possible from DðAÞ and DðBÞ. This removal process re-
duces the solution space and, in turn, the computational cost of the subsequent decision procedure.

The propagator then updates the bounds of the domains to remove inconsistent values and render Cin
A;BBF -consistent. Let

us denote the bounds of the set of values of DIðAÞ ¼ ðA;AÞ that are consistent with respect to Cin
A;B by Ac and Ac:

fl 2 ðA;AÞj9m 2 ðB;BÞ;Cin
A;Bðl; mÞ ¼ 1g. The associated propagator must obtain a domain ðA0;A0Þ such that A 6 A0 6 Ac and

Ac 6 A0 6 A, with A0 and A0 being as close as possible to Ac and Ac. Because we have:
Ac ¼
_
fl 2 ðA;AÞj9m 2 ðB;BÞ;l 6 mg

¼
_
fl 2 ðA;AÞjl 6 Bg ¼

_
fl 2 FjA 6 l 6 A ^ Bg

¼ A ^ B if A 6 A ^ B;

0F otherwise;

(

Ac can be obtained at a low computational cost. We therefore define a propagator that ensures that A0 ¼ Ac . Similar updating
can be performed on B and similar considerations will be used in the sequel to define the propagators associated with other
constraints. In this paper, we use ^ = min and _ = max because of their idempotence property.

Definition 4 (Propagator for the inclusion constraint). The propagator fCin
A;B

associated with the inclusion constraint of A in B is
defined as follows:
A;B; ðA;AÞ; ðB;BÞ; Cin
A;B

D E
A;B; ðA;A ^ BÞ; ðB _ A;BÞ; Cin

A;B

D E
Proposition 1. The propagator fCin
A;B

is correct, idempotent and BF -consistent.

The propagator associated with the inclusion constraint Cin
LVl;Br of the left lateral ventricle (LVl) in the brain (Br) is illus-

trated in Fig. 5. Initially, LVl and Br take values of 1F and 0F , respectively. The application of the propagator fCin
LVl;Br

updates
both bounds: LVl0 ¼ 1F ^ Br ¼ Br and Br0 ¼ 0F _ LVl ¼ LVl.

5.2. Directional relative position constraint

To model a directional relation such as ‘‘the caudate nucleus (CNl) is exterior to the lateral ventricle (LVl)’’ (to the right in
Fig. 6b), we rely on a fuzzy mathematical morphology approach (see [5] and references therein). For a detailed description of
fuzzy mathematical morphology, and the definition and properties of fuzzy dilation in particular, we refer the reader to [6,9],
for example. These properties are derived primarily from the underlying complete lattice framework [7,40]. Let us only recall



Fig. 5. Illustration of the propagator fCin
LVl;Br

. The domains ðLVl; LVlÞ and ðBr;BrÞ become ðLVl0; LVl0Þ and ðBr0;Br0Þ.

CNlLVl

(a) (b) (c)
Fig. 6. Illustration of the directional relation ‘‘the left caudate nucleus (CNl) is to the right of the left lateral ventricle (LVl)’’ on an axial slice (b). (a)
Structuring element m associated with the relation. (c) Fuzzy set representing the points to the right of LVl.
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the definition of the fuzzy dilation of l by a structuring element m: "x, dm(l)(x) = supyt(l(y),m(x � y)), where t is a t-norm. In
this context, the spatial relation is characterized by a direction ud

�! and two angles k1 and k2 representing the tolerance
around ud

�!. With respect to the origin of space, a given point x is in the specified direction with a degree of satisfaction equal
to:
mðxÞ ¼max 0;min 1;
k2 � arccos x� ud

�!
kxk

k2 � k1

0
B@

1
CA

0
B@

1
CA:
Fig. 6a depicts the set m for ud
�! ¼~i; k1 ¼ 0 and k2 ¼ p

2. The dilation dm(l)(x) by the structuring element m then represents
the set of points that are in the specified direction with respect to the reference fuzzy set l. For instance, the fuzzy set in (c)
represents all of the points to the right of the lateral ventricle. Note that m can be specified according to the desired semantics
of the relation, and other decreasing functions of the angle between x and ud

�! could be used as well. Finally, two fuzzy sets l1

and l2 are considered to satisfy the directional relation if l2 6 dm(l1).

Definition 5 (Directional constraint). Let A and B be two objects with a stable directional relative position characterized by a
structuring element m. The constraint Cdirm

A;B is defined as follows:
Cdirm
A;B : DðAÞ � DðBÞ ! f0;1g

ðl1;l2Þ#
1 if l2 6 dmðl1Þ;
0 otherwise:

�
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Definition 6 (Directional constraint propagator). The propagator fCdirm
A;B

that is associated with the directional relative position
constraint between two structures A and B is defined as follows:
Fig. 7.

space t
hA;B; ðA;AÞ; ðB;BÞ; Cdirm
A;B i

hA;B; ðA;AÞ; ðB;B ^ dmðAÞÞ; Cdirm
A;B i
Proposition 2. The propagator fCdirm
A;B

is correct, idempotent and BSF -consistent.
The propagator is only BSF -consistent because the lower bound of A is not updated, although it could be updated in cer-

tain particular cases. However, this updating would require a time-consuming computation for very limited gain.
Fig. 7 illustrates the propagator associated with the relation ‘‘CNl is to the right of LVl’’. The domain of the caudate nucleus,

ðCNl;CNlÞ, is reduced by removing elements that do not satisfy the directional relation.

5.3. Distance constraint

We define a distance relation between two structures A and B in an asymmetric fashion, as follows. The distance of all
points in region B to region A (represented by lA) must fall within a given interval. We represent this interval by a trapezoi-
dal function with parameters da, db, dc and dd (with 0 6 da 6 db 6 dc 6 dd). The parameters da and db define a constraint on the
minimal distance. With respect to the origin of the space, a point x satisfies this minimal distance relation with degree

c(m1)(x), with m1ðxÞ ¼min 1;max 0; db�kxk
db�da

� �� �
. The complement of the dilation cðdm1 ðlÞÞ then represents the set of points that

satisfy the minimal distance relation with respect to the reference fuzzy set l. For the complementation operator c,
c(a) = 1 � a ("a 2 [0,1]) can typically be used. Similarly, the parameters dc and dd define a constraint on the maximal dis-

tance. With respect to the origin, a given point x satisfies this relation with degree m2ðxÞ ¼max 0;min 1; dd�kxk
dd�dc

� �� �
. The dila-

tion dm2 ðlÞ represents the set of points that satisfy the maximal distance relation with respect to l.
The set of points contained in the distance interval represented by the trapezoidal function with respect to lA can be ob-

tained as follows [5]: lDistðlAÞ ¼ cðdm1 ðlAÞÞ ^ dm2 ðlAÞ. Finally, the relation between A and B is considered to be satisfied if all of
the points of B satisfy the distance relation: lB 6 cðdm1 ðlAÞÞ ^ dm2 ðlAÞ.

Definition 7 (Distance constraint). Let A and B be two objects satisfying a stable distance relation characterized by the
structuring elements m1 and m2. The constraint Cdistm1m2

A;B can be expressed as follows:
Cdistm1m2
A;B : DðAÞ � DðBÞ ! f0;1g

ðl1;l2Þ#
1 if l2 6 cðdm1 ðl1ÞÞ ^ dm2 ðl1Þ;
0 otherwise:

�

Definition 8 (Propagator for the distance constraint). The propagator f
C

distm1m2
A;B

associated with the distance constraint between
two structures is defined as follows:
Illustration of the propagator fCdir m
LVl;CNl

, for m as illustrated in Fig. 6. The lower bound of the caudate nucleus domain CNl is restricted to the subset of

o the right of the elements of DIðLVlÞ obtained from the dilation dmðLVlÞ. The resulting upper bound is denoted by CNl0 .
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hA;B; ðA;AÞ; ðB;BÞ; Cdistm1m2
A;B i

hA;B; ðA;A ^ cðdm1 ðBÞÞÞ; ðB;B ^ cðdm1 ðAÞÞ ^ dm2 ðAÞÞ; Cdistm1m2
A;B i
The propagator f
C

distm1m2
A;B

is correct but is neither idempotent nor BSF -consistent. However, if the minimal and maximal dis-
tance constraints are considered independently, then these properties are satisfied. We denote the propagators associated
with these constraints by fCdistminm

A;B
and fCdistmaxm

A;B
.

Proposition 3. The propagators fCdistminm
A;B

and fCdistmaxm
A;B

are correct, idempotent and BSF -consistent.

As in the case of directional constraints, these propagators are only BSF -consistent because the lower bounds are not up-
dated, although they could be updated in certain particular situations.

5.4. Partition constraint

The cerebral anatomy can be naturally represented in a hierarchical fashion (Section 2). This hierarchy is encoded in the
structural model as partition relations between the anatomical structures. Note that this type of constraint is not restricted
to this particular domain but is also applicable in a variety of other fields.

Definition 9 (Partition constraint). Consider a set of k structures {Ai} and a structure B such that the set {Ai} forms a partition
of B. The associated constraint is defined as follows:
Cpart
fAig;B : DðA1Þ � . . .�DðBÞ ! f0;1g

ðl1; . . . ;lk;lÞ#
1 if l ¼ ?i2½1���k�li and 8i – j;li 6 cðljÞ;
0 otherwise;

�

where \ is the Lukasiewicz t-conorm, i.e. \(a,b) = min(1,a + b). A review on fuzzy connectives can be found e.g. in [22].
Definition 10 (Propagator for the partition constraint). The propagator fCpartition
fAig;B

associated with the partition constraint
between the set of structures {Ai} and B is defined as follows:
. . . ;Ai; . . . ;B; . . . ; ðAi;AiÞ; . . . ; ðB;BÞ; Cpartition
fAig;B

D E
. . . ;Ai; . . . ;B; . . . ; Ai _ >ðB; cð?j–iAjÞÞ;Ai ^ B ^

^
j–i

cðAjÞ
 !

; . . . ; ðB _ ?i2½1���k�Ai;B ^ ?i2½1���k�AiÞ; Cpartition
fAig;B

* +
This propagator is correct, but it is neither idempotent nor BF -consistent.

Note that the partition propagator updates the lower bounds of all of the involved structures. The partition constraint is
essential, in that it is the only constraint that controls the lower bounds other than the inclusion constraint, which has a
smaller effect. The use of the partition propagator is therefore highly important, although this propagator has weaker
properties.

5.5. Connectivity constraint

Connectivity is an important object characteristic, that is widely used in image interpretation. In fact, the objects consid-
ered in image interpretation problems are often connected. In this case, we define a constraint that must be satisfied by the
connected regions. Several definitions of fuzzy set connectivity have been proposed, including the definitions of [12,43,49].
We denote the set of fuzzy sets that are connected according to a given definition of connectivity by H (H#F ).

Definition 11 (Connectivity constraint). Consider a connected object A. The constraint Cconn
A is defined as follows:
Cconn
A : DðAÞ ! f0;1g

l #
1 if l 2 H;
0 otherwise:

�

Definition 12 (Propagator for the connectivity constraint). The propagator fCconn
A

associated with Cconn
A is defined as follows:
A; ðA;AÞ; Cconn
A

D E
A; ðA; nAðAÞÞÞ; Cconn

A

D E

where nAðAÞ ¼

W
fm 2 HjA 6 m 6 Ag:
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This propagator is computed by extracting the connected components of A based onH, i.e. the greatest elements ofH that
are smaller than A according to the usual ordering on F . If we denote the set of connected components of A by HðAÞ, then
nAðAÞ can be expressed as

W
fl 2 HðAÞjA 6 lg. Only the connected components including the lower bound are maintained in

the result.
The most time-consuming operation in the propagator computation is extracting the connected components. The effi-

ciency of this operation depends on the definition of fuzzy set connectivity. For instance, the extraction of the connected
components as defined in [49] can be achieved in quasi-linear time with respect to jXj.

Proposition 4. The propagator fCconn
A

is correct, idempotent and BSF -consistent.
5.6. Volume constraint

The volume (or surface) of a fuzzy set can be defined as a fuzzy set on Rþ [21], as follows: fV ðlÞðvÞ ¼ supVðlaÞPva. We rep-
resent the prior information regarding the volume by an interval ½fVmin

; fVmax � where fVmin
: Rþ ! ½0;1� and fVmax : Rþ ! ½0;1�

represent the minimal and maximal volume, respectively.

Definition 13 (Volume constraint). Consider an object A whose volume falls in the interval ½fVmin ; fVmax �. The constraint

C
vol½fVmin

;fVmax �
A is defined as follows:
C
vol½fVmin

;fVmax �
A : DðAÞ ! f0;1g

l #
1 if f Vmin

6 fV ðlÞ 6 fVmax ;

0 otherwise:

�

Because of the chosen representation of the domains, this constraint is useless when considered alone, as it does not lead

to an efficient propagator. However, when the volume constraint is combined with a connectivity constraint, Cconn
A , we obtain

the following propagator.

Definition 14 (Propagator for C
vol½fVmin

;fVmax �
A ^ Cconn

A ). The propagator f
C

vol½fVmin
;fVmax �

A ^Cconn
A

is associated with the conjunction of a
volume constraint and a connectivity constraint on the object A. The propagator is defined as follows:
A; ðA;AÞ; C
vol½fVmin

;fVmax �
A ^ Cconn

A

D E
A; ðA;A0Þ; C

vol½fVmin
;fVmax �

A ^ Cconn
A

D E

where A0 ¼

W
fl 2 HjA 6 l 6 A and f Vmin

6 fV ðlÞg.
Proposition 5. The propagator f
C

vol½fVmin
;fVmax �

A
^Cconn

A

is correct, idempotent and BSF -consistent.
The propagator f

C
vol½fVmin

;fVmax �

LVl
^Cconn

LVl

is illustrated in Fig. 8. This propagator reduces the domain of LVl by filtering the con-

nected components of LVl.

5.7. Adjacency constraint

A measure of adjacency between two fuzzy sets l1 and l2, denoted by ladj(l1,l2), has been proposed in [5]. We adopt this
definition in the sequel.

Definition 15 (Adjacency constraint). Consider two adjacent objects A and B. We define the constraint Cadj
A;B as follows:
Fig. 8. Illustration of the propagator f
C

vol½fVmin
;fVmax �

A
^Cconn

A

. The connected components of LVl are filtered using a minimal volume criterion.
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Cadj
A;B : DðAÞ � DðBÞ ! f0;1g

ðl1;l2Þ#
1 if ladjðl1;l2Þ ¼ 1;
0 otherwise:

�

As for the volume constraint, we do not obtain an efficient propagator by considering this constraint alone. We therefore

follow the same reasoning as in the previous section and combine the adjacency constraint with a connectivity constraint,
Cconn

B .
Definition 16 (Propagator for Cadj
A;B ^ Cconn

B ). The propagator associated with the conjunction of an adjacency constraint
between objects A and B and a connectivity constraint on B, denoted by fCadj

A;B^Cconn
B

, is defined as follows:D E

A;B; ðA;AÞ; ðB;BÞ; Cadj

A;B ^ Cconn
B

A;B; ðA;AÞ; ðB;B0Þ; Cadj
A;B ^ Cconn

B

D E

where B0 ¼

W
fl 2 HjB 6 l 6 B and 9m 2 ðA;AÞ;ladjðl; mÞ ¼ 1g.
Proposition 6. The propagator fCadj
A;B
^Cconn

B
is correct, idempotent and BSF -consistent.

This propagator can be efficiently computed by extracting the connected components of B based on H. The components

that are not adjacent to A are filtered out. We illustrate the propagator fCadj
LVl;CNl

^Cconn
CNl

in Fig. 9. The domain bound CNl was up-

dated by the propagator because many elements in ðCNl;CNlÞ are either not connected or not adjacent to any element of

ðLVl; LVlÞ.

5.8. Contrast constraint

Finally, we consider a constraint related to the intensity of the structures to maintain the data fidelity in the propagation
process. This constraint is described in detail below for the case of MRI data. Similar constraints can be obtained for other
imaging modalities.

As the MRI signal is not normalized, the intensity values of the tissues vary between acquisitions, and it is not appropriate
to derive a membership function directly from an example histogram using methods similar to those in [4]. However, for a
given acquisition protocol, the contrasts between the structures remain stable. For instance, the lateral ventricles exhibit
lower gray level values compared to the white matter. The structural model of the brain therefore includes a set of stable
contrast relations.

To model the associated constraint, we associate a membership function lI : N� ! ½0;1� with each fuzzy set l 2 F . This
membership function represents the gray level values observed in l in the image I : 8v 2 N�; lI ðvÞ ¼ supx2X;IðxÞ¼vlðxÞ. Con-

versely, a fuzzy set l0 can be obtained from a membership function of the gray levels l0I as follows:
l0ðxÞ ¼ l0I � IðxÞ ¼ l0I ðIðxÞÞ.

We extend Michelson’s definition [37] of the contrast j between two gray levels, v1 and v2, ðj ¼ v1�v2
v1þv2

Þ to the contrast
between two membership functions, l1

I and l2
I . The latter contrast is represented by the membership function

f j
l1 ;l2

: ½�1;1� ! ½0;1�, as follows: 8v 2 R; f j
l1 ;l2
ðvÞ ¼ supðv1;v2Þ 2 N�2

v ¼ v1�v2
v1þv2

min l1
I ðv1Þ;lI2ðv2Þ

� �
. If fj represents the prior infor-

mation regarding the contrast between l1 and l2, then we can obtain a membership function l02
I representing gray levels

that follow the contrast relation with respect to l1: l02
I ¼ lI1�N f k�1

l1 ;l2
, where:
Fig. 9. Illustration of the propagator fCadj
LVl;CNl

^Cconn
CNl

. The connected components of CNl that are not adjacent to LVl are filtered out.
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8v 2 N�; lI1�N f k�1

l1 ;l2
ðvÞ ¼ sup

ðv1;v2Þ 2 N�2

v ¼ v1 � v2

minðl1
I ðv1Þ; f k�1

l1 ;l2
ðv2ÞÞ;

8v 2 N�; f k�1

l1 ;l2
ðvÞ ¼ sup

u 2 Rþ�

v ¼ 1�u
1þu

f j
l1 ;l2
ðuÞ:

8>>>>>>>><
>>>>>>>>:
Note that the associated fuzzy set (l02
I � I) is such that l2 6 l02

I � I . Similarly, we define l01
I as follows: l01

I ¼ lI2�N f k
l1 ;l2

,
with f k

l1 ;l2
ðvÞ ¼ supu 2 Rþ�

v ¼ 1þu
1�u

f j
l1 ;l2
ðuÞ. We also have that l1 6 l01

I � I .

We represent the prior information on the contrast between two structures, A and B, by a trapezoidal function fj(A, B) and
define the following constraint.

Definition 17 (Contrast constraint). Consider two structures, A and B, with a stable contrast represented by a membership
function f j

A;B. The constraint Ccont
A;B is defined as follows:
Ccont
A;B : DðAÞ � DðBÞ ! f0;1g

ðl1;l2Þ#
1 if lI

1 6 lI
2�N f k

A;B and lI
2 6 lI

1�N f k�1

A;B ;

0 otherwise;

(

where 8v 2 Nþ; f k�1

A;B ðvÞ ¼ supu 2 Rþ�

v ¼ 1�u
1þu

f j
A;BðuÞ and 8v 2 Nþ; f k

A;BðvÞ ¼ supu 2 Rþ�

v ¼ 1þu
1�u

f j
A;BðuÞ.

Definition 18 (Propagator for the contrast constraint). The propagator fCcont
A;B

associated with the contrast constraint between
two structures A and B is defined as follows:
A;B; ðA;AÞ; ðB;BÞ; Ccont
A;B

D E
A;B; A;A ^ lBI�N f k

A;B � I
� �� �

; B;B ^ lI
A
�N f k�1

A;B � I
� �� �

; Ccont
A;B

D E

This propagator reduces the upper bounds of the two domains by removing all of the voxels that cannot satisfy the con-

trast relation. The propagator produces important domain reductions even when the domains are quite large. Indeed, the
radiometric membership function of any given domain is limited to the gray levels present in the image.
Proposition 7. fCcont
A;B

is correct, idempotent and BSF -consistent.
Fig. 10 illustrates these definitions for the contrast constraint between the lateral ventricle (LVl) and the caudate nucleus
(CNl) (b). The associated membership functions lILVl and lICNl are depicted in (c). The membership function f j

LVl;CNl, representing
the prior information on the contrast, is shown in (d). We also obtain a membership function (e) representing the intensities

satisfying the contrast relation with respect to lLVl lILVl�N f k
LVl;CNl

� �
. If we combine the latter with the image (f), then we can

verify that lCNl 6 lILVl�N f k
LVl;CNl

� �
� I .

Fig. 11 illustrates the associated propagator. The initial domain ðLVl; LVlÞ of the lateral ventricle has previously been re-

duced, and ðCNl;CNlÞ is equal to ð0F ;1F Þ. We then obtain gray levels that may satisfy the contrast relation with lI
LVl

following

lI
LVl
�N f k�1

LVl;CNl. Finally, we deduce the reduced domain ðCNl0;CNl0Þ.

6. Application to structure recognition in images

In this section, we first incorporate the proposed constraint propagation method into a complete interpretation algo-
rithm. We then provide a demonstration on synthetic examples. Finally, we perform brain structure segmentation and rec-
ognition on MR images of healthy subjects, to illustrate the application of the algorithm to real-world data.

6.1. Interpretation process

The interpretation process illustrated in Fig. 1 is based on a structural model that must be constructed beforehand. First,
the constraint propagation algorithm proposed in Section 4 is applied. This algorithm provides reduced domains for the tar-
get structures, but the final result remains to be extracted. We briefly describe the learning procedure for constructing the
model and the final decision process in the following subsections.



(a) (b) (c)

(d) (e) (f)
Fig. 10. (a) Cropped axial slice of a 3D MRI volume. (b) lLVl (blue) and lCNl (red). (c) lILVl (blue) and lICNl (red). (d) Prior information on the contrast between

LVl and CNl: f j
LVl;CNl . (e) lICNl (red) and lILVl�N f k

LVl;CNl (blue). (f) lILVl�N f k
LVl;CNl

� �
� I . (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Fig. 11. Illustration of the propagator associated with the contrast constraint between the lateral ventricle (LVl) and the caudate nucleus (CNl).
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6.1.1. Model learning
The model could be constructed manually as an expert system or learned off-line from a set of manually annotated

images. The manual method can become very tedious given the large number of brain structures. We therefore decided
to design a learning procedure. In the model graph, the vertices are defined as the annotated structures in the learning data-
base, and the model relations (graph edges) are then derived. For this purpose, we check whether all conceivable relations
between the structures are satisfied, and retain those relations that are satisfied in all cases. For instance, we evaluate the
inclusion of all pairs of structures and add the inclusion relations that are satisfied in all cases to the model. For parameter-
ized relations such as the directional relative positions, we adopt their most restrictive form, provided it covers all cases. For
instance, if A is strictly to the right of B in certain cases, but partially to the right of B in other cases, we add the relation
obtained in the second configuration (which is satisfied a fortiori in the first case) to the model. Once the model is con-
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structed, it is used to interpret all of the images that do not belong to the training database, without requiring any segmen-
tation or annotation of those images.
6.1.2. Extraction of the final result
In general, the constraint propagation algorithm does not reduce the domains to singletons. Even if the domains are

strongly reduced, we cannot extract a solution using a backtracking algorithm [26] in all cases because the computation time
would be prohibitive. We therefore propose extracting a binary region with a smooth surface that is consistent with the re-
sults of the propagation algorithm. This extraction constitutes the final decision-making step.

For a given structure A, we first obtain the fuzzy set @A, which includes the boundary of the structure, from its domain and
the domains of adjacent structures. From the model, we obtain the set Adj(A) of structures that are adjacent to A in at least
one element of the training set. The boundary of A can then be expressed as the union of the boundaries shared with adjacent
structures, l@A ¼ _il@ðA;OiÞ; Oi 2 AdjðAÞ, and we can rely on the morphological approach to define the boundary l@ðA;OiÞ be-
tween A and Oi: l@ðA;OiÞ ¼ dBðlAÞ ^ dBðlOi

Þ; where dB denotes the dilation by an elementary ball B. Using the results of the
propagation, we obtain an overestimation @A of l@A, as follows: l@A 6

W
fdBðAÞ ^ dBðOiÞjOi 2 AdjðAÞg. Finally, we extract a min-

imal surface S included in A and including A by maximizing the following functional:
EðSÞ ¼
Z
@S

logð@Að@SðsÞÞÞdsþ
Z

S
logðAðxÞÞdxþ

Z
XnS

logðcðAÞðxÞÞdx:
This functional is efficiently maximized using a graph-cuts algorithm [11]. To obtain a non-empty result, A must not be
empty. However, this is not always the case. Therefore, we first extract a result for those structures whose inferior bound-
aries have the highest maximum membership values. We then apply the propagators associated with the partition con-
straints. If lower bounds are updated, then we iterate the process. In addition, when @A provides a large overestimation
of the boundary, the result may be imprecise. To favor results that more closely match the image boundaries, we add a pen-
alty eðxÞ ¼ �

ð1þkrIðxÞkÞ2:
EðSÞ ¼
Z

x2@S
ðlogð@Að@SðxÞÞÞ þ eðxÞÞdx�

Z
x2S

logðAðxÞÞdxþ
Z

x2XnS
logðcðAðxÞÞÞdx;
where rI denotes the image intensity gradient and � is equal to 10�2 in the examples presented below.
Although the propagation does not completely solve the problem, it is useful in that it provides lower and upper bounds

that are sufficiently close to one another, around the target structure, to enable fast and accurate segmentation. There is typ-
ically only one significant image contour in @A within the search space returned by the propagation algorithm, thus render-
ing the minimal surface segmentation problem unambiguous. Performing the segmentation directly on the entire image or
with weaker constraints would be more difficult, costly, strongly dependent on the initialization, and it would extract the
most contrasted structure, that would not necessarily correspond to the desired region. All of these problems are overcame
using the constraint propagation. With this propagation method, the minimal surface extraction provides fast and accurate
segmentation results.
6.2. Recognition of objects in synthetic images

To illustrate the proposed approach, we have synthesized a set of images including nine objects (A � I) whose relative
positions and contrasts are quite stable. One element is presented in Fig. 12, and several cases are presented in Fig. 13 to
illustrate the variability of the database.

Certain relations, such as the adjacency of G and H, are satisfied in some but not all instances of the database. The param-
eters of some of the relations also vary. For instance, the relation ‘‘B is to the left of F’’ is strictly satisfied in some cases. In
other cases, this relation is satisfied only for larger aperture parameters. In addition, the objects exhibit a Gaussian distribu-
tion of intensities whose mean value varies. Nevertheless, the contrast between the structures remains quite stable.
Fig. 12. A synthetic example.
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Fig. 13. Synthetic examples.
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Fig. 14. (a) Proportion of cases for which the propagation process yields inconsistency as a function of the number of cases k used to learn the model. (b)
Mean size of the final domains (for the consistent cases). (c) Mean kappa coefficient of the results for the nine structures. (d) Mean distance in pixels
between the results and the target regions.

18 O. Nempont et al. / Information Sciences 246 (2013) 1–27
For instance, the gray levels observed in A are still much higher than those observed in G. Similarly, the gray levels in B are
higher than those in F, although the intensity distributions are nearly equal.

We generate two groups of synthetic examples. The first one contains 350 elements and is used to learn the generic mod-
el. The second one contains 100 elements and is used to evaluate the recognition process.
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6.2.1. Model learning
We first extract the satisfied relations for each instance in the training set, as described briefly in Section 6.1.1. As the

relative positions of the nine structures are quite stable, many relations are satisfied in all cases. For instance, A and G are
always adjacent, but G and I are adjacent only in certain cases (they are not adjacent in the 4th, 15th and 16th cases pre-
sented in Fig. 13). In addition, the parameters of certain relations vary, as explained above. For instance, H is sometimes
strictly to the left of A, but in other cases, it is only partially to the left of A.

We then merge the relations obtained for the first k cases in the training set. We denote the resulting model by Gk. As k
grows, the relations in Gk become less restrictive, but the proportion of cases that are well represented by Gk increases. For
instance, if we consider the cases presented in Fig. 13, G3 contains an adjacency relation between G and I because the first
three cases contain that relation. As the relation is not satisfied in the fourth case, Gk does not contain that relation for k P 4
(which means that G and I may or may not be adjacent). The relation ‘‘H is to the left of A’’ is present in G1 with an aperture



Fig. 17. Evolution of the domains of the left caudate nucleus (CNl), frontal horn of the left lateral ventricle (FLVl), left thalamus (THl) and white matter of the
left hemisphere (CWMl) during the propagation process.
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parameter k1 equal to 1.12. In G2, the parameter k1 is equal to 1.43 and in Gk for k P 8, k1 is equal to 1.57. Note that the latter
is satisfied by all instances in the training set.

6.2.2. Recognition
We use the models Gk (for k between 1 and 350) to perform the recognition of 100 other cases. We initially assign the

domain ð0F ;1F Þ to each structure, and we then apply the constraint propagation algorithm. The algorithm concludes that
the problem is inconsistent if Gk does not correctly represent the case under consideration. Fig. 14a shows the proportion
of cases in which the algorithm yields inconsistency as a function of the size k of the training set. As k grows, the number
of inconsistent cases decreases. However, if more cases are correctly represented, the model becomes weaker and the prop-
agation process yields less domain reduction, as illustrated in Fig. 14b. The mean size of the final domains is presented (for
the consistent cases) as a function of the number of cases used in the learning of the model.

We then obtain a binary solution from the resulting domains by extracting a minimal surface (cf Section 6.1.2). We com-

pare the regions obtained for each structure to the target regions using the kappa coefficient 2jA\Bj
jAjþjBj

� �
, which quantifies the

overlap between regions A and B, and the mean distance between the boundaries of A and B. For consistent cases, we present
for each structure the mean kappa coefficient (c) and the mean distance (d) with respect to the number of cases used to learn
the model in Fig. 14. The results are better for structures that are clearly visible, e.g. A and G, and worse for structures such as
F and B, which are not clearly differentiated. However, the kappa coefficient remains higher than 77%, which is generally con-
sidered to be a favorable value. The accuracy of the results decreases as k grows. As the propagation algorithm yields larger
domains, the model becomes less restrictive.
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Fig. 18. (a) Evolution of the domain sizes during the constraint propagation for the first case in Fig. 19, using the generic propagation algorithm (red) and a
propagation algorithm with specific constraint ordering (blue). Domain reductions achieved by the inclusion (b), direction (c), distance (d), contrast (e),
partition (f), connectivity and adjacency (g) and volume (h) constraints as a function of the number of iterations, using the algorithm with constraint
ordering. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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6.3. Interpretation of brain magnetic resonance images (MRIs)

6.3.1. Brain models
Anatomical models are widely used in the segmentation and recognition of brain structures. These models can be cate-

gorized into three main classes: iconic atlases, statistical shape models, and structural models such as graphs, conceptual
graphs, ontologies, etc. In this paper we focus on structural models. The structural arrangement of the brain is known
and is nearly stable in healthy subjects. Moreover, the structure remains quite stable in the presence of pathologies. This
structural arrangement can be encoded as spatial relations of the anatomical structures, as in anatomy textbook descriptions
[28,60]. They form a compact representation of the stable properties of the normal anatomy (even if this representation is
incomplete), which can be used to perform automatic segmentation and recognition.
6.3.2. Segmentation and recognition of internal brain structures in 2D slices
We have extracted a specific axial slice in six MR volumes from the Oasis database2 and manually outlined 56 anatomical

structures that form a hierarchical representation of the brain in each image, with the root structure representing the entire
brain. Two instances from this database are shown in Fig. 15. The relative positions and contrasts of the anatomical structures
are quite stable. For instance, the caudate nucleus is always adjacent to the lateral ventricle and is always close to it, although
the distance parameters vary. We used several models to evaluate the recognition process, as for the synthetic cases. For each
case i in the database we obtain a model denoted by Gs

i . We also obtain model Gf
i based on all instances except for the ith case,

and model Gf based on all cases in the data base. These models contain nearly 5000 relations between the 56 structures.
2 The Oasis database is available at http://www.oasis-brains.org/. It contains MR images acquired on 416 subjects ranging between 18 and 96 years in age.
However, these images are not annotated.

http://www.oasis-brains.org/


Fig. 19. Final recognition results for the caudate nuclei, lateral ventricles, thalami, putamens, insula lobes and third ventricle for the six cases using models
Gs

case; Gf
case and Gf (see Fig. 15 for the brain structure labels).
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We use the three models (Gs
case; Gf

case and Gf) to evaluate the recognition algorithm for the Oasis database. We first apply
the algorithm to each case i using Gs

i , obtained only from that case, to demonstrate the best results that can be obtained using
the constraints described in Section 5. We then apply the algorithm to each case i using Gf

i , the model obtained from the
other cases. As the training set is relatively small, we also apply the algorithm using Gf, the model obtained from all cases
including the case to be recognized. We initialize the recognition process using a preliminary segmentation of the brain sur-
face. This extraction can be performed using existing tools, such as BET [55] or BSE [54]. The domain of the brain is thereby
reduced to a singleton, and the other domains are set to ð0F ;1F Þ.
6.3.2.1. Propagation. We apply the constraint propagation algorithm using models Gs
case;G

f
case and Gf. The algorithm converges

after approximately 10,000 to 50,000 iterations.
For a given model Gs

case, the algorithm produces tight domains in all cases and never yields inconsistency. In Fig. 17, we
illustrate the evolution of the domains of several structures. The upper bounds are increasingly reduced, and, for most struc-
tures, they converge to values close to the desired results. However, the lower bounds increase slowly and later over the
course of the iterations. In some cases, the lower bounds remain stuck at 0F , e.g. for thin structures,3 thus yielding inaccuracy
in the final result.

For a given model Gf
case, obtained from all cases except the one that is processed, the process yields inconsistency only in

case 5. Although the model was learned from a small number of cases, it clearly exhibits favorable generalization properties.
3 The lower bounds are generally updated based on partition constraints. To improve the robustness of the propagation algorithm, we use a weakened
propagator for partition constraints that erode the lower bound obtained by the original propagator.



Fig. 20. Continuation of Fig. 19.

Table 1
Mean value of the kappa coefficient, mean distance (DM) and Hausdorff distance (DH) between the manual segmentations and the recognition results for the left
and right caudate nuclei (CNl and CNr), frontal horn of the lateral ventricles (FLVl and FLVr), thalami (THl and THr), putamens (PUl and PUr) for the consistent
cases using the models Gs

case;G
f
case or Gf. Distance values are in mm (the image resolution is 1 � 1 � 1.25 mm3).

Struct Gs
case Gf

case
Gf

kappa DM DH kappa DM DH kappa DM DH

CDl 0.94 0.3 2.1 0.91 0.5 2.7 0.94 0.3 1.8
CDr 0.94 0.3 2.1 0.91 0.4 2.2 0.94 0.3 1.3
FLVl 0.92 0.5 2.7 0.89 0.4 1.5 0.91 0.4 1.4
FLVr 0.92 0.7 3.2 0.79 2.2 7.8 0.89 0.8 3.4
THl 0.93 0.7 3 0.88 1.2 4.9 0.91 1 4.4
THr 0.93 0.7 2.6 0.87 1.2 4.5 0.92 0.8 3.7
PUl 0.92 0.5 2.9 0.84 1.2 4.9 0.86 1 3.8
PUr 0.91 0.5 2.7 0.82 1.7 6.5 0.73 3 8.5
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Consider, for instance, the case illustrated in Fig. 16. The body of the left lateral ventricle (ALVl) is close to the mid-sagittal
plane, whereas in other cases, it is farther away. Model Gf

1 therefore contains relations that are not satisfied by the target
region for ALVl, which is not contained in the final domain ðALVl;ALVlÞ. The upper bound ALVl (on the right in Fig. 16) can
be compared to the upper bound (on the left) obtained using Gs

1.



Fig. 22. (a) Axial slice for a subject with a brain tumor. (b) Recognition results for the internal structures and the tumor (purple region). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 21. 3D reconstruction of the recognition results for the caudate nuclei, putamens, lateral ventricles, thalami, third ventricle, accumbens nuclei and sub-
thalami.
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Finally, we use model Gf (obtained from all cases, including the one being studied) to illustrate the results obtained when
the model correctly represents the case under consideration and is less restrictive compared to Gs

case.
In Fig. 18, we illustrate the evolution of the domain sizes and the efficiency of the constraints during the propagation algo-

rithm. Using the generic propagation algorithm (see Section 4.3), the domain size initially decreases rapidly and then con-
verges slowly, as shown in red (a). To improve the propagation, we have implemented a constraint ordering algorithm within
the generic algorithm. Because the result does not depend on the ordering, we propose several criteria for choosing the next
propagator to be computed, including the magnitude of the changes in the domains since the last application of the prop-
agator, the computational cost of the propagator, and a fine estimation of the maximal possible domain reduction. The con-
straint ordering algorithm enables a significantly more rapid convergence, as illustrated by the blue curve in Fig. 18a. For this
algorithm, we also show the domain reductions achieved by the constraints described in Section 5 in (b–h). The largest do-
main reductions are obtained from the contrast (e), direction (c) and distance (d) constraints. However, all of the constraints
contribute to the domain reduction in a complementary manner, and are therefore all useful. For instance, the lower bounds
of the domains are updated only by the partition constraints.

6.3.2.2. Extraction of the final solution. Figs. 19 and 20 show the results obtained for the caudate nuclei, lateral ventricles, thal-
ami, putamens, third ventricle and insula for the models Gs

case; Gf
case and Gf. The segmentation and recognition results are

favorable in most cases, and the method therefore provides an effective automated algorithm for interpreting MR images.
To quantitatively evaluate the algorithm, we compare the results to manual segmentations in Table 1. We obtain similar

results to those reported in [2]. The best results are obtained using Gs
case; in this case, the kappa values are always larger than

0.9, and the mean distances are always smaller than one voxel size. For Gf, the target regions are also contained in the do-
mains obtained using the propagation algorithm. However, these domains are larger, and the final interpretation results are
slightly less accurate in some cases, for the left putamen (PUl) shown in green, for instance. In addition, the extraction of the
right putamen fails completely in the third case; because the resulting lower bound was empty, we were required to update
the bound after the final extraction of certain structures, which led to an error. The same problem occurs for model Gf

case.
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Moreover, the Gf
case model does not necessarily correctly represent the case under study, leading to further causes errors. For

instance, in the first case, ALVl does not fully include the target region, and the final recognition result is incorrect (see
Fig. 16). However, this problem occurs rarely.

Overall, a mean error of less than one pixel or voxel was obtained, and the kappa coefficient was larger than 0.8 for Gf
case,

and even larger for the two other models. These results are very good and promising.

6.3.3. Recognition and segmentation of 3D structures
We now illustrate the application of the algorithm to the entire MRI volume.
Because the computational complexity of the propagators varies at least linearly with the number of pixels, the propa-

gation process becomes very slow in 3D. To reduce the computational cost, we perform the propagator computations on
coarser scales if necessary. Certain relations, such as the directional relative positions, exhibit a high level of granularity.
The computation of these relations on a subsampled grid does not lead to substantially weaker domain reductions, and
the algorithm remains efficient at relatively low computational cost.

Moreover, the ordering of the propagators in the algorithm in Fig. 3 is simple and involves many extraneous computa-
tions. We therefore proposed several criteria for choosing the next propagator (the result is independent of the order), as
explained previously. This constraint ordering algorithm improves the convergence, and reduces the computation time of
the propagation process to a few hours for 3D images.4 Note that further significant optimizations are still feasible.

Fig. 21 shows a 3D reconstruction of the results obtained for the internal structures.
7. Conclusion

In this paper, we addressed the problem of global scene interpretation based on structural models and proposed a new
interpretation method based on a constraint propagation algorithm. The novel aspects of our work include the formulation of
the segmentation and recognition problem as a constraint satisfaction problem, without requiring a preliminary segmenta-
tion or annotation of the image. A constraint network is constructed from a generic model of the scene, representing its
structure through spatial relations between objects and their radiometric contrasts. In addition, we defined constraints
based on the relations in the generic model and proposed a specific propagator for each constraint for the first time. We then
used a constraint propagation algorithm to reduce the variable domains based on these constraints. Finally, we performed a
segmentation of each object based on the tightened domains.

As an illustration, we have applied the proposed framework to the recognition of internal brain structures in MR images,
using a model representing the standard neuro-anatomy. Promising results were obtained, with mean errors of less than one
voxel size with respect to reference segmentations. There is no inherent methodological or theoretical barrier to 3D appli-
cation of the method. The only issues are the computational cost and model learning, which requires a large 3D annotated
database. Comparisons with other automated methods, in terms of both the accuracy and computation time, should be per-
formed in future experimental studies.

Finally, we comment on the potential extension of the method to pathological cases. Pathologies such as brain tumors can
induce large deviations from the normal anatomy and must therefore be considered in the model. In addition, we could allow
for the possibility of larger membership functions defining the spatial relations, as proposed in [1]. Fig. 22 illustrates a pre-
liminary result of our extended method. Despite the deformation caused by the tumor, we obtain very good recognition re-
sults for the internal structures.
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